module PSet:sig..end
The definitions below describe the polymorphic set interface.
They are similar in functionality to the functorized
BatSet.Make module, but the compiler cannot ensure that sets
using different element ordering have different types: the
responsibility of not mixing non-sensical comparison functions
together is to the programmer. If you ever need a custom
comparison function, it is recommended to use the BatSet.Make
functor for additional safety.
type 'a t
include BatEnum.Enumerable
include BatInterfaces.Mappable
val empty : 'a tcompare as comparison functionval create : ('a -> 'a -> int) -> 'a tval is_empty : 'a t -> boolval singleton : ?cmp:('a -> 'a -> int) -> 'a -> 'a tval mem : 'a -> 'a t -> boolmem x s tests whether x belongs to the set s.val find : 'a -> 'a t -> 'afind x s returns the element in s that tests equal to x under its comparison function.Not_found if no element is equalval add : 'a -> 'a t -> 'a tadd x s returns a set containing all elements of s,
plus x. If x was already in s, s is returned unchanged.val remove : 'a -> 'a t -> 'a tremove x s returns a set containing all elements of s,
except x. If x was not in s, s is returned unchanged.val update : 'a -> 'a -> 'a t -> 'a tupdate x y s replace x by y in s.
update is faster when x compares equal to y according
to the comparison function used by your set.Not_found if x is not in s.val union : 'a t -> 'a t -> 'a tunion s t returns the union of s and t - the set containing
all elements in either s and t. The returned set uses t's
comparison function. The current implementation works better for
small s.val intersect : 'a t -> 'a t -> 'a tintersect s t returns a new set of those elements that are in
both s and t. The returned set uses s's comparison function.val diff : 'a t -> 'a t -> 'a tdiff s t returns the set of all elements in s but not in
t. The returned set uses s's comparison function.val sym_diff : 'a t -> 'a t -> 'a tsym_diff s t returns the set of all elements in s or t but not both.
This is the same as diff (union s t) (inter s t). The returned set uses
s's comparison function.val compare : 'a t -> 'a t -> intval equal : 'a t -> 'a t -> boolequal s1 s2 tests whether the sets s1 and s2 are
equal, that is, contain equal elements.val subset : 'a t -> 'a t -> boolsubset a b returns true if a is a subset of b. O(|a|).val disjoint : 'a t -> 'a t -> booldisjoint s1 s2 tests whether the sets s1 and s2 contain no
shared elements. (i.e. inter s1 s2 is empty.)val iter : ('a -> unit) -> 'a t -> unititer f s applies f in turn to all elements of s.
The elements of s are presented to f in increasing order
with respect to the ordering over the type of the elements.val at_rank_exn : int -> 'a t -> 'aat_rank_exn i s returns element at rank i in s, that is
the i-th element in increasing order
(the 0-th element being the smallest element of s).Not_found if s = empty.Invalid_argument error_message if i < 0 || i >= cardinal sval map : ('a -> 'b) -> 'a t -> 'b tmap f x creates a new set with elements f a0,
f a1... f aN, where a0, a1, ..., aN are the
values contained in x
The resulting map uses the polymorphic compare function to
order elements.
val filter : ('a -> bool) -> 'a t -> 'a tfilter p s returns the set of all elements in s
that satisfy predicate p.val filter_map : ('a -> 'b option) -> 'a t -> 'b tfilter_map f m combines the features of filter and
map. It calls calls f a0, f a1, f aN where a0,a1..an
are the elements of m and returns the set of pairs bi
such as f ai = Some bi (when f returns None, the
corresponding element of m is discarded).
The resulting map uses the polymorphic compare function to
order elements.
val fold : ('a -> 'b -> 'b) -> 'a t -> 'b -> 'bfold f s a computes (f xN ... (f x1 (f x0 a))...),
where x0,x1..xN are the elements of s, in increasing order.val exists : ('a -> bool) -> 'a t -> boolexists p s checks if at least one element of
the set satisfies the predicate p.val for_all : ('a -> bool) -> 'a t -> boolval partition : ('a -> bool) -> 'a t -> 'a t * 'a tval split : 'a -> 'a t -> 'a t * bool * 'a tsplit x s returns a triple (l, present, r), where
l is the set of elements of s that are
strictly less than x;
r is the set of elements of s that are
strictly greater than x;
present is false if s contains no element equal to x,
or true if s contains an element equal to x.val split_opt : 'a -> 'a t -> 'a t * 'a option * 'a tsplit_opt x s returns a triple (l, maybe_v, r), where
l is the set of elements of s that are
strictly less than x;
r is the set of elements of s that are
strictly greater than x;
maybe_v is None if s contains no element equal to x,
or Some v if s contains an element v that compares equal to x.val split_lt : 'a -> 'a t -> 'a t * 'a tsplit_lt x s returns a pair of sets (l, r), such that
l is the subset of s with elements < x;
r is the subset of s with elements >= x.val split_le : 'a -> 'a t -> 'a t * 'a tsplit_le x s returns a pair of sets (l, r), such that
l is the subset of s with elements <= x;
r is the subset of s with elements > x.val cardinal : 'a t -> intval elements : 'a t -> 'a listval to_list : 'a t -> 'a listelements.val to_array : 'a t -> 'a arrayto_list but with an array instead of a list.val min_elt : 'a t -> 'aInvalid_argument if given an empty set.val pop_min : 'a t -> 'a * 'a t
let mini = min_elt s in (mini, remove mini s)
Since 2.4
Raises Not_found if the set is empty.
val pop_max : 'a t -> 'a * 'a t
let maxi = max_elt s in (maxi, remove maxi s)
Since 2.4
Raises Not_found if the set is empty.
val max_elt : 'a t -> 'aInvalid_argument if given an empty set.val choose : 'a t -> 'aInvalid_argument if given an empty set.val pop : 'a t -> 'a * 'a tNot_found if given an empty setval enum : 'a t -> 'a BatEnum.tval of_enum : 'a BatEnum.t -> 'a t
val of_enum_cmp : cmp:('a -> 'a -> int) -> 'a BatEnum.t -> 'a t
val of_list : 'a list -> 'a tval of_array : 'a array -> 'a tval print : ?first:string ->
?last:string ->
?sep:string ->
('a BatInnerIO.output -> 'c -> unit) ->
'a BatInnerIO.output -> 'c t -> unitmodule Infix:sig..end
val get_cmp : 'a t -> 'a -> 'a -> int