Z-DOS"

Volume 11

data
systems

NOTICE

This software is licensed (not sold). It is licensed to sublicensees, including
end-users, without either express or implied warranties of any kind on an “as is”
basis.

The owner and distributors make no express or implied warranties to sublicensees,
including end-users, with regard to this software, including merchantability, fithess
for any purpose or non-infringement of patents, copyrights or other proprietary rights
of others. Neither of them shall have any liability or responsibility to sublicensees,
including end-users, for damages of any kind, including special, indirect or
consequential damages, arising out of or resulting from any program, services or
materials made available hereunder or the use or modification thereof.

Technical consultation is available for any problems you encounter in verifying the
proper operation of these products. Sorry, but we are not able to evaluate or assistin
the debugging of any programs you may develop. For technical assistance, call:

(616) 982-3884 Application Software/Softstuff Products
(616) 983-3860 Operating System/Language Software/Utilites

Consultation is available from 8:00 AM to 4:30 PM (Eastern Time Zone) on regular
business days.

Zenith Data Systems
Software Consultation
Hilltop Road

St. Joseph, Michigan 49085

Copyright ° by Microsoft, 1982, all rights reserved.
Copyright ¢ Zenith Data Systems, 1982.

Z-DOS is a trademark of Zenith Data Systems.
HEATH COMPANY
BENTON HARBOR, MICHIGAN 49022

ZENITH DATA SYSTEMS
ST. JOSEPH, MICHIGAN 49085

Xil

TABLE OF CONTENTS

PART 4: Appendices and Index

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G
Appendix H
Appendix |
Appendix J
Appendix K
Appendix L
Appendix M
Appendix N
\ppendix O
Appendix P

Operating System Error Messagescccccoecveeevveennn, A3
MACRO-86 Assembler Error Messagesco....... B.1
LINK Error Messagesc.cccoeveevrieeevneennicniinnssiessenens CA1
LIB Error Messagesccocceeeeeeeviennniecceeeeieeenee e DA
CREF Error Messagesc.cceceeveveevvvevcreeesnnre e, E.1
Memory Test Utilityoceeeevveienicieciece, F.1
Instructions for Single Disk Drive Users G.1
Disk Directory Structures and FCB Definition H.1
Interrupts, Function Calls and Entry Points i1
System Structure and Memory Mapscccceeeevinnnnnn. J.1
MACRO-86 Table of Directivesc.ccccvuveeiercierrcnneenn. K.1
8088 (8086) Instructions (Alphabetic)ccvvevueennns L.1
8088 (8086) Instructions (by Argument)c......... M.1
Character Font Filesccceecvvieeiieecciecece e N.1
ASCIll Character and Escape Sequence Codes 0.1
Notes on Writing Z-DOS Programsc.cccoeeeververennnne. P.1
... XA

Prc < -'ecg wye te

Che c&‘—-‘va_

Appendices

.

i) Paragreyers

N
.

Page 10.1

MACRO-86

Introduction to MACRO-86

INTRODUCTION

MACRO-86 produces relocatable, linkable code for maximum efficiency in
memory assignment, library maintenance, and modular program develop-
ment.

MACRO-86 fully supports macro assembly, conditional assembly, and an
extensive set of assembler directives.

Source code blocks used repeatedly within a program can be entered once
as a “macro definition”. A one line “macro call” causes the assembler to in-
sert the code at any desired point in the program. A macro call may occur
within the definition of another macro. Such nesting is limited only by mem-
ory size.

Conditional assembly allows portions of source code to be either assembled
orignored as aresult of tests on conditions chosen by the programmer. Con-
ditional statements may be nested to a maximum level of 255.

Directives are statements included in the source code to control the func-
tions of the assembler. MACRO-86 has the ability to correct some errors
made during source code entry. This feature relies on an evaluation of the
programmer’s likely intent while making the error. Such corrections are
flagged as errors to ensure a recheck.

Page 10.2

MACRO-86

e N

Features and Benefits of MACRO-86

Zenith’s MACRO-86 Assembler is a powerful assembler for 8088 based
computers. Macro assembly, conditional assembly, and a variety of assem-
bler directives provide all the tools necessary to derive full use and full power
from an 8088 or 8086 microprocesser.

MACRO-86 produces relocatable object code. Each instruction and direc-
tive statement is given a relative offset from its segment base. The assem-
bled code can then be linked using Zenith’'s LINK utility to produce relocata-
ble, executable object code. Relocatable code can be loaded anywhere in
memory. Thus, the program can execute where it is most efficient, not only
in some fixed range of memory addresses.

In addition, relocatable code means that programs can be created in mod-
ules, each of which can be assembled, tested, and perfected individually.
This saves recoding time because testing and assembly is performed on
smaller pieces of program code. Also, all modules can be error free before
being linked together into larger modules or into the whole program. The
program is not a huge monolith of code.

Page 10.3

!

MOD 1 MQoD 2 MOD 3
Individual modules
l MACRO-86 can be edited and
7 § A assembled until they
work correctly

does

no < Module
assemble
correctly

?

When the individual

modules are ready
LINK they can be linked
singly or into one
or more larger
l modules
full or part

program file

Module Assembly

Page 10.4

MACRO-86

MACRO-86 supports Zenith Data System’s complete 8080 macro facility,
which is the Intel 8080 standard. The macro facility permits writing blocks
of code for a set of instructions used frequently. The need for recoding these
instructions each time they are needed is eliminated.

This block of code is given a name: macro. The instructions are the macro
definition. Each time the set of instructions is needed, instead of recoding
it, a simple “call” to the macro is placed in the source file. MACRO-86 ex-
pands the macro call by assembling the block of instructions into the pro-
gram automatically. The macro call also passes parameters to the assem-
bler for use during macro expansion. The use of macros reduces the size
of a source module because the macro definitions are given only once, then,
other occurrences are one line calls.

Macros can be “nested,” that is, a macro can be called from inside another
macro. Nesting of macros is limited only by memory.

The macro facility includes “repeat”, “indefinite repeat”, and “indefinite re-
peat character” directives for programming repeat block operations. The
MACRO directive can also be used to alter the action of any instruction or
directive by using its name as the macro name. When any instruction or di-
rective statement is placed in the program, MACRO-86 checks first the sym-
bol table it created to see if the instruction or directive is a macro name. If
it is, MACRO-86 “expands” the macro call statement by replacing it with the
body of instructions in the macro’s definition. If the name is not defined as
amacro, MACRO-86 tries to match the name with an instruction or directive.
The MACRO directive also supports local symbols and conditional exiting
from the block if further expansion is unnecessary.

Page 10.5

statement
statement
statement
macro call
statement < [When the assembler
I encounters a macro
call, it finds the
MACRO block and
replaces the call
with the block of
name MACRO statements that
i define the macro
ENDM
Macro Call
name MACRO
name i ¢— Nested MACRO call:
name defined else-
_ where as a macro,
- is "expanded"
during assembly,
ENDM as shown above

Macro Assembly

MACRO-86 supports an expanded set of conditional directives. Directives
for evaluating a variety of assembly conditions can test assembly results
and branch where required. Unneeded or unwanted portions of code will be
left unassembled. MACRO-86 can test for blank or nonblank arguments, for
defined or not-defined symbols, for equivalence, for first assembly pass or
second. MACRO-86 can compare strings for identity or difference. The con-
ditional directives simplify the evaluation of assembly results, and make
programming the testing code for conditions easier as well as more power-
ful.

MACRO-86's conditional assembly facility also supports conditionals inside
conditionals (nesting). Conditional assembly blocks can be nested up to 255
levels.

Page 10.6

statement
statement
. statement —P
If the condition- —d |F <exp true> j@———If the condition
in the expression in the expression
(shown by <exp is false, MACRO-86
true>) is true, skips to ELSE, then
the IF block is ELSE l§——+ resumes assembly at
assembled up to f[——9 the next statement.
ELSE, then skips L _ It ELSE is not
to END IF. |f there used, skips to
is no ELSE, then it ENDIF t@——' ENDIF and resumes
simply assembles the | statement assembly with next
whole conditional statement statement.
block. .
L]
Conditional Assembly
I'F .
I'F .
IF .
Nesting of conditionals
up to 255 levels is
ENDIF allowed.
ELSE
ENDIF
ENDIF

Nesting Conditionals for Assembly

Page 10.7

MACRO-86

MACRO-86 supports all the major 8080 directives found in Zenith Data Sys-
tem/Heath’'s MACRO-80 Macro Assembler. This means that any condi-
tional, macro, or repeat blocks programmed under MACRO-80 can be used
under MACRO-86. Processor instructions and some directives (e.g.,
PHASE, CSEG, DSEG) within the blocks, if any, will need to be converted
to the 8086 (8088) instruction set. All the major MACRO-80 directives and
pseudo-ops, that are supported under MACRO-86 will assemble as is, as
long as the expressions to the directives are correct for the processor and
the program. The syntax of directives is unchanged. MACRO-86 is upward
compatible, with MACRO-80 and with Intel's ASM86, except Intel code mac-
ros.

MACRO-86 provides some relaxed typing. Some 8086 (8088) instructions
take only one operand. If a typeless operand is entered for an instruction
that accepts only one type of operand (e.g., in the instruction PUSH [BX].
[BX] has no size, but PUSH only takes a word), it seems wasteful to return
an error for a lapse of memory or a typographical error. When the wrong type
choice is given, MACRO-86 returns an error message but generates the
“correct” code. That is, it always puts out instructions, not just NOP’s. For
example, if you enter:

MOV AL,WORDLBL
you may have ,t (2)
meant one of MOV AL,BYTE PTRWORDLBL
three instructions:
3)
MOV AL, <other>
(1)
MOV AX,WORDLBL

Error Correction During Assembly

MACRO-86 generates instruction two, because it assumes that when you
specify a register, you mean that register and that size; therefore, the other
operand is the “wrong size.” MACRO-86 accordingly modifies the “wrong”
operand to fit the register size (in this case) or the size of whatever is the
most likely “correct” operand in an expression. This eliminates some de-
bugging chores. An error message is still returned, however, because you
may have misstated an operand that MACRO-86 assumes is “correct.”

Page 10.8

Overview of MACRO-86 Operation

Brief

The Assembly Process:

1.

Options:

1.

Create source code file. MACRO-86 expects a default .ASM
filename extension.

Run MACRO-86 through passes one and two. Error messages
are displayed on the terminal. Modify source code as neces-
sary to produce an error-free run. The object filename contains
adefault .OBJ extension.

Use LINK to add the object module to your main program, or
LIBtoadditto alibrary.

You may suppress the .OBJ file to speed processing of an
error-check run.

You may create a listing file containing relative addresses,
source and object code, and a symbol table. it has a .LST de-
fault extension.

You may create a limited cross reference file with a .CRF de-
fault extension. CREF can expand the .CRF file to an .REF file
containing an indexed, alphabetical table of ail labels, symbols,
and variables.

Page 10.9

MACRO-86

ction to MACRO-86

Details

The first task is to create a source file. Use EDLIN (the resident editor in Z-
DOS), or other 8088 editors compatible with your operating system, to
create the source file. MACRO-86 assumes a default filename extension of
.ASM for the source file. Creating the source file involves creating instruction
and directive statements that follow the rules and constraints described in
the first four sections in this Chapter.

When the source file is ready, run MACRO-86, see Assembling a source

File on Page 10.162. Refer to Appendix B, for explanations of any messages
displayed during orimmediately after assembly.

= i

source
.ASM

(messages)

2 4¢—— MACRO-86

Appendix object

Using This Chapter

MACRO-86 is a two-pass assembler. This means that the source file is read
twice by the assembler. Slightly different actions occur during each pass.
During the first pass, the assembier evaluates the statements and expands
macro call statements. It calculates the amount of code it will generate, and
builds a symbol table where all symbols, variables, labels, and macros are
assigned values.

Page 10.10

MACRO-86

introduction to MAC

During the second pass, the assembler fills in the symbols, variables, labels,
and expression values from the symbol table, expands macro call state-
ments, and sends the relocatable object code into a file with the default
filename extension .OBJ. The .OBJ file is suitable for processing with Ze-
nith’s LINK utility. The .OBJ file can be stored as part of your library of object
programs, which later can be linked with one or more .OBJ modules by
LINK. The .OBJ modules can also be processed with Zenith’s LIB Library
Manager (refer to the LIB Library Manager Chapter, Page 12.1, for further
explanation and instructions).

The source file can also be assembled without creating an .OBJ file. All the
other assembly steps are performed. The object code is not sent to disk.
Only erroneous source statements are displayed on the terminal screen.
This practice is useful for checking the source code for errors. Itis faster than
creating an .OBJ file because no file creating or writing is performed. Mod-
ules can be test-assembled quickly and errors corrected before the object
code is put on disk. Modules that assemble with errors do not clutter the disk.

source
.ASM

statement
l statement

macro call

MACRO-86 f——®

statement
L]
L]
' L]
L]
symbol -- def
symbol -- def
variable -- def
variable -- def
label -- def
macro name
. exact amount
. of code to

be generated

Pass One of the Assembly

Page 10.11

symbol
source table
.ASM
/ .
! .
MACRO-86

object
.0BJ
Pass Two of the Assembly

MACRO-86 will create on command, a listing file and a cross-reference file.
The listing file contains the beginning relative addresses (offsets from seg-
ment base) assigned to each instruction, the machine code translation of
each statement (in hexadecimal values), and the statement itself. The listing
contains a symbol table which shows the values of all symbols, labels, and
variables, plus the names of all macros. The listing file receives the default
.LST filename extension.

The cross reference file contains a compact representation of variables,
labels, and symbols. The cross reference file receives the default .CRF
filename extension. When this cross reference file is processed by CREF,
the file is converted into an expanded symbol table that lists all the variables,
labels, and symbols in alphabetical order. It is followed by the line number
in the source program where each is defined, followed by the line numbers
where each is used in the program. The final cross reference listing receives
the .REF filename extension. (Refer to the CREF Cross Reference Facility
Chapter, Page 13.1, for further explanation and instructions.)

Page 10.12

MACRO-86

Introduction t

source
.ASM

:

MACRO-86 listing
.LST

l listing |
.CRF

object

.0BJ

listing p@&—— CREF
. REF

Listing and Cross Referencing
Application

Being aware of the features built into your MACRO- 86 assembler promotes
efficiency and accuracy in the development of assembly language pro-
grams. Every feature might not be needed in every program. The ability to
recognize the usefulness of a feature in a given situation will reduce applica-
tion development costs by reducing the time required for coding and debug-

ging.

The relocatable code produced by MACRO-86 makes it possible to design
large software systems without the need to assign absolute addresses or
create a complex memory map. You can develop each program module in-
dependently and test it with dummy arguments at any convenient address.
When it runs satisfactorily, store it in a system library. At link time, program
modules will be selected and structured in whatever way best accommo-
dates the hardware and operating system requirements.

Page 10.13

MACRO-86

The use of conditional directives provides a great deal of portability and flexi-
bility in source code modules. For example, you might be testing several al-
gorithms in separate modules that are called from the same driver. The
driver requires some changes to accommodate the particular module it is
assembled with. Place the variable source statements for each module
under an IFDEF module name condition line in the driver source code. The
driver can now be assembled as is with any of the modules.

Programmers frequently encounter situations where identical, or nearly
identical, blocks of code must be repeated within a program. A subroutine
structure is inappropriate. The source code for such a block should be en-
tered as a macro definition. You can then include the object code it produces
anywhere in the program by invoking the macro’s user defined name. Flexi-
bility is increased by passing immediate arguments into each expansion of
the macro, by nesting macros, and by including macros within conditionals
or conditionals within macros.

Take time to understand the assembler command line structure. Use the
various options to speed assembly by not producing unwanted or error-filled
files.

page 10.14

MACRO-86

Creating a MACRO-86 Source File

GENERAL FACTS ABOUT SOURCE FILES

Brief

.ASM is the preferred source filename extension. MACRO-86 accepts other
extensions, provided they are entered with the filename. Problems may
ariseif .OBJ, .LST, .CRF, .REF, or .EXE are used.

All numeric values must begin with a numeral, i.e., OFFFFh. The default
input radix is decimal. For output the default is decimal for line numbers and
hexadecimal for object code. The /O command provides octal code listings.
Change the input radix with the .RADIX directive followed by 2, 8, 10, or 16.
The radix of a single value may be changed by appending B for binary, Q
or O for octal, D for decimal, or H for hexadecimal.
Legal characters in symbol names are:

A-Z 09 ? @ _ $
The characters 0—9 may not begin a symbol.
Special character operators and delimiters:

(colon) segment override operator.

(period) record or structure field name operator. Permitted in
filename as first character only.

(1 (square brackets) around a register name define its contents
as apointer.
() (parentheses) DUP expression operator, also used to set

operand evaluation precedence.

<> (angle brackets) delimit initialization values for records or
structure, parameters in IRP macro blocks, and literals.

Page 10.15

MACRO-86

RO-86 Source File

Details

To create a source file for MACRO-86, you need to use an editor program,
such as EDLIN in Z-DOS. You simply create a program file as you would
for any other assembly or high-level programming language. Use the gen-
eral facts and specific descriptions in this and the following sections when
creating the file.

In this portion of text, you will find discussions of the statement format and
introductory descriptions of its components. Later, you will find full descrip-
tions of names — variables, labels, and symbols. You will also find full de-
scriptions of expressions and their components, operands and operators.
Additionally, you will find full descriptions of the assembler directives.

Naming Your Source File

When you create a source file, you will need to name it. A flename may be
any name that is legal for your operating system. MACRO-86 expects a spe-
cific three character filename extension, .ASM, whenever you run MACRO-
86 to assemble your source file. MACRO-86 assumes that your source
flename has the filename extension .ASM. This is not required. You may
name your source file with any extension you like. However, when you re-
name a MACRO-86 source file, you must remember to specify the exten-
sion. If you use .ASM you will not need to specify the extension.

Because of this default action by MACRO-86, it is impossible to omit the
filename extension. When you assemble a source file without a filename ex-
tension, MACRO-86 will assume that the source has a .ASM extension be-
cause you would not be specifying an extension. When MACRO-86
searches the disk for the file, it will not find the correct file and will either as-
semble the wrong file or will return an error message stating that the file can-
not be found.

MACRO-86 gives the object file it outputs the default extension .OBJ. To
avoid confusion or the destruction of your source file, you will want to avoid
giving a source file an extension of .OBJ. For similar reasons, you will also
wantto avoid the .EXE, .LST, .CRF, and .REF extensions.

Page 10.16

MACRO-86

Legal Characters
The legal characters for your symbol names are:
AZ 09 ? @ — $

Only numerals 0-9 cannot appear as the first character of a name. A numeral
must appear as the first character of a numeric value.

Additional special characters act as operators or delimiters:
(colon) segment override operator.

(period) operator for fieldname of Record or structure; may
be used in afilename only if it is first character.

[] (square brackets) around register names to indicate value in
address in register not value (data) in register.

() (parentheses) operator in DUP expressions and operator to
change precedence of operator evaluation.

< > (angle brackets) operators used around initialization values
for records or structure, around parameters in IRP macro
blocks, and to indicate literals.

The square brackets and angle brackets are also used for syntax notation
inthe discussions of the assembler directives, Page 10.88, as well as earlier
in the manual. When these characters are operators and not syntax nota-
tion, you are told explicitly; for example, anglebracketsmust be coded as shown.

Page 10.17

Numeric Notation

The default input radix for all numeric values is decimal. The output radix
for all listings is hexadecimal for code and decimal for line numbers. The out-
put radix can only be changed to octal radix by giving the /O switch when
MACRO-86 is run. The input radix may be changed two ways:

1. The .RADIX directive

2. Special notation appended to a numeric value:

Radix
Binary

Octal

Decimal

Hexadecimal

Range Notation Example
0-1 B 011101008
0-7 QorO 735Q
(letter) 6210
0-9 (none) 9384 (default)
orD 8149D
(when .RADIX
directive
changes default
radix to not)
decimal.
0-9 H OFFH
A-F 80H
(first
character must

be numeralin
range 0-9)

page 10.18

MACRO-86

What’s in a Source File?

A source file for MACRO-86 consists of instruction statements and directive
statements. Instruction statements are made of 8088 (8086) instruction
mnemonics and their operands, which command specific processes directly
to the 8088 processor. Directive statements are commands to MACRO-86
to prepare data for use in and by instructions.

Statements are usually placed in blocks of code assigned to a specific seg-
ment (code, data, stack, extra). The segments may appear in any order in
the source file. Within the segments, generally speaking, statements may
appear in any order that create a valid program. Some exceptions to random
ordering do exist, which will be discussed under the affected assembler di-
rectives.

Every segment must end with an end segment statement ENDS. Every pro-
cedure must end with an end procedure statement ENDP. Every structure
must end with an end structure statement ENDS. Likewise, the source file
must end with an END statement that tells MACRO-86 where program
execution should begin.

“Memory Organization” on Page 10.38 describes how segments, groups,
the ASSUME directive, and the SEG operator relate to one another and to
your programming as a whole. This information is important and helpful for
developing your programs. The information is presented as a prelude to the
discussion of operands and operators.

Page 10.19

STATEMENT LINE FORMAT
Brief

Format (typical directive statement):
<name> <action><expression>;<comment>

Format (typical instruction statement):
<action> <expression> ;<comment>

Details

Statements in source files follow a strict format, which allows some varia-
tions.

MACRO-86 directive statements consist of four fields — Name, Action, Ex-
pression, and Comment. For example:

F00 DB OD5EH :createvariableFOO
; containing the value OD5SEH
i i i i
Name Action Expression ;Comment

MACRO-86 instruction statements usually consist of three fields: Action Ex-
pression, and Comment. For example:

MOV CX,F00 :here's the count number
) T T
Action Expression ;Comment

An instruction statement may have a Name field under certain cir-
cumstances; see the discussion in the next section, on “Names”.

page 10.20

MACRO-86

Names

Brief

There are three categories of Names: Labels (referencing addresses); Vari-
ables (referencing data); and Symbols (referencing constants). The name
field, if present, occurs first in a statement line. Name length is not limited.
Only the first 31 characters are significant.

Details

The Name field, when present, is the first entry on the statement line. The

name may begin in any column, although normally names are started in col-
umnone.

Names may be any length you choose. However, MACRO-86 considers
only the first 31 characters significant when your source file is assembled.

One other significant use for names is with the MACRO directive. Although,
all the rules covering names, described on Page 10.28 apply the same to
MACRO names. The discussion of macro names is best left to the section
described by the macro facility.

MACRO-86 supports the use of names in a statement line for three pur-
poses: to represent code, to represent data, and to represent constants.

To make aname represent code, use:

NAME: followed by a directive, instruction, or
nothing at all

NAME LABEL NEAR (for use inside its own segment only)

NAME LABEL FAR (for use outside its own segment)

EXTRN NAME: NEAR (for use outside its own module but in-

side its own segment only)

EXTRN NAME: FAR (for use outside its own module and
segment)

Page 10.21

To make aname represent data, use:

NAME LABEL <size> (BYTE, WORD, etc.)
NAME Dx <exp>
EXTRN NAME: <size> (BYTE, WORD, etc.)

To make a name represent a constant, use:

NAME EQU <constant>

NAME = <constant>

NAME SEGMENT <attributes>
NAME GROUP <segment-names>

Page 10.22

MACRO-86

Comments
Brief

Comments are always optional. Acomment must be the last field in a source
line and must be preceded by a semicolon. The COMMENT directive is pref-
erable for multiline comments.

Details

Comments are never required for the successful operation of an assembly
language program, but they are strongly recommended.

If you use comments in your program, every comment on every line must
be preceded by a semicolon. If you want to place a very long comment in
your program, you can use the COMMENT directive. The COMMENT direc-
tive releases you from the required semicolon on every line (refer to COM-
MENT, Page 10.94).

Comments are used to document the processing that the computer per-
forms at a particular point in a program. When comments are used in this
manner, they can be useful for debugging, for altering code, or for updating.
Consider putting comments at the beginning of each segment, procedure,
structure, module, and after each line in the code that begins a step in the
processing.

Comments are ignored by MACRO-86. Comments do not add to the mem-
ory required to assemble or to run your program, except in macro blocks
where comments are stored with the code. Comments are not required for
anything but human understanding of the program’s logic.

Page 10.23

MACRO-86

Action

Brief

The action field follows the name field, or else occurs first if no name is pres-
ent. The action field is not optional and may contain either an assembly lan-
guage mnemonic or a directive to the assembler.

Details

The action field contains either an 8088 (8086) instruction mnemonic or a
MACRO-86 assembler directive. Refer to Appendix L for a list of 8088
(8086) instruction mnemonics. The MACRO-86 directives are described in
detail on Page 10.90.

If the name field is blank, the action field will be the first entry in the statement
format. In this case, the action may appear starting in any column, one
through maximum line length (less columns for action and expression).

The entry in the action field either directs the processor to perform a specific
function or directs the assembler to perform one of its functions. Instructions
command the processor’s actions. An instruction may have the data and/or
addresses it needs built into it, or data and/or addresses may be found in
the expression part of an instruction. For example:

ﬁpcodeJ I operand] r data J r data J
| opcode | [operana | | ader | [ader

N

supplied or found

supplied part of the instruction

assembler inserts data and/or address from the information
provided by expression in instruction statements.

found

Opcode in Action Field

Directives give the assembler directions for I/O, memory organization, con-
ditional assembly, listing and cross reference control, and definitions.

page 10.24

MACRO-86

Expressions
Brief

The expression field follows the action field and may contain from zero to
two operands plus their associated operators. A comma is required to sepa-
rate two operands.

Details

The expression field contains entries which are operands and/or combina-
tions of operands and operators.

Some instructions take no operands, some take one, and others take two.
For two operand instructions, the expression field consists of a destination
operand and a source operand in that order, separated by a comma. For
example:

opcode dest=operand | , |source=operand

Expression Field Operands

For one operand instructions, the operand is a source or a destination
operand, depending on the instruction. If one or both of the operands is omit-
ted, the instruction carries that information inits internal coding.

Source operands are immediate operands, register operands, memory
operands, or attribute operands. Destination operands are register
operands and memory operands.

For directives, the expression field usually consists of a single operand. For
example:

directive operand

Expression Field Directives

A directive operand is a data operand, a code (addressing) operand, or a
constant, depending on the nature of the directive.

Page 10.25

For many instructions and directives, operands may be connected with
operators to form a longer operand that looks like a mathematical expres-
sion. These operands are called “complex”. Use of a complex operand per-
mits you to specify addresses or data derived from several places. For ex-

ample:
MOV FOO [BX], AL

The destination operand is the result of adding the address represented by
the variable FOO and the address found in register BX. The processor is
instructed to move the value in register AL to the destination calculated from
these two operand elements. Another example is:

MOV AX,F00+5 [BX]

In this case, the source operand is the result of adding the value represented
by the symbol FOO plus 5 plus the value found in the BX register.

Page 10.26

MACRO-86 supports the following operands and operators in the expres-
sion field (shown in order of precedence):

OPERANDS OPERATORS
Immediate LENGTH, SIZE, WIDTH, MASK,
FIELD
(incl. symbols) [1 (), < >
Register
Memory segment override(:)
label
variables PTR, OFFSET, SEG, TYPE, THIS.
simple
indexed HIGH, LOW
structures
Attribute * /.MOD, SHL, SHR
override
PTR +, -(unary), -(binary)
(seg)
SHORT EQ,NE,LT,LE, GT,GE
HIGH
LOW NOT
value returning
OFFSET AND
SEG
THIS OR, XOR
TYPE
.TYPE SHORT,. TYPE
LENGTH
SIZE
record specifying
FIELD
MASK
WIDTH

Precedence of Operands and Operators
inthe Expression Field

NOTE: Some operators can be used as operands or as part of an operand
expressions. Refer to Page 10.37 for details on operands and operators.

Page 10.27

Applying the Statement Line Format

Unlike program listings in high-level languages, assembly language listings
provide very few immediate clues about the program function. This makes
it especially important to understand the purpose and location of each field,
as well as the legal entries each field may contain. Without this knowledge,
it will be impossible to analyze a source listing, whether it is your own crea-
tion or someone else’s. Assembling a file containing missing or incorrect de-
limiters, missing or incorrectly placed fields, or illegal field entries will result
in a flood of syntactical errors that mask your program logic.

Page 10.28

MACRO-86

Names: Labels, Variables and Symbols

Brief

Labels are symbolic addresses used as operands of JMP, CALL, and LOOP
instructions. Labels may reference procedures within or outside the seg-
ment where they are defined. Labels may also reference procedures in
separately assembled modules. A colon separates a label from its following
field.

Variables are symbolic addresses where data is stored. Unlike labels, vari-
able names are separated from their following field by a space. A directive
that defines the format of the data always occupies the second field.

Symbols are names that reference constant values. When an equal sign or
the EQU directive occurs in field two, the expression following it is evaluated
and assigned the chosen name. Symbols may also reference values de-
fined in separately assembled modules. A space separates a symbol from
the nextfield.

Details

Names are used in several capacities throughout MACRO-86, wherever
any naming is allowed or required.

Names are symbolic representations of values. The values may be addres-
ses, data, or constants.

Names may be any length you choose. However, MACRO-86 will truncate
names longer than 31 characters when your source file is assembled.

Names may be defined and used in a number of ways. This section in-
troduces you to the basic ways to define and use names. You will discover
additional uses as you study the sections on Expressions and Action, and
as you use MACRO-86.

MACRO-86 supports three types of names in statement lines: labels, vari-
ables, and symbols. This section covers how to define and use these three
types of names.

Page 10.29

LABELS

Labels are names used as targets for JMP, CALL, and LOOP instructions.
MACRO-86 assigns an address to each label as it is defined. When you use
a label as an operand for JMP, CALL, or LOOP, MACRO-86 can substitute
the attributes of the label for the label name, sending processing to the ap-
propriate place.

Labels are defined one of four ways:

1.

<name=>:

Use a name followed immediately by a colon. This defines the
name as a NEAR label. <name>: may be prefixed to any in-
struction and to all directives that allow a name field. <name>:
may also be placed on aline by itself.

Examples:
CLEAR_SCREEN: MOV AL, 20H
F0O: DB OFH
SUBROUTINES:

<name> LABEL NEAR
<name> LABEL FAR

Use the LABEL directive. Refer to the discussion of the LABEL
directive in “Memory Directives”, Page 10.111.

NEAR and FAR are discussed under the TYPE attribute on
Page 10.31.

Examples:

FO0O LABEL NEAR
GO0 LABEL FAR

Page 10.30

3. <name> PROC NEAR
<npame> PROC FAR

Use the PROC directive. Refer to the discussion of the PROC
directive , “Memory Directives”, Page 10.115.

NEAR is optional because it is the default if you enter only
<name> PROC. NEAR and FAR are discussed under the
Type Attribute on Page 10.31.

Examples:

REPEAT PROC NEAR
CHECKING PROC ;same as CHECKING PROC NEAR
FIND_CHR PROC FAR

4. EXTRN <name>:NEAR
EXTRN <name>:FAR

Use the EXTRN directive.

NEAR and FAR are discussed under the TYPE attribute on
Page 10.31.

Refer to the discussion of the EXTRN directive “Memory Direc-
tives”, Page 10.104.

Examples:

EXTRN F0O: NEAR
EXTRN Z0O:FAR

A label has four attributes: segment, offset, type, and the CS ASSUME in
effect when the label is defined. Offset is the distance from the beginning
of the segment to the label's location. Type is either NEAR or FAR.

Page 10.31

MACRO-86

abels, Variables and Symbols

Segment

Labels are defined inside segments. The segment must be assigned to the
CS segment register to be addressable. The segment may be assigned to
agroup, in which case the group must be addressable through CS. MACRO-
86 requires that a label be addressable through the CS register. Therefore,
the segment (or group) attribute of a symbol is the base address of the seg-
ment (or group) where itis defined.

Offset

The offset attribute is the number of bytes from the beginning of the label’'s
segment to where the label is defined. The offset is a 16-bit unsigned
number.

Type

There are two types of labels: NEAR or FAR. NEAR labels are used for re-
ferences from within the segment where the label is defined. NEAR labels
may be referenced from more than one module, as long as the references
are from a segment with the same name and attributes and that has the
same CS ASSUME.

FAR labels are used for references from segments with a different CS
ASSUME or that have more than 64K bytes between their label reference
and their label definition.

NEAR and FAR cause MACRO-86 to generate slightly different code. NEAR
labels supply their offset attribute only (a two-byte pointer). FAR labels sup-
ply both their segment and offset attributes (a four-byte pointer).

Page 10.32

VARIABLES

Variables are names used in expressions (as operands to instructions and
directives).

Avariable represents addresses where a specified value may be found.

Variables look much like labels and are defined alike in some ways. The dif-
ferences are important.

Variables are defined three ways:
1. <name> <define-dir> ;no colon!
<name> <struc-name> <expression>

<name> <rec-name> <expression>

<define-dir> is any of the five define directives: DB, DW, DD,
DQ,DT

Example:
START_Move DW ?

<struc-name> is a structure name defined by the STRUC
directive.

Examples:

CORRAL STRUC

CORRAL ENDS
HORSE CORRAL <'SADDLE'>

Note that HORSE will have the same size as the structure
CORRAL.

page 10.33

GARAGE RECORD CAR: 8="P'
SMALL GARAGE 10 DUP(<'Z'>)

Note that SMALL will have the same size as the record
GARAGE.

See the DEFINE, STRUC, and RECORD directives on Pages 10.95, 10.126
and 10.122, respectively, under “Memory Directives”.

2.

<name> LABEL <size>
Use the LABEL directive with one of the size specifiers.
<size> is one of the following size specifiers:
BYTE — specifies 1 byte
WORD — specifies 2 bytes
DWORD — specifies 4 bytes
QWORD — specifies 8 bytes
TBYTE — specifies 10 bytes
Example:
CURSOR LABEL WORD
See LABEL directive onPage 10.111.

EXTRN <name>:<size>

Use the EXTRN directive with one of the size specifiers de-
scribed above. See the EXTRN directive on Page 10.104.

Example:

EXTRN F0O: DWORD

Variables as well as labels have three attributes: segment, offset, and type.

Segment and Offset are the same for variables as they are for labels. The
Type attribute is different.

page 10.34

Type

The type attribute is the size of the variable’s location, as specified when
the variable is defined. The size depends on which Define directive was
used or which size specifier was used to define the variable.

Directive Type Size
DB BYTE 1 byte
DW WORD 2bytes
DD DWORD 4bytes
DQ QWORD 8bytes

DT TBYTE 10 bytes

Page 10.35

SYMBOLS

Symbols are names defined without reference to a Define directive or to
code. Like variables, symbols are aiso used in expressions as operands to
instructions and directives.

Symbols are defined three ways:

1. <name> EQU <expression>. See EQU directive , “Memory
Directives”, Page 10.100.

<expression> may be another symbol, an instruction
mnemonic, a valid expression, or any other entry (such as text
orindexed references).

Examples:

FOO EQU TH
200 EQU FOO

2. <name> = <expression>
Use the Equal Sign directive. See “Equal Sign” on Page 10.100.

<expression> may be any valid expression.

Examples:
GO0 = OFH
G0 = §+2
GO0 = GOO+F00

Page 10.36

3. EXTRN <name>:ABS

Use the EXTRN directive with type ABS. See EXTRN on Page
10.104.

Example:
EXTRNBAZ: ABS

BAZ must be defined by an EQU or = directive to a valid ex-
pression.

Application

Names should be defined for labels, variables, and symbols whenever pos-
sible. The use of numerals should be limited to transient values, or values
which have no extended meaning beyond their numeric value. This provides
a program listing with a high density of user-defined words, making its logic
easier to follow. It also provides a more effective use of the assembler, which
relies heavily on internal symbol tables for its operation.

Page 10.37

o e
1 . oy

Expressions: Operands and Operators

INTRODUCTION

Every expression consists of at least one operand (a value). An expression
may consist of two or more operands. Multiple operands are joined by
operators. The result is a series of elements that look like a mathematical
expression.

This portion of the chapter describes the types of operands and operators
that MACRO-86 supports. The discussion of memory organization in a
MACRO-86 program acts as a preface to the descriptions of operands and
operators, and as a link to topics discussed earlier.

Page 10.38

MACRO-86

MEMORY ORGANIZATION

Brief

Memory segments of up to 64K bytes are defined by the SEGMENT and
ENDS directives. Segment types are CODE, DATA, STACK, and EXTRA.
They are designated CS, DS, SS, and ES respectively. All address refer-
ences are relative until LINK sets an absolute base address for each seg-
ment. Four segment registers store the base addresses.

A single segment may contain any number of separate code modules, pro-
vided the 64K limit is observed. The address of each module is an offset from
the common segment base.

The GROUP directive permits referencing several segments to a common
base address. The 64K limit then applies to the total size of all the segments
in the group.

The CS register cannot be modified by instructions within the current code
segment. This protection does not apply to DS, SS, or ES.

Because different functions are performed on passes one and two, only cer-
tain types of errors can be detected on each pass. When forward references
are processed, special operators may be used to assist the assembler in
producing the correct amount of code.

Details

Most of your assembly language program is written in segments. In the
source file, a segment is a block of code that begins with a SEGMENT direc-
tive statement and ends with an ENDS directive. In an assembled and linked
file, a segmentis any block of code that is addressed through the same seg-
ment register and is not more than 64K bytes long.

You should note that MACRO-86 leaves everything to do with segments to
LINK. LINK resolves all references. For that reason, MACRO-86 does not
check (because it cannot) if your references are entered with the correct dis-
tance type. Values such as OFFSET are also left to the LINK for resolution.

P

Page 10.39

MACRO-86

Although a segment may not be more than 64K bytes long, you may, as long
as you observe the 64K limit, divide a segment among two or more modules.
The SEGMENT statement in each module must be the same in every re-
spect.

When the modules are linked together, the several segments become one.
References to labels, variables, and symbols within each module acquire
the offset from the beginning of the whole segment, not just from the begin-
ning of their portion of the whole segment. All divisions are removed.

You have the option of grouping several segments into a group, using the
GROUP directive. When you group segments, you tell MACRO-86 that you
want to be able to refer to all of these segments as a single entity. This does
not eliminate segment identity, nor does it make values within a particular
segment less immediately accessible. It does make values relative to a
group base. The usefulness of grouping is that you can refer to data items
without worrying about segment overrides and about changing segment
registers often.

You should note that references within segments or groups are relative to
a segment register. Until linking is completed, the final offset of a reference
is relocatable. For this reason, the OFFSET operator does not return a con-
stant. The major purpose of OFFSET is to cause MACRO-86 to generate
an immediate instruction; that is, to use the address of the value instead of
the value itself.

There are two kinds of references in a program:

1. Code references — JMP, CALL, LOOPxx — These references
are relative to the address in the CS register. You cannot over-
ride this assignment.

2. Data references — all other references — These references
are usually relative to the DS register, but this assignment may
be overridden.

When you give a forward reference in a program statement, for
example:

MOVAX, <ref>

Page 10.40

MACRO-86

MACRO-86 first looks for the segment of the reference. MACRO-86 scans
the segment registers for the SEGMENT of the reference then the GROUP,
if any, of the reference. However, the use of the OFFSET operator always
returns the offset relative to the segment. If you want the offset relative to
a GROUP, you must override this restriction by using the GROUP name and
the colon operator, for example:

MOV AX,OFFSET <group-name>: <ref>
If you set a segment register to a group with the ASSUME directive, then
you may also override the restriction on OFFSET by using the register
name, forexample:
MOV AX OFFSET DS: <ref>
The result of both of these statements is the same.
Code labels have four attributes:
1. Segment—what segment the label belongs to
2. Offset—the number of bytes from the beginning of its segment
3. Type—NEARorFAR
4. CSASSUME —the CS ASSUME the label was coded under
When you enter a NEAR JMP or NEAR CALL, you are changing the offset
(IP) in CS. MACRO-86 compares the CS ASSUME of the target (where the
label is defined) with the current CS ASSUME. If they are different, MACRO-
86 returns an error (you must use a FAR JMP or CALL).
When you enter a FAR JMP or FAR CALL, you are changing both the offset

(IP) in CS and the paragraph number. The paragraph number is changed
tothe CS ASSUME of the target address.

Page 10.41

Let's take a common case, a segment called CODE; and a group (called
DGROUP) that contains three segments (called DATA, CONST, and
STACK).

The program statements would be:

DGROUP GROUP DATA, CONST, STACK
ASSUME CS:CODE, DS: DGROUP, SS: DGROUP, ES: DGROUP

MoV AX,DGROUP ;CSinitialized by entry’
MOV DS, AX ;youinitialize DS, do this
;as soon as possible,

;especially before any DS
;relative references

As adiagram, this arrangement could be represented as follows:

. cs
CODE
DS ES,SS
DATA
<64k CONST
STACK

Segment Register Relationship to Code Address
Given this arrangement, a statement like:
MOV AX, <variable>

causes MACRO-86 to find the best segment register to reach this variable.
The “best” register is the one that requires no segment overrides.

Page 10.42

3 1

MOV AX, OFFSET <variable>

tells MACRO-86 to return the offset of the variable relative to the beginning
of the variable’s segment.

If this variable is in the CONST segment and you want to reference its offset
from the beginning of DGROUP, you need a statement like:

MOV AX, OFFSET DGROUP: <variable>

MACRO-86 is a two-pass assembler. During pass one, it builds a symbol
table and calculates how much code is generated but does not produce ob-
ject code. If undefined items are found (including forward references), as-
sumptions are made about the reference so that the correct number of bytes
are generated on pass one. Only certain types of errors are displayed; errors
involving items that must be defined on pass one. No listing is produced un-
less you give a /D switch when you run the assembler. The /D switch produc-
es alisting for both passes.

On pass two, the assembler uses the values defined in pass one to generate
the object code. Definitions of references during pass two are checked
against the pass one value, which is in the symbol table and also, the
amount of code generated during pass two. If either is different, MACRO-86
returns a phase error.

Because pass one must keep correct track of the relative offset, some refer-
ences must be known on pass one. If they are not known, the relative offset
will not be correct.

The following references must be known on pass one.

IF/IFE <expression>
If <expression> is not known on pass one, MACRO-86 does not know to
assemble the conditional block (or which part to assemble if ELSE is used).

On pass two, the assembler would know and would assemble, resulting in
aphase error.

Page 10.43

MACRO-86

e] 1

For example:

MOV AX,F00 ;FOO =forward constant

This statement causes MACRO-86 to generate a move from memory in-
struction on pass one. By using the OFFSET operator, we can cause
MACRO-86 to generate an immediate operand instruction.

MOV AX,OFFSET FOO ;OFFSET-says use the address of F0O

Because OFFSET tells MACRO-86 to use the address of FOO, the assem-
bler knows that the value isimmediate. This method saves a byte of code.

Similarly, if you have a CALL statement that calls to a label that may be in
a different CS ASSUME, you can prevent problems by attaching the PTR
operator to the label:

CALL FAR PTR <forward-label>

At the opposite extreme, you may have a JMP forward that is less than 127
bytes. You can save yourself a byte if you use the SHORT operator.

JMP SHORT <forward-label>

However, you must be sure that the target is indeed within 127 bytes or
MACRO-86 will notfindit.

The PTR operator can be used another way to save yourself a byte when
using forward references. If you defined FOO as a forward constant, you
might enter the statement:

MOV [BX],F00

You may want to use the variable FOO as an immediate operand. In this
case, you could enter either of the statements (they are equivalent):

MOV BYTE PTR[BX],FOO
MOV [BX],BYTE PTR FOO

These statements tell MACRO-86 that FOO is a byte immediate. A smaller
instruction is generated.

Page 10.44

OPERANDS
Brief

Legal operands:
Immediate class:
e Dataitems(e.g., 25,6000, 0FFFH, 412Q, “HI”, 11110000B)
e Symbols(e.g., FOO, IOBYT, TTYOUT)
Immediate operands are source operands only.
Register class:

® Register names, except flag or segment registers are not
eligible for logical and arithmetic operations.

Memory class:
e Direct(e.g., FOO, OFFSET XTABLE, BEGIN)
¢ Indexed (e.g.,[BX], [BP], [DI], [SH], [DIIXTABLE, [BX]FOO)

There are only four index registers. BP defaults to the SS segment, the
othersto DS.

e Structure (e.g.,ZO0.BEAR, [BX].ZOO, ZOO.KEEPER)

Page 10.45

Details

There are three types of operands: Immediate, Register, or Memory
operands. There are no restrictions on combining the various types of
operands.

The following list shows all the Operand types and the items that comprise
them:

Immediate
Dataitems
Symbols

Registers

Memory operands
Direct
Labels
Variables
Offset (fieldname)

Indexed
Base register
Index register
[constant]
=displacement

Structure

Page 10.46

Immediate Operands

Immediate operands are constant values that you supply when you enter
a statement line. The value may be entered either as a data item or as a
symbol.

Instructions that take two operands permit an immediate operand as the
source operand only (the second operand in an instruction statement). For
example:

MOV AX, 9

Dataltems

The default input radix is decimal. Any numeric values entered without
numeric notation appended will be treated as a decimal value. MACRO-86
recognizes values in forms other than decimal when special notation is ap-
pended. These other values include ASCII characters as well as numeric
values.

Page 10.47

Data Form
Binary

Octal

Decimal

Hexadecimal

ASCII

10real

16real

Format
XXXXXXXXB

XXXO
XXXQ

XXXXX
XXXXXD
XXXXH

lXX!

XX.XXfoXX

X..XR

Example

01110001B

1350 (letter O)
412Q

65535 (default)
10000 (when .RADIX changes
input radix to nondecimal)

OFFFH (first digit must be 0-9)

‘o' (more than two with DB
only;
“OM" both forms are synonom-
ous)

25. 238 -1(floating point format)

8F76DEASR (first digit must be O-
9, the total number of digits
must be 8, 16, or 20; 0r 9, 17,
or 21 iffirstdigitis 0)

MASM Recognized Data item Values

Ppage 10.48

Symbols

Symbol names equated with some form of constant information may be
used as immediate operands. Using a symbol constant in a statement is the
same as using a numeric constant. Therefore, using a sample statement,
you could enter:

MOV AX,FOO
assuming FOO was defined as a constant symbol. For example:

FOOEQU9

page 10.49

MACRO-86

Register Operands

The 8088 processor contains fourteen registers. These registers have two-
letter indentifiers that the assembler recognizes. These identifiers are re-
served and may not be used for user-defined names.

The registers are appropriated to different tasks: general registers, pointer
registers, counter registers, index registers, segment registers, and a flag
register.

The general registers are both 8-bit and 16-bit registers. Actually, the 16-bit
general registers are composed of a pair of 8-bit registers, one for the low
byte (bits 0—7) and one for the high byte (bits 8—15). Note, however, that
each 8-bit general register can be used independently from its mate. In this
case, each 8-bit register contains bits 0—7.

You initialize segment registers. They contain segment base values. The
segment register names CS, DS, SS, ES can be used with the colon seg-
ment-override operator to inform MACRO-86 that an operand is in a different
segment than specified in an ASSUME statement. (See the Segment Over-
ride Operator, Page 10.57.)

The flag register is one 16-bit register containing nine one-bit flags (six arith-
metic flags and three control flags).

Each of the registers, except segment registers and flags, can be an
operand in arithmetic and logical operations.

MOD=11 Register Mode

8-bit 16-bit
RM W=0 | W=1
000 AL AX
001 CL CX
010 DL DX
011 BL BX
100 AH SP
101 CH BP
110 DH Si
111 BH DI

Register/Memory Field Encoding

page 10.50

MACRO-86

EFFECTIVE ADDRESS CALCULATION
R/M MOD=00 MOD=01 MOD=10
000 [BX]+[SI] [BX]+[SI]+D8 [BX]+[SI]+D16
001 [BX]+[DI] [BX]+[DI}+D8 [BX]+[DIi]+D16
010 [BP]+[SI] [BP]+[SI]+D8 [BP]+[SI]+D16
011 [BP]+[DI] [BP]+[DI}+D8 [BP]+[DI]+D16
100 [SI] [SI]+D8 [SI]+D16
101 [DI1] [DI]+D8 [Dl}+D16
110 DIRECT ADDRESS | [BP]+D8 [BP]+D16
111 [BX] [BX]+D8 [BX]+D16
Note: D8 = abyte value; D16 = a word value
Other Registers:
Segment: CS code segment
DS data segment
SS stack segment
ES extra segment
Effective Address Calculation
Flags: six one-bit three one-bit control flags
arithmetic flags
(|CF carry flag DF directionflag
PF parity flag IF interrupt-enable
Flag ¢
AF auxiliary flag TF trapflag
ZF zeroflag
. | SF sign flag

Flags

NOTE: The BX, BP, Sl and Dl registers are also used as memory operands.
The distinction is: when these registers are enclosed in square brackets
[], they are memory operands; when they are not enclosed in square brack-
ets, they are register operands. (See “Memory Operands”, Page 10.51.)

.

/ ™

Page 10.51

MACRO-86

Memory Operands

A memory operand represents an address in memory. When you use a
memory operand, you direct MACRO-86 to an address to find some data
orinstruction.

A memory operand always consists of an offset from a base address.
Memory operands fit into three categories: 1) those that use a base or index

register, indexed memory operands; 2) those that do not use a register, di-
rect memory operands; and 3) structure operands.

Direct Memory Operands

Direct memory operands do not use registers and consist of a single offset
value. Direct memory operands are labels, simple variables, and offsets.

Memory operands can be used as destination operands as well as source
operands for instructions that take two operands. For example:

MOV AX,FOO ;F00 is the direct memory operand
MOV F00, CX ;in thse two examples, not
;AX or CX.
Indexed Memory Operands

Indexed memory operands use base, index registers, constants, displace-
ment values, and variables, often in combination. When you combine in-
dexed operands, you create an address expression.

Indexed memory operands use square brackets to indicate indexing (by a
register or by registers) or subscripting (for example, FOO[5]). The square
brackets are treated like plus signs (+). Therefore,

F00[5] is equivalentto F00+5
5(F00] is equivalent to 5+F00

The only difference between square brackets and plus signs occurs when
a register name appears inside the square brackets. Then, the operand is
seen as indexing.

page 10.52

The types of indexed memory operands are:
Base registers: [BX]}[BP]

BP has SS as its default segment register,
all others have DS as default.

Index registers: [DI][S]]

[constant]: immediate in square brackets [8]. [FOO]

Displacement: 8-bit or 16-bit value. Used only with another
indexed operand.

These elements may be combined in any order. The only restriction is that
neither two base registers nor two indexed registers can be combined:

[BX+BP] ;illegal
[SI+DI] ;illegal

Some examples of indexed memory operand combinations:

[BP+8]
[SI+BX] [4]
16 [DI+BP+3]
8 [F0O] -8

More examples of equivalent forms:

5 [BX] [SI]

(BX+5] [S]
[BX+SI+5]
[BX] +5(SI]

page 10.53

Structure Operands
Structure operands take the form <variable>,<field>.

The variable is any name you give when coding a statement line that in-
itializes a Structure field. The variable may be an anonymous variable, such
as an indexed memory operand.

The field is a name defined by a DEFINE directive within a STRUC block.
Fieldis a typed constant.

The period (.) must be included.

page 10.54

Application

Z00 STRUC

GIRAFFE DB ?

Z00 ENDS

LONGNECK ~ Z00 <16>

MOV AL, LONGNECK. GIRAFFE

MOVAL, . [BX].GIRAFFE ;anonymousvariable
The use of structure operands can be helpful in stack operations. If you set
up the stack segment as a structure, setting BP to the top of the stack (BP

equal to SP), then you can access any value in the stack structure by
fieldname indexed through BP1. For example:

CBP] . FLDG

BP — - SP
<:: FLD1
FLD3 | FLD?
STRUC FLD4
FLD6 | FLDS
FLD7
\

Structure Operands in Stack Operation

This method makes all values on the stack available all the time, not just
the value at the top. Therefore, this method makes the stack a handy place
to pass parameters to subroutines.

Page 10.55

OPERATORS

There are four types of operators: attribute, arithmetic, relational, and logi-
cal.

Attribute operators are used with operands to override their attributes, return
the value of the attributes, or to isolate fields of records.

Arithmetic, relational, and logical operators are used to combine or compare

operands.

Attribute Operators
Brief

MACRO-86 Attribute Operators:
e Attribute override operators:
PTR : SHORT THIS HIGH LOW

These operators override the segment, offset, type, or distance of variables
and labels.

e Value returning operators:

SEG OFFSET TYPE JYPE LENGTH SIZE
These operators return the attribute values of variables and labels.
e RECORD specific operators:

shift count WIDTH MASK

These operators isolate fields within a RECORD.

Page 10.56

Details

Attribute operators used as operands perform one of three functions:
® Override an operand’s attributes.

® Returnthe values of operand attributes.

® |solate record fields (record specific operators).

The following list shows all the attribute operators by type:

Override operators
PTR
colon (:) (segment override)
SHORT
THIS
HIGH
LOw

Value returning operators
SEG
OFFSET
TYPE
.TYPE
LENGTH
SIZE

RECORD specific operators
Shift count (field name)
WIDTH
MASK

Page 10.57

Override Operators

These operators are used to override the segment, offset, type, or distance
of variables and labels.

Pointer (PTR)

Brief

Format: <attribute> PTR <expression>

Pointer (PTR) overrides the type or distance of an operand. The operand
preceding PTR replaces the type or distance of the operand following it. PTR
is most often used to make explicit the type of a variable defined in a forward
reference. For example:

ADD BYTE PTR FO00,9

PTRis also used to access data as a type other than the type specified when
the data was defined. For example:

MOV AL,BYTE PTR WHOLEWORD

page 10.58

MACRO-86

& o e VY v
Expressions: Operan

Details

The PTR operator overrides the type (BYTE, WORD, DWORD) or the dis-
tance (NEAR, FAR) of an operand.

The attribute is the new attribute; the new type or new distance.
The expression is the operand whose attribute is to be overridden.

The most important and frequent use for PTR is to assure that MACRO-86
understands what attribute the expression is supposed to have. This is
especially true for the type attribute. Whenever you place forward refer-
ences in your program, PTR will clear the distance or type of expression.
This way you can avoid phase errors.

The second use of PTR is to access data by type other than the type in the
variable definition. Most often this occurs in structures. If the structure is de-
fined as WORD, but, you want to access an item as a byte, PTR is the
operator for this.

However, a much easier method is to enter a second statement that defines
the structure in bytes, too. This eliminates the need to use PTR for every
reference to the structure. Refer to the LABEL directive, “Memory Direc-
tives”,onPage 10.111.

Application

CALL WORD PTR [BX] [SI]
MOV BYTE PTR ARRAY

ADD BYTE PTR FO00, 9

Page 10.59

MACRO-86

Segment Override (:) (colon)
Brief

Format: <segment-register>:<address-expression>
<segment-name>:<address-expression>
<group-name>:<address-expression>

The colon (:) overrides the assumed segment of an operand containing a
memory reference. The correct segment precedes the colon; and the ad-
dress to be referenced follows it. Describe the segment with either a seg-
ment register, a segment name, or a group name. For example:

JMP ES:ERROR_ROUTINE

MOV AX, DATASEG: VARIABLE

MOV AX,OFFSET DGROUP: VARIABLE

Details

The segment override operator overrides the assumed segment of an ad-
dress expression which may be label, a variable, or other memory operand.

The colon operator helps with forward references by telling the assembler
whether areference is relative to; a segment, group, or segment register.

MACRO-86 assumes that labels are addressable through the current CS
register. MACRO-86 assumes that variables are addressable through the
current DS register, or possibly the ES register, by default. If the operand
is in another segment and you have not alerted MACRO-86 through the
ASSUME directive, you will need to use a segment override operator. Also,
if you want to use a nondefault relative base, not the default segment regis-
ter, you will need to use the segment override operator for forward refer-
ences. If MACRO-86 can reach an operand through a nondefault segment
register, it will use it, but the reference cannot be forward in this case.

Page 10.60

<segment-register> is one of the four segment register names: CS, DS,
SS, ES.

<segment-name> is a name defined by the SEGMENT directive.

<group name> is a name defined by the GROUP directive.

Application

MOV AX,ES: [BX+SI]
MOV CSEG: FAR_LABEL, AX

MOV AX, OFFSET DGROUP: VARIABLE

page 10.61

MACRO-86

Short

Brief

Format: SHORT <label>

SHORT overrides a NEAR attribute of a label that follows a jump instruction.
Its use shortens the jump instruction by one byte. It is legal only when the
target label is within 127 bytes of the jump instruction. For example:

JMP SHORT NEXTLABEL

Details

SHORT overrides NEAR distance attribute of labels used as targets for the
JMP instruction. SHORT tells MACRO-86 that the distance between the
JMP statement and the <label> specified as its operand is not more than
127 bytes in either direction.

The major advantage of using the SHORT operator is to save a byte. Nor-
mally, the <label> carries a two-byte pointer to its offset in its segment. Be-
cause a range of 256 bytes can be handled in a single byte, the SHORT
operator eliminates the need for the extra byte (which would carry 00 or FF
anyway). However, you must be sure that the target is within + or — 127
bytes of the JMP instruction before using SHORT.

Application

JVMP SHORT REPEAT

REPEAT:

Page 10.62

MACRO-86

This

Brief

Format: THIS <distance>
THIS <type>

THIS defines the current address within the current segment as a named
operand. Legal attributes are NEAR, FAR, BYTE, WORD, or DWORD. For
example:

STACKLIMIT = THIS FAR

FIRSTWORD = THIS WORD

Details

The THIS operator creates an operand. The value of the operand depends
on which argument you give THIS.

The argumentto THIS may be:

1. Adistance (NEARorFAR)

2. Atype(BYTE, WORD, or DWORD)
THIS <distance> creates an operand with the distance attribute you
specify, an offset equal to the current location counter, and the segment at-
tribute (segment base address) of the enclosing segment.
THIS <type>creates an operand with the type attribute you specify, an

offset equal to the current location counter, and the segment attribute (seg-
ment base address) of the enclosing segment.

Application
TAG EQU THIS BYTE same as TAG LABEL BYTE
SPOT.CHECK = THIS NEAR same as SPOT.CHECK LABELNEAR

e

Page 10.63

High, Low

Brief

Format: HIGH <expression>
LOW <expression>

HIGH and LOW isolate the upper or lower byte of a 16-bit value. For exam-
ple:

MOV AH, HIGH WHOLEWORD

MOV BH,LOW OFO003H

Details

HIGH and LOW are provided for 8080 assembly language compatibility.
HIGH and LOW are byte isolation operators.

HIGH isolates the high 8 bits of an absolute 16-bit value or address expres-
sion.

LOW isolates the low 8 bits of an absolute 16-bit value or address expres-
sion.

Application

MOV AH,HIGH WORD.VALUE ;get byte with sign bit

MOV AL,LOW OFFFFH

Page 10.64

VALUE RETURNING OPERATORS

These operators return the attribute values of the operands that follow them
but do not override the attributes.

The value returning operators take labels and variables as their arguments.

Because variables in MACRO-86 have three attributes, you need to use
value returning operators to isolate single attributes, as follows:

SEG isolates the segment base address
OFFSET isolates the offset value
TYPE isolates either type or distance

.LENGTH and SIZE isolates the memory allocation

Page 10.65

SEG

Brief

Format: SEG <label>
SEG <variable>

SEG followed by a variable or label returns the base address of the segment
where itresides. For example:

MOV AX, SEG TABLE1

Details

SEG returns the segment value (segment base address) of the segment en-
closing the label or variable.

Application

MOV AX, SEG VARIABLE_NAME
MOV AX, <segmentvariable>:<variable>

Page 10.66

MACRO-86

Offset

Brief

Format: OFFSET <label>
OFFSET <variable>

OFFSET followed by a variable or label returns its distance from the base
address of the segment where it resides. For example:

MOVBX, OFFSETF0O

Details

OFFSET returns the offset value of the variable or label within its segment
(the number of bytes between the segment base address and the address
where the label or variable is defined).

OFFSET is chiefly used to tell the assembler that the operand is an im-
mediate.

NOTE: CFFSET does not make the value a constant.

Only LINK canresolve the final value.

NOTE: OFFSET is not required with uses of the DW or DD directives. The
assembler applies an implicit OFFSET to variables in address expressions
following DW and DD.

Example: MOVBX, OFFSET F0O

If you use an ASSUME to GROUP, OFFSET will not automatically return
the offset of a variable from the base address of the group. OFFSET will re-
turn the segment offset, unless you use the segment override operator
(group-name version). If the variable GOB is defined in a segment placed
in DGROUP, and you want the offset of GOB in the group, you need to enter
a statement like:

MOVBX, OFFSET DGROUP: GOB

You must be sure that the GROUP directive precedes any reference to a
group name, including its use with OFFSET.

o~

Page 10.67

Type
Brief

Format: TYPE <label>
TYPE <variable>

TYPE followed by a variable returns the number of bytes reserved for that
variable. TYPE followed by a label returns its distance attribute (where
OFFFFH = NEAR and OFFFEH = FAR). For example:

MOV AL, TYPE FOO

MOV AX, TYPE ERROR_ROUTINE

Details

If the operand is a variable, the TYPE operator returns a value equal to the
number of bytes of the variable type, as follows:

BYTE =1

WORD =2

DWORD = 4

QWORD =8

TBYTE =10

STRUC = the number of bytes declared by STRUC

If the operand is a label, the TYPE operator returns NEAR (FFFFH) or FAR
(FFFEH).

Application

MOV AX, (TYPE FOO_BAR) PTR [BX+SI]

Page 10.68

MACRO-86

.Type
Brief

Format: .TYPE <variable>

The .TYPE operator followed by an expression returns a byte which de-
scribes the mode and definition status of the evaluated expression. Itis used
most often to set up a test for conditional assembly. For example:

Z = .TYPE HORSES

IF Z...

Details

The .TYPE operator returns a byte that describes two characteristics of the
variable: 1) the mode, and 2) whether it is External or not. The argument
to .TYPE may be any expression (string, numeric, logical). If the expression
isinvalid, .TYPE returns zero.

The byte thatis returned is configured as follows:

The lower two bits are the mode. If the lower two bits are:
0 the mode is Absolute
1 the mode is Program Related

2 the mode is Data Related

The high bit (80H) is the External bit. If the high bitis on, the expression con-
tains an External. If the high bit is off, the expression is not External.

The Defined bit is 20H. This bit is on if the expression is locally defined, and
it is off if the expression is undefined or external. If neither bit is on, the ex-
pressionis invalid.

page 10.69

.TYPE is usually used inside macros, where an argument type may need
to be tested to make a decision regarding program flow; for example, when
conditional assembly is involved.

Application
F00 MACRO X
LOCAL z
Z = . TYPE X
IF Z

.TYPE tests the mode and type of X. Depending on the evaluation of X, the
block of code beginning with IF Z... may be assembled or omitted.

page 10.70

Length

Format: LENGTH <variable>

LENGTH followed by a variable returns the number of type units allocated
to the variable in a preceding DUP expression. LENGTH returns one if the
variable is notdefined in a DUP expression. For example:

FOO DW 100 DUP(1)
MOV CX, LENGTH FO0O

Details

LENGTH accepts only one variable as its argument.

LENGTH returns the number of type units (BYTE, WORD, DWORD,
QWORD, TBYTE) allocated for that variable.

If the variable is defined by a DUP expression, LENGTH returns the number
of type units duplicated; that is, the number that precedes the first DUP in
the expression.
If the variable is not defined by a DUP expression, LENGTH returns one.
Application

FOO DW 100 DUP (1)

MOV CX, LENGTH F0O ;get number of elements
;in array
: LENGTH returns 100

BAZ DW 100 DUP (1,10 DUP(?))

LENGTH BAZ is still 100. regardless of the expression following DUP.
GO0 DD (?)
LENGTH GOO

returns one because only one unitis involved.

Page 10.71

Size
Format: SIZE <variable>

SIZE followed by a variable returns the number of bytes allocated to the vari-
able in a preceding DUP expression. For example:

FOO DW 100 DUP(1)
MOV BX, SIZE FOO

Details

SIZE returns the total number of bytes allocated for a variable.

SIZE is the product of the value of LENGTH times the value of TYPE.
Application

FOO DW 100 DUP (1)
MOV BX, SIZE FOO ;get total bytes in array

SIZE = LENGTH x TYPE
SIZE =100 x WORD
SIZE=100 x 2

SIZE =200

page 10.72

RECORD SPECIFIC OPERATORS

Record specific operators are used toisolate fields ina record.

Records are defined by the RECORD directive (see “Memory Directives”,
Page 10.122). A record may be up to 16 bits long. The record is defined by
fields, which may be from one to 16 bits long. To isolate one of the three
characteristics of a record field, you use one of the record specific operators,
as follows:

Shift count number of bits from low end of record to low end
of field (number of bits to right shift the record to
lowest bits of record)

WIDTH the number of bits wide the field or record is

(number of bits the field or record contains)

MASK value of record if field contains its maximum value
and all other fields are zero (all bits in field contain
1; all other bits contain 0)

In the following discussions of the record specific operators, the following
symbols are used:

FOO s arecord defined by the RECORD directive
FOO RECORD FIELD1:3,FIELD2:6,FIELD3: 7

BAZ is a variable used to allocate FOO
BAZ F0O < >

FIELD1, FIELD2, and FIELD3 are the fields of the record FOO.

Page 10.73

Shift-count— (Record fieldname)

Brief

Format: <record-fieldname>

Shift count is a function derived from the fieldname of the field to be isolated
froma RECORD. Use it as follows:

MOV DX, WHOLERECORD

MOVCL, FIELD2 : CL.= SHIFT COUNT
SHRDX, CL : FIELD2 @LOWEND OF DX
Details

The shift countis derived from the record fieldname to be isolated.

The shift count is the number of bits the field must be right shifted to place
the lowest bit of the field in the lowest bit of the record byte or word.

Page 10.74

If a 16-bitrecord (FOO) contains three fields (FIELD1, FIELD2,and FIELD3),
the record can be diagrammed as follows:

WORD
/

N\

ANEEREEEEEREREE

FIELDl‘ FIELD2 ‘ FIELD3

FIELD1 has a shift count of 3.
FIELD2 has a shift count of 7.
FIELD3 has a shift count of 0.

Field Distribution Within a Record

When you want to isolate the value in one of these fields, you enter its name
as anoperand.

Application
MOV DX, BAZ
MOV CL, FIELD2
SHR DX, CL

FIELDZ is now right shifted, ready for access.

Page 10.75

Mask

Brief

Format: MASK <record-fieldname>

MASK followed by a fieldname returns a bit mask to isolate the selected
field. For example:

MOV DX, WHOLERECORD
AND DX, MASK FIELD2 ;BITS OUTSIDE FIELD2 = 0

Details

MASK returns a bit-mask defined by 1 for bit positions included by the field
and O for bit positions not included. The value returned represents the
maximum value for the record when the field is masked.

With the same diagram as was used for Shift-count, MASK would appear
as:

/ WORD \

LLL L L LT T T[] Je—msc

0001111110000000’

1 | F | & I 0
The MASK of FIELD2 equals 1F80H.

Masking a Record to Return Field Value
Application

MOV DX, BAZ
AND DX,MASK FIELD2

FIELD2 is now isolated.

Page 10.76

Width

Brief

Format: WIDTH <record-fieldname>
WIDTH <record>

WIDTH followed by a recordname or fieldname returns its width in bits. For
example:

MOVCL, WIDTHFIELD2

Details

When a record-fieldname is given as the argument, WIDTH returns the
width of a record field as the number of bits in the record field.

Using the diagram under Shift-count again, WIDTH record-fieldname, can
be diagrammed as:

WORD

/
The WIDTH of FIELD1 equals 3.

The WIDTH of FIELD2 equals 6. EEEEEEEREEEEEEER
The WIDTH of FIELD3 equals 7.

—WIDTH - 6 —

Record Fieldname WIDTH
Application

MOVCL, WIDTHFIELD2

The number of bits in FIELD2 is now in the count register.

Page 10.77

When a record is given as the argument, WIDTH returns the width of a re-
cord as the number of bits in the record.

WORD
/7

WIDTH =16

-~

HEEEEEEEEEEEREEN
|
|

The WIDTH of this <record> equals 16.
Record WIDTH
NOTE: Though the diagram examples that were shown on these last few

pages for the Record Specific operators (Shift-count, MASK and WIDTH)
allused a 16-bit record, the record length is not limited to 16 bits.

Page 10.78

Arithmetic Operators

Brief

These arithmetic operators are used to combine elements of an expression:
+ - * / — (unary)
MOD (returns remainder of division)

SHR, SHL (shift right or left)

Details

Eight arithmetic operators provide the common mathematical functions
(add, subtract, divide, multiply, modulo and negation), plus two shift
operators.

The arithmetic operators are used to combine operands to form an expres-
sionthat results in a data item or an address.

Exceptfor + and — (binary), operands must be constants.
For plus (+), one operand must be a constant.
For minus (—), the first (left) operand may be a nonconstant, or both

operands may be nonconstants. But, the right may not be a nonconstant if
the leftis constant.

% Multiply
/ Divide
MOD Modulo. Divide the left operand by the right operand and

return the value of the remainder (modulo). Both
operands must be absolute.

page 10.79

SHR

SHL

—(Unary Minus)

Example:
MOV AX, 100MOD 17

The value moved into AX will be OFH (decimal 15).

Shift Right. SHR is followed by an integer which
specifies the number of bit positions the value is to be
right shifted.
Example:

MOV AX, 1100000B SHR 5

The value moved into AX will be 11B (03).

Shift Left. SHL is followed by an integer which specifies
the number of bit positions the value is to be left shifted.

Example:
MOVAX, 0110B SHL 5
The value moved into AX will be 011000000B (0COH).

Indicates that the following value is negative, as in a
negative integer.

Add. One operand must be a constant; one may be a
nonconstant.

Subtract the right operand from the left operand. The
first (left) operand may be a nonconstant, or both
operands may be nonconstants. But the right may be a
nonconstant only if the left is also a nonconstant and in
the same segment.

Page 10.80

Relational Operators
Brief

These relational operators set up conditional directives:

EQ(=)
NE(<>)
LT(<)
LE(<=)
GT(>)
GE(>=)

Details

Relational operators compare two constant operands.

If the relationship between the two operands matches the operator, FFFFH
is returned.

If the relationship between the two operands does not match the operator,
azerois returned.

Relational operators are most often used with conditional directives and
conditional instructions to direct program control.

EQ Equal. Returns true if the operands equal each other.

NE Not Equal. Returns true if the operands are not equal to each
other.

Page 10.81

LT

LE

GT

GE

Less Than. Returns true if the left operand is less than the right
operand.

Less than or Equal. Returns true if the left operand is less than
or equal to the right operand.

Greater Than. Returns true if the left operand is greater than the
right operand.

Greater than or Equal. Returns true if the left operand is greater
than or equal to the right operand.

Page 10.82

Logical Operators
Brief

These logical operators may be used in conditional directives or bit-for-bit
evaluations:

NOT AND OR XOR

Details

Logical operators compare two constant operands bitwise.

Logical operators compare the binary values of corresponding bit positions
of each operand to evaluate for the logical relationship defined by the logical
operator.

Logical operators can be used two ways.

1. To combine operands in a logical relationship. In this case, all bits in
the operands will have the same value (either 0000 or FFFFH). Infact,
it is best to use these values for true (FFFFH) and false (0000) for the
symbols you will use as operands because in conditionals anything
nonzerois true.

2. In bitwise operations. In this case, the bits are different, and the logical
operators act the same as the instructions of the same name.

Page 10.83

NOT

AND

OR

XOR

Logical NOT. Returns true if left operand is true and right is false
or if right is true and left is false. Returns false if both are true
or both are false.

Logical AND. Returns true if both operands are true. Returns
false if either operand is false or if both are false. Both operands
must be absolute values.

Logical OR. Returns true if either operand is true or if both are
true. Returns false if both operands are false. Both operands
must be absolute values.

Exclusive OR. Returns true if either operand is true and the
other is false. Returns false if both operands are true or if both
operands are false. Both operands must be absolute values.

Page 10.84

Expression Evaluation: Precedence Of Operators
Brief

Expressions are evaluated left to right for each of eleven levels of operator
precedence. Operators of equal precedence are then performed left to right.
Precedence hierarchy is:

1. LENGTH, SIZE, WIDTH, MASK
Entriesinside:(), < >,[]
Structure variable operand: <var>.<field>
colon

PTR, OFFSET, SEG, TYPE, THIS
HIGH, LOW

* /,MOD, SHL, SHR

+, — (unary and binary)
EQ,NE,LT,LE,GT,GE

NOT

AND

OR, XOR

SHORT, .TYPE

mTOOLOXINOOOAWLD

=

Details

Expressions are evaluated with higher precedence operators first, then left
to right for equal precedence operators.

Forexample:
MOV AX, 101B SHL 2*2=MOV AX, 00101000B
MOV AX, 101B SHL (2*2) =MOV AX, 01010000B

SHL and * are equal precedence. Therefore, their functions are performed
inthe order the operators are encountered (left to right).

Page 10.85

All operators in a single item have the same precedence, regardless of the
order listed within the item. Spacing and line breaks are used for visual clar-
ity, not to indicate functional relations.

1.

10.

11.

LENGTH, SIZE, WIDTH, MASK

Entriesinside: parentheses()
angle brackets < >
square brackets|[]

structure variable operand: <variable>.<field>

segment override operator: colon (:)

PTR, OFFSET, SEG, TYPE, THIS

HIGH, LOW

*,/,MOD, SHL, SHR

+, — (both unary and binary)

EQ, NE,LT,LE,GT,GE

Logical NOT

Logical AND

Logical OR, XOR

SHORT,.TYPE

Page 10.86

Application

The wide range of addressing modes and data types supported by MACRO-
86 contribute to the efficiency of the programs developed with it. To make
optimum use of these capabilities, you will need to understand the full set
of operand choices described in this section. In most cases, itis the operand
structure, or the expression structure of combined operands, which deter-
mines the functional addressing mode or the data type being accessed or
created. The attribute operators in particular exist to maximize the power of
the 16-bit architecture in your system. By familiarizing yourself with them,
you will be able to structure and access your program data in many powerful
ways not available in an eight-bit system.

Page 10.87

Action: Instructions and Directives

INTRODUCTION

The action field contains either an 8086 (8088) instruction mnemonic or a
MACRO-86 assembler directive.

Following a name field entry (if any), action field entries may begin in any
column. Specific spacing is not required. The only benefit of consistent
spacing is improved readability. If a statement does not have a name field
entry, the action field is the first entry.

The entry in the action field either directs the processor to perform a specific
function or directs the assembler to perform one of its functions.

page 10.88

MACRO-86

INSTRUCTIONS
Brief

The action field may contain either a directive to the assembler or an assem-
bly language mnemonic. The action field may be entered in either of the first
two columns. If a label is present, it will be the second field; otherwise it will
be the first. Some mnemonics imply the operand. Others require the specifi-
cation of one or two operands. Assembly language mnemonics are not de-
tailed in this manual. They are listed in Appendices L and M.

Details

Instructions command the processor’s actions. An instruction may have the
data and/or addresses it needs built into it, or data and/or addresses may
be found in the expression part of an instruction. For example:

[opcodeJ roperandJ I data] [data J
LODCOdLI Fperaril [addr l I adle

RET/

supplied or found

supplied = part of the instruction

found = assembler inserts data and/or address from the information pro-
vided by expression in instruction statements.

(opcode equates to the binary code for the action of an instruction)

Processor Action Control

Page 10.89

This manual does not contain detailed descriptions of the 8086/8088 in-
struction mnemonics and their characteristics. For this, you need to consult
other texts:

1. Mores, Stephen P, The 8086 Primer. Rochell Park, NJ: Hayden
Publishing Co., 1980.

2. Rector, Russel and George Alexv, The 8086 Book. Berkeley,
CA: Osbourne/McGraw-Hill. 1980.

3. The 8086 Family User’s Manual. Santa Clara, CA: Intel Corpo-
ration. 1980.

Appendices K and L contain an alphabetical listing and a grouped listing of
the instruction mnemonics, respectively. The alphabetical listing shows the
full name of the instruction. Following the alphabetical list is a list that groups
the instruction mnemonics by the number and type of arguments they take.
Within each group, the instruction mnemonics are arranged alphabetically.

page 10.90

-

MACRO-86

L.

y = 1

DIRECTIVES
Brief

Assembler directives occur in four functional categories: memory, condi-
tional, macro, and listing. Appendix K contains a categorical list.

Details

Directives give the assembler directions for input and output, memory or-
ganization, conditional assembly, listing and cross reference control, and
definitions.

The directives have been divided into groups by the function they perform.
Within each group, the directives are described alphabetically.

The groups are:

Memory Directives — Directives in this group are used to organize memory.
Because there is no “miscellaneous” group, the memory directives group
contains some directives that do not, strictly speaking, organize memory,
suchas COMMENT.

Conditional Directives — Directives in this group are used to test conditions
of assembly before proceeding with assembly of a block of statements. This
group contains all of the IF (and related) directives.

Macro Directives — Directives in this group are used to create blocks of
code called macros. This group also includes some special operators and
directives that are used only inside macro blocks. The repeat directives are
considered macro directives for descriptive purposes.

Listing Directives — Directives in this group are used to control the format
and, to some extent, the content of listings that the assembler produces.

Page 10.91

Appendix K contains a table of assembler directives, also grouped by func-
tion. Here below is an alphabetical list of all the directives that MACRO-86

supports:
ASSUME

COMMENT
.CREF

DB
DD
DQ
DT
DW

ELSE

END

ENDIF

ENDM

ENDP

ENDS

EQU

EQUAL SIGN(=)

EVEN
EXITM
EXTERN

GROUP

IF

IFB
IFDEF
IFDIF
IFE
IFIDN
IFNB
IFNDEF
IF1

IF2
INCLUDE
IRP

IRPC

LABEL
.LALL
.LFCOND
LIST
LOCAL

MACRO

NAME

ORG
%0UT

PAGE
PROC
PUBLLIC
PURGE

.RADIX
RECORD
REPT

SALL
SEGMENT
.SFCOND
STRUC
SUBTTL

.TFCOND
TITLE

XALL
.XCREF
XLIST

Page 10.92

Memory Directives

ASSUME

Brief

Format: ASSUME<seg-reg>:<seg-name>|...]
or

ASSUME NOTHING

ASSUME takes two arguments separated by a colon. The first selects a seg-
ment register: CS, DS, SS, or ES. The second provides the segment or
group name to be accessed through that register. The argument pair may
be repeated up to four times. If NOTHING is entered for the second argu-
ment, a segment register must prefix every location reference. For example:

ASSUME CS: CODE_AREA DS: STORAGE_AREA

ASSUME CS:NOTHING

Details

ASSUME tells the assembler that the symbols in the segment or group can
be accessed using this segment register. When the assembler encounters
avariable, it automatically assembles the variable reference under the prop-
er segment register. You may enter from one to four arguments to ASSUME.

Page 10.93

The valid seg-reg entries are:

CS, DS, ES, and SS.

The possible entries for seg-name are:

1.

2.

the name of a segment declared with the SEGMENT directive
the name of a group declared with the GROUP directive
an expression: either SEG variable-name or SEG label-name.

the key word NOTHING. ASSUME NOTHING cancels all regis-
ter assignments made by a previous ASSUME statement.

If ASSUME is not used or if NOTHING is entered for seg-name, each refer-
ence to variables, symbols, labels, and so forth in a particular segment must
be prefixed by a segment register. For example, DS:FOO is used instead
of simply FOO.

Application

ASSUME DS:DATA, SS: DATA, CS: CGROUP, ES: NOTHING

Page 10.94

COMMENT

Brief

Format: COMMENT<delimiter><text><delimiter>

COMMENT allows you to enter a comment string of any length. Any delimi-

ter other than a space may be used. The second occurrence of the delimiter
terminates the string.

Details

The first symbolic character (i.e., not a space, tab, non-printing character
or letter) encountered after COMMENT is the delimiter. The following
text comprises a comment block which continues until the next occurrence
of delimiter.

COMMENT permits you to enter comments about your program without en-
tering a semicolon (;) before eachline.

If you use COMMENT inside a macro block, the comment block does not

appear on your listing unless you also place the .CALL directive in your
source file.

Application

Using an asterisk as the delimiter, the format of the comment block would
be:

COMMENT *

any amount of text entered
here as the comment block

* s returntonormal mode

Page 10.95

MACRO-86

DEFINE (BYTE, WORD, DOUBLE WORD, QUAD WORD, TEN
BYTES)

Brief

Format: <varname> DB <exp>[,<exp>,...]
<varname> DW <exp>[,<exp>,...]
<varname> DD <exp>[,<exp>,...]
<varname> DQ <exp>[,<exp>,...]
<varname> DT <exp>[,<exp>,...]

The DEFINE directives are entered in abbreviated form:

DB =BYTE

DW = WORD

DD = DOUBLE WORD
DQ = QUAD WORD
DT =TENBYTES

A label or variable name may be assigned to the location. The number of
type units allocated equals the number of operands. The initial value of the
location is set to the value of the operand. This value must respect the size
ofthe defined storage. For example:

VAR_NAME DB255
VAR_NAME DWSTART
DD 'AB', 'CD'

Details

The DEFINE directives are used to define variables or to initialize portions
of memory.

If the optional varname is entered, the DEFINE directives define the name
as a variable. If varname has a colon, it becomes a NEAR label instead of
avariable. (Also see “Labels”, Page 10.29 and “Variables” on Page 10.32.)

Page 10.96

MACRO-86

The DEFINE directives allocate memory in units specified by the second let-
ter of the directive (each define directive may allocate one or more of its units

atatime):

DB allocates one byte (8 bits)
DW allocates one word (2 bytes)
DD allocates two words (4 bytes)
DQ allocates tour words (8 bytes)
DT allocates ten bytes

<exp> may be one or more of the following:

1.

2.

A constant expression.

The character ? for indeterminate initialization. Usually the ? is
used to reserve space without placing any particular value into
it. (Itis the equivalent of the DS pseudo-op in MACRO-80).

An address expression (for DW and DD only).
An ASClI string (longer than 2 characters for DB only).
<exp>DUP(?)

When this type of expression is the only argument to a define
directive, the define directive produces an uninitialized data
block. This expression with the ? instead of a value results in
a smaller object file because only the segment offset is
changed to reserve space.

<exp> DUP<exp>|...]

This expression, like item five, produces a data block, but it is
initialized with the value of the second <exp>. The first <exp>
must be a constant greater than zero and must not be a forward
reference.

o~

Page 10.97

Application

Example — Define Byte (DB):

NUM BASE DB 16
FILLER DB ? ;initialize with
;indeterminate value
ONE_CHAR DB M
MULT_CHAR DB ‘MARC MIKE ZIBO PAUL BILL'
MSG DB 'MSGTEST', 13,10 ;message, carriage return
-and linefeed
BUFFER DB 10 DUP(?) -indeterminate block
TABLE DB 100 DUP(5DUP (4),7)
100 copies of bytes with values 4,4,4,4,4,7
NEW_PAGE DB OCH ;form feed character
ARRAY DB 1,2,3,4,5,6,1
Example — Define Word (DW):
ITEMS DW TABLE, TABLE+10, TABLE+20
SEGVAL DW OFFFOH
BSIZE DW 4 * 128
LOCATION DW TOTAL +1
AREA DW 100 DUP(?)
CLEARED DW 50 DUP (0)
SERIES DW 2 DUP(2,3 DUP(BSIZE))

:two words with the byte values

; 2,BSIZE, BSIZE, BSIZE, 2, BSIZE, BSIZE, BSIZE
DISTANCE DW START_.TAB — END_TAB

:difference of two labels is a constant

Page 10.98

Example — Define Double word (DD):

DBPTR DD TABLE :16-bit OFFSET, then 16-bit
; SEG base value

SEC_PER DD 60*60*24 ;arithmetic is performed
;by the assembler

LIST DD 'XY',2 DUP(?)

HIGH DD 4294967295 ; Maximum

FLOAT DD 6. 735E2 ;floating point

Example — Define Quad word (DQ)

LONGREAL DQ 3.141597 ;decimal makes it real
STRING DQ 'AB' :no more than 2 characters
HIGH DQ 18446744073709551615 :maximum

LOW DQ -18446744073709551615 :minimum

SPACER DQ 2 DUP(?) ;uninitialized data
FILLER DQ 1 DUP(?,?) ;initialized with

;indeterminate value

Example — Define Ten bytes (DT):

ACCUMULATOR DT ?

STRING DT 'CD’ ;no more than 2 characters
PACKED_DECIMAL DT 1234567890

FLOATING_POINT DT 3.1415926

Page 10.99

END

Brief

Format: END [<exp>]

END must be the last line of a source file. It may be followed by an expres-
sion which evaluates to the entry address of the program. If separate mod-
ules are linked, only the main module’s END statement contains an expres-
sion.

Details

The END statement specifies the end of the program.

If <exp> is present, itis the start address of the program. If several modules
are to be linked, only the main module may specify the start of the program
with the END <exp> statement.

If <exp> is not present, then no start address is passed to LINK for that pro-
gram or module.

Application

ENDSTART ;START isalabel somewhere intheprogram.

page 10.100

EQU

Format: <name> EQU <exp>

EQU permanently assigns the value of the expression following it to the

name which precedes it. EQU is also used to create synonyms for opcodes.
Forexample:

FOOEQU 256
CBD EQU AAD ;REDEFINED OPCODE

Details

EQU assigns the value of the expression to the name. If the expression is
an external symbol, an error is generated. If name already has a value, an
error is generated. If you want to be able to redefine a name in your program,
use the equal sign (=) directive instead.

In many cases, EQU is used as a primitive text substitution, like a macro.

<exp> may be any one of the following:

1. A symbol, name becomes an alias for the symbol in the expres-
sion. Shown as an alias in the symbol table.

2. An instruction name. Shown as an opcode in the symbol table.

3. A valid expression. Shown as a number or L (label) in the sym-
bol table.

4. Any other entry, including text, index references, segment pre-
fix and operands. Shown as text in the symbol table.

A

Page 10.101

Application

FOO EQU BAZ

B EQU [BP+8]
P8 EQU DS: [BP+8]

CBD EQU AAD
(Opcode)

ALL EQU DEFREC<2,3,4>

EMP EQU 6
FPV EQU 6.3E7

:mustbedefinedinthis
:moduleor anerrorresults
; indexreference (Text)

: segment prefix

- andoperand (Text)
;aninstructionname

: DEFREC = recordname
:<2,3,4> =1initial values
:forfieldsof record
:constant value
:floatingpoint (text)

Page 10.102

EQUAL SIGN (=)

Brief

Format: <name> = <exp>

The equal sign is similar to the EQU statement, except it permits the name
to be redefined any number of times.

Details

<exp> must be a valid expression. It is shown as a Number or L (label) in
the symbol table (same as <exp> type 3) under the EQU directive above.

The equal sign (=) allows you to set and to redefine symbols. The equal sign
is like the EQU directive, except that you can redefine the symbol without
generating an error. Redefinition may take place more than once, and rede-
finition may refer to a previous definition.

Application

FOO = 5 : the same as FOOEQU 5

FOO EQU 6; ;error, FOO cannot be
:redef inedby EQU

FOO = 7 :FOOcanbe redefined
;onlyby another =

FOO = F00+3 :redefinitionmayrefer

:toapreviousdefinition

Page 10.103

EVEN

Brief

Format: EVEN

EVEN adds one NOP, if necessary, to advance the program counter to an
even value. For example:

:PC = ANY ODD VALUE
EVEN ;PC = NEXT EVEN VALUE
EVEN ;PC UNCHANGED

Details

The EVEN directive causes the program counter to go to an even boundary;
that is, to an address that begins a word. If the program counter is not al-
ready at an even boundary, EVEN causes the assembler to add a NOP in-
struction so that the counter reaches an even boundary.

An error results if EVEN is used with a byte aligned segment.
Application

Before: The PC points to 0019 hex (25 decimal)
EVEN

After: The PC points to 1A hex (26 decimal), 0019 hex now contains an
NOP instruction.

page 10.104

MACRO-86

EXTRN

Brief

Format: EXTRN <name>:<type>l,...]

EXTRN cues the assembler that a symbol will be used which is defined in
a separate module. It takes two arguments separated by a colon. The first
is the symbol name; the second is its type. The assembler assumes the sym-
bol occurs within the same segment as the EXTRN directive unless an alter-
nate segment s specified.

Details

name is a symbol that is defined in another module. Name must have been
declared PUBLIC in the module where name is defined.

Type may be any one of the following, but must be a valid type for name:
1. BYTE, WORD, or DWORD

2. NEAR or FAR for labels or procedures (defined under a PROC
directive)

3. ABS for pure numbers (implicit size is WORD, but includes
BYTE).

Unlike the 8080 assembler, placement of the EXTRN directive is significant.
If the directive is given with a segment, the assembler assumes that the sym-
bol is located within that segment. If the segment is not known, place the
directive outside all segments, then use either:

ASSUME <seg-req>:SEG <name>

or an explicit segment prefix.

Page 10.105

NOTE: If a mistake is made and the symbol is notin the segment, LINK takes
the offset relative to the given segment, if possible. If the real segment is
more than 64K bytes away from the reference, LINK may find the definition.
If the real segment is more than 64K bytes away, LINK will fail to make the
link between the reference and the definition and will not return an error mes-

sage.

Application

In Same Segment:

In Module 1:

CSEG SEGMENT
PUBLIC TAGN

TAGN:

CSEG ENDS
In Module 2:

CSEG SEGMENT
EXTRN TAGN: NEAR

JMP TAGN
CSEG ENDS

In Another Segment:
InModule 1:
CSEGA SEGMENT

PUBLIC TAGF
TAGF:
CSEGA ENDS
In Module 2:

EXTRNTAGF: FAR

CSEGB SEGMENT

JMP TAGF
CSEGB ENDS

Page 10.106

s S N T———r 1. oo cepeol TOIssm mdiseson e
Action: Instructions and Directives
GROUP

Brief

Format: <name> GROUP <seg-name>|...]

GROUP is preceded by a group name and followed by one or more segment
names. It causes the assembler to reference each of the segments to the
same base address, which has the group name as its label. The entire group

may be accessed through a single segment register. Group size is limited
to 64k.

Details

The GROUP directive collects the segments named after GROUP (<seg-
name>) under one name. The GROUP is used by LINK so it knows which
segments should be loaded together. The order in which the segments are
named here does not influence the order in which the segments are loaded;
that is, handled by the CLASS designation of the SEGMENT directive, or
by the order you name object modules in response to the LINK Object mod-
ule prompt.

All segments in a GROUP must fit into 64K bytes of memory. The assembler
does not check this at all, but leaves the checking to LINK.

<seg-name> may be one of the following:

1. A segment name, assigned by a SEGMENT directive. The
name may be a forward reference.

2. Anexpression: either SEG <var> or SEG <label>

Both of these entries resolve themselves to a segment name.

page 10.107

Once you have defined a group name, you can use the name:
1. As animmediate value:

MOV AX, DGROUP
MOV DS, AX

DGROUP is the paragraph address of the base of DGROUP.
2. In ASSUME statements:
ASSUME DS: DGROUP

The DS register cannot be used to reach any symbol in any seg-
ment of the group.

3. As an operand prefix (for segment override):

MOV BX, OFFSET DGROUP: F0O
DW DGROUP: FOO
DD DGROUP:FQO

DGROUP: forces the offset to be relative to DGROUP, instead
of to the segmentin which FOO is defined.

Page 10.108

Application

Example (using GROUP to combine segments):

In Module A:
CGROUP GROUP XXX, YYY
404 SEGMENT
ASSUME CS: CGROUP
o604 ENDS
YYY SEGMENT
YYY ENDS
END
In Module B:
GROUP GROUP YAN/
YAHA SEGMENT
ASSUME CS: CGROUP
YAKA ENDS

Page 10.109

MACRO-86

INCLUDE

Brief

Format: INCLUDE <filename>

INCLUDE followed by a filename causes the assembler to read in and as-
semble the entire contents of a secondary source file at the current location.
The letter C flags each line of the secondary file in the listing. Assembly
aborts if the file is nonexistent or defective. Nesting of INCLUDE statements
is permitted but discouraged.

Detail

The INCLUDE directive inserts source code from an alternate assembly lan-
guage source file into the current source file during assembly. Use of the
INCLUDE directive eliminates the need to repeat an often-used sequence
of statements in the current source file.

The filename is any valid file specification for the operating system. If the
device designation is other than the default, the source filename specifica-
tion must include it. The default device designation is the currently logged
drive or device.

The included file is opened and assembled into the current source file im-
mediately following the INCLUDE directive statement. When end-of-file is
reached, assembly resumes with the next statement following the INCLUDE
directive.

Page 10.110

Nested includes are allowed (the file inserted with an INCLUDE statement
may contain an INCLUDE directive). However, this is not a recommended
practice with small systems because of the amount of memory required.

The file specified must exist. If the file is not found, an error is returned,and
the assembly aborts.

On a MACRO-86 listing, the letter “C” is printed between the assembled
code and the source line on each line assembled from an included file. See
“Formats of Listings and Symbol Tables”, Page 10.73, for a description of
listing file formats.

Application

INCLUDEENTRY
INCLUDEB: RECORD. TST

Page 10111

LABEL
Brief:
Format: <name> LABEL <type>

LABEL is functionally identical to the THIS directive. It is normally used to
define a label or data area with more than one type. This permits access
as an alternate type without the use of the PTR directive.

Details:

By using LABEL to define a <name>, you cause the assembler to associate
the current segment offset with <name>.

The item is assigned a length of one.

<type> varies depending on the use of name.
<name> may be used for code or for data.

1. For code: (forexample, as a JMP or CALL operand)

type may be either NEAR or FAR. Name cannot be used in data
manipulation instructions without using a type override.

If you want, you can define a NEAR label using the name form
(the LABEL directive is not used in this case). If you are defining
a BYTE or WORD NEAR label, you can place the name in front
of a Define directive.

Page 10.112

When using a LABEL for code (NEAR or FAR), the segment
must be addressable through the CS register.

Example — for code:

SUBRTF LABEL FAR
SUBRT: (first instruction) ;colon = NEAR label
2. For data:

Type may be BYTE, WORD, DWORD, <structure-name>, or
<record-name>. When STRUC or RECORD name is used,
the name is assigned the size of the structure or record.

Example — For Data:

BARRAY LABEL BYTE
ARRAY DW 100 DUP (0)

ADD AL,BARRAY[99] ;ADD 100th byte to AL
ADD AX, ARRAY[98] ;ADD 50th word to AX

By defining the array two ways, you can access entries either by byte or by
word. Also, you can use this method for STRUC. It allows you to place your
data in memory as a table, andto access it without the offset of the STRUC.

Defining the array two ways also permits you to avoid using the PRT
operator. The double defining method is especially effective if you access
the data different ways. It is easier to give the array a second name than
torememberto use PTR.

Page 10.113

NAME

Brief

Format: NAME <module-name>

NAME followed by a module name gives the module a name which is used
as a reference by LINK. Only the first six characters are significant. If the
NAME directive is absent, a name is formed from the TITLE statement.

Details

Module-name must not be a reserved word. The module name may be any
length, but MACRO-86 uses only the first six characters and truncates the
rest.
The module name is passed to LINK, but otherwise has no significance for
the assembler. MACRO-86 does check if more than one module name has
been declared.
Every module has aname. MACRO-86 derives the module name from:

1. Avalid NAME directive statement

2. If the module does not contain a NAME statement, MACRO-86

uses the first six characters of a TITLE directive statement. The
first six characters must be legal as a name.

Application

NAME CURSOR

page 10.114

ORG

Brief

Format: ORG <exp>

ORG followed by an expression sets the location counter to the value of the
expression within the current segment. An expression is invalid if it cannot
be evaluated on pass one. For example:

ORG 0 : = START OF SEGMENT

ORG $+20 :SKIP 20 BYTES

ORG 1 : FOLLOWED BY...

ORG $ +OFFFFH ; WRAPS TO ORG 0
Details

The location counter is set to the value of the expression, and the assembler
assigns generated code starting with that value.

All names used in the expression must be known on pass one. The value
of the expression must either evaluate to an absolute or must be in the same
segment as the location counter.

Application

ORG 120H ;2-byteabsolutevalue
; max imum OFFFFH
ORG $+2 ;skip twobytes

page 10.115

Example: -ORG to aboundary (conditional):

CSEG SEGMENT PAGE

BEGIN = $
IF ($-BEGIN) MOD 256 ;ifnotalreadyon
; 256 byteboundary
ORG ($-BEGIN) +256- (($-BEGIN) MOD 256)
ENDIF
CSEG ENDS
ENDIF

See “Conditional Directives”, Page 10.135, for an explanation of conditional

assembly.

Page 10.116

PROC
Brief

Format: <procname> PROC [NEAR]
or FAR

RET
<prochname> ENDP
PROC takes a preceding procedure name and an optional following NEAR
or FAR attribute. NEAR is the default. Its use enhances structured coding
by naming modules and groups of modules. A module may be entered in
sequence or from a CALL or JUMP. Sequential procedures may be nested.
The NEAR or FAR attribute simplifies coding by specifying the addressing

mode required to locate a CALL or JUMP entered procedure. When de-
claredin a PUBLIC directive, a procedure may be referenced externally.

Details

The default, if no operand is specified, is NEAR. Use FARIif:
The procedure name is an operating system entry point.

The procedure is called from code which has another ASSUME CS
value.

Each PROC block should contain a RET statement.

The PROC directive serves as a structuring device to make your programs
more understandable.

page 10.117

MACRO-86

The PROC directive, through the NEAR/FAR option, informs CALLSs to the
procedure to generate a NEAR or a FAR CALL and RETSs to generate a
NEAR or a FAR RET. PROC is used for coding simplification so that you
do not have to worry about NEAR or FAR for CALLs and RETs.

A NEAR CALL or RETURN changes the IP but not the CS register. A FAR
CALL or RETURN changes both the IP and the CS registers.

Procedures are executed eitherin-line, from a JMP, or from a CALL.
PROCs may be nested, which means that they are putinline.
Combining the PUBLIC directive with a PROC statement (both NEAR and

FAR), permits you to make external CALLs to the procedure or to make
other external references to the procedure.

Application
PUBLIC FARNAME
FARNAME PROC FAR
CALL NEAR NAME
RET
FARNAME ENDP
PUBLIC NEARNAME
NEAR NAME PROC NEAR
RET
NEAR NAME ENDP

The second subroutine above can be called directly from a NEAR segment
(thatis, a segment addressable through the same CS and within 64K):

CALL NEAR NAME

A FAR segment (that is, any other segment that is not a NEAR segment)
must call to the first subroutine, which then calls the second; an indirect call:

CALL FAR NAME

Page 10.118

PUBLIC

Brief

Format: PUBLIC <symbol>[...]

PUBLIC followed by one or more names declares those names to be avail-
able to external modules. If the name is a symbol, it must evaluate to an in-
teger no larger than two bytes. PUBLIC must be used within the module
where its operands are defined.

Details

Place a PUBLIC directive statement in any module that contains symbols
you want to use in other modules without defining the symbol again. PUBLIC
makes the listed symbol(s), which are defined in the module where the
PUBLIC statement appears, available for use by other modules to be linked
with the module that defines the symboil(s). This information is passed to
LINK.

The symbol may be a number, a variable, or a label (including PROC labels).
The symbol may not be a register name or a symbol defined (with EQU) by

floating point numbers or by integers larger than two bytes (non integers or
values that are greater than OFFFFH).

Page 10.119

Application
PUBLIC
GETINFO PROC
PUSH
MOV
POP

RET
GETINFO ENDP

GETINFO

FAR

BP ;save caller's register

BP, SP ;get address parameters
:body of subroutine

BP ;restore caller's reg
:return to caller

Example: —illegal PUBLIC:

PUBLIC PIEBALD, HIGH.VALUE

PIEBALD EQU
HIGH.VALUE EQU

3.1416
999999999

Page 10.120

.RADIX

Brief

Format: .RADIX <exp>

The .RADIX directive, followed by an expression which evaluates to two,
eight, ten, or sixteen, sets the input radix to that base. The default radix is
ten. Values following a DEFINE statement are not affected by the .RADIX
directive. Unless they are decimal, their radix must be individually specified.

Details

The default input base (or radix) for all constants is decimal. The .RADIX
directive permits you to change the input radix to any base in the range two
to 16.

The expression is always in decimal radix, regardiess of the current input
radix.

Example:
MOV BX, OFFH
.RADIX 16
MOV BX, OFF

The two MOVs in this example are identical.

page 10.121

The .RADIX directive does not affect the generated code values placed in
the .OBJ .LST, or .CRF outputfiles.

The .RADIX directive does not affect the DD, DQ, or DT directives. Numeric
values entered in the expression of these directives are always evaluated
as decimal unless a data type suffix is appended to the value.

Application

.RADIX16

NUMHAND DT 773 ;773 = decimal
HOTHAND DQ 713Q ;773 = octal here only

COOL.HAND DD T73H ;now 773 = hexadecimal

Page 10.122

RECORD

Brief

Format:
<recordname> RECORD <fieldname>:<width>[=,exp>],[...]

RECORD defines a data type in which one or two bytes contain up to sixteen
named fields. The WIDTH, MASK, and shift count functions isolate specific
fields. RECORD takes a preceding recordname and three succeeding
operands: the fieldname, which names a field, the width, which defines its
size in bits. An optional expression initializes the value. The operands are
repeated for each field. Forward references are not allowed. The first field
defined occupies the highest order position in the RECORD. During assem-
bly the entire RECORD is right-shifted, if necessary, to make the lowest
order bit significant. For example:

ZOODATA RECORD COW : 3 21 , LION : 2

COW is the higher order field. It is initialized to 21. Bits five to seven are un-
used. Allocate memory fora RECORD with the expression:

ANIMALS ZOODATA <,3> ;LION = 3
The expression in the angle brackets is optional but the brackets must be

entered. Consecutive commas skip over fields to be ignored. Access a spe-
cific field this way:

MOV DL, ANIMALS ; WHOLE RECORD IN DL
AND DL,MASK COWS ;BITS OUTSIDE COWS = 0
MoV CL, COWS ;SHIFT COUNT IN CL
SHR DL, CL ;COWS IN LO ORDER BITS

MOV CL,WIDTH COWS ;ACTUAL # OF BITS

Page 10.123

MACRO-86

rectives

Details

The fieldname is the name of the field. Width specifies the number of bits
in the field defined by the fieldname. The expression contains the initial (or
default) value for the field. Forward references are not allowed in a

RECORD statement.

The fieldname becomes a value that can be used in expressions. When you
use a fieldname in an expression, its value is the shift count to move the field
to the far right. Using the MASK operator with the fieldname returns a bit
mask for that field.

The width is a constant in the range one to 16 that specifies the number of
bits contained in the field defined by the fieldname. The WIDTH operator re-
turns this value. If the total width of all declared fields is larger than eight-bits,
then the assembler uses two-bytes. Otherwise, only one-byte is used.

The first field you declare goes into the most significant bits of the record.
Successively declared fields are placed in the succeeding bits to the right.
It the fields you declare do not total exactly 8-bits or exactly 16 bits, the entire

record is right shifted so that the last bit of the last field is the lowest bit of
the record. Unused bits are in the high end of the record.

Application

FOO RECORD HIGH: 4, MID: 3, LOW: 3

Initially, the bit map would be:

R N (55 O (0 G

€—H|GH —>|€ MID D€ LOW >

Page 10.124

Total bits >8 means use a word; but total bits <16 means right shift, place
undeclared bits at high end of word. Thus:

000 0 001 1 1 100 00 0 0 €—MASK

INEEEEEEEEEEEEN

Aot l€— HIGH —>{€- M|D >€ LOW >
declared WIDTH shift count

The expression contains the initial value for the field. If the field is at least
7 bits wide, you can use an ASCII character as the expression.

For example:

HIGH: 7='Q'

Toinitialize records, use the same method used for DB. The formatis:
[<name>] <recordname> <[exp][...]>

or
[<name>] <recordname> [<exp> DUP(<[exp][...]>)

The name is optional. When given, name is a label for the first byte or word
of the record storage area.

The recordname is the name used as a label for the RECORD directive.

The exp (both forms) contains the values you want placed into the fields of
the record. In the latter case, the parentheses and angle brackets are re-
quired only around the second exp (following DUP). If [exp] is left blank,
either the default value applies (the value given in the original record defini-
tion), or the value is indeterminate (when not initialized in the original record
definition). For fields that are already initialized to values you want, place
consecutive commas to skip over (use the default values of) those fields.

Page 10.125

Forexample:
FOO<,, 7>
From the previous example, the seven would be placed into the LOW field
of the record FOO. The fields HIGH and MID would be left as declared (in
this case, uninitialized).
Records may be used in expressions (as an operand) in the form:
recordname<[value[....]]>
The value entry is optional. The angle brackets must be coded as shown,
even if the optional values are not given. A value entry is the value to be
placed into a field of the record. For fields that are already initialized to

values you want, place consecutive commas to skip over (use the default
values of) those fields, as shown above.

FOO RECORD HIGH: 5,MID: 3,LOW: 3

BAX FOO < > ;leave indeterminate here

JANE FOO 10DUP (<16.7>) ;HIGH=16,MID=7,
; LOW="
MOV DX, OFFSET JANE[2]
;get beginning record address
AND DX, MASK MID
MOV CL,MID
SHR DX, CL

MOV CL, WIDTH MID

Page 10.126

MACRO-86

SEGMENT

Brief

Format:
<segname> SEGMENT [<align>] [<combine>] [< ‘class’>]

<segname> ENDS

SEGMENT and ENDS define the beginning and end of a program segment.
Each is preceded by the same segment name. SEGMENT takes up to three
optional operands which select memory map parameters. Code segments
may be nested. They may not partially overlap. The assembler treats the
nested segment as if it followed the macro segment.

Details

At runtime, all instructions that generate code and data are in separate seg-
ments. Your program may be a segment, part of a segment, several seg-
ments, parts of several segments, or a combination of these. If a program
has no SEGMENT statement, a LINK error (invalid object) results at link
time.

The segname must be a unique, legal name, and it must not be a reserved
word.

Align may be PARA (paragraph-default), BYTE, WORD, or PAGE.

Combine may be PUBLIC, COMMON, AT <exp>, STACK, MEMORY, or
no entry (which defaults to not combinable, called Private in the LINK chap-
ter).

The class name is used to group segments at link time.

Allthree operands are passed to LINK.

~
\

Page 10.127

MACRO-86

The alignment tells the linker on what kind of boundary you want the seg-
mentto begin. The first address of the segment for each alignment type is:

PAGE — address is xxx00H (low byte is 0)
PARA —address is xxxxOH (low nibble is 0) bit map —

[xIx[x{xojofofo]

WORD — address is xxxxeH (e=even number;low bitis 0)
BYTE — address is xxxxxH (place anywhere)

The combine type tells LINK how to arrange the segments of a particular
class name. The segments are mapped as follows for each combine type:

None (not combinable or Private)

0

A,O
m

Public and Stack

0

Private segments are loaded sepa-
rately and remain separate. They may
be physically continuous but not logi-
cally, even if the segments have the
same name. Each private segment
has its own base address.

Public segments of the same name
and class name are loaded continu-
ously. Offset is from beginning of first
segment loaded through last segment
loaded. There is only one base ad-
dress for all public segments of the
same name and class name. (Com-
bine type stack is ireated the same as
public. However, the stack pointer is
set to the first address of the first stack
segment. LINK requires at least one
stack segment.)

Page 10.128

MACRO-86

Common

0 Common segments of the same
B name and class name are loaded
overlapping one another. There is

only one base address for all common
segments of the same name. The
length of the common area is the

length of the longest segment.

Ostensibly, the memory combine type causes the segment(s) to be placed
as the highest segments in memory. The first memory combinable segment
encounter is placed as the highest segment in memory. Subsequent seg-
ments are treated the same as common segments.

NOTE: This feature is not supported by LINK. LINK treats Memory seg-
ments the same as public segments.

AT <exp>

The segment is placed at the PARAGRAPH address specified in the expres-
sion. The AT type may not be used to force loading at fixed addresses.
Rather, the AT combine type permits labels and variables to be defined at
fixed offsets within fixed areas of storage, such as ROM or the vector space
inlow memory.

NOTE: This restriction isimposed by LINK and Z-DOS.

Class names must be enclosed in quotation marks. Class names may be
any legal name.

Segment definitions may be nested. When segments are nested, the as-
sembler acts as if they are not and handles them sequentially by appending
the second part of the split segment to the first. At ENDS for the split seg-
ment, the assembler takes up the nested segment as the next segment,
completes it, and goes on to subsequent segments. Overlapping segments
are not permitted.

Page 10.129

Application
A SEGMENT A SEGMENT
B SEGMENT A ENDS
B SEGMENT
—t
B ENDS :
B ENDS
A SEGMENT
A ENDS
A ENDS

The following arrangement is not allowed:

A SEGMENT
B SEGMENT
A ENDS ;Thisisillegal!

B ENDS

Page 10.130

Example:
In Module A:

SEGA SEGMENT PUBLIC ‘'CODE'
ASSUME CS: SEGA

SEGA ENDS
END

In Module B:

SEGA SEGMENT PUBLIC 'CODE'
ASSUME CS: SEGA
; LINK adds this segment to same
;named segment inmodule A (and
) ;others) if classname is the same.
SEGA ENDS
END

Page 10.131

STRUC

Brief

Format:
<structurename> STRUC
<structurename> ENDS

STRUC and ENDS define the beginning and end of a structure data type.
Each directive is preceded by the same structurename. Within the structure
block, any number of DEFINE statements describe the separate fields.
These DEFINE statements plus their associated names, operands and
comments are the only legal entries. An optional preceding name serves as
a fieldname within the structure. The operand(s) initialize its value. A field
with more than one operand cannot be overridden in the allocation state-
ment. Create a structure like this:

FLOWERS STRUC

DW ROSE, TULIP,DAISY
INDEX DB 0,0,255
INDEX2 DB 16

FLOWERS ENDS
Allocate memory to a structure like this:
GARDEN FLOWERS <, , 32> ; OPTIONAL OVERRIDE
Only INDEX2 is overrideable. Access a structure like this:

MOV AL, GARDEN. INDEX2

Page 10.132

MACRO-86

Details

The STRUC directive is much like RECORD, except that STRUC has a mul-
tiple-byte capability. The allocation and initialization of a STRUC block is the
same as for RECORDs.

Inside the STRUC/ENDS block, the DEFINE directives (DB, DW, DD, DQ,
DT) may be used to allocate space. The DEFINE directives and comments
set off by semicolons (;) may be used to allocate space. The DEFINE direc-
tives and comments set off by semicolons (;) are the only statement entries
allowed inside a STRUC block.

Any label on a DEFINE directive inside a STRUC/ENDS block becomes a
fieldname of the structures. (This is how structure fieldnames are defined.)
Initial values given to fieldnames in the STRUC/ENDS block are default
values for the various fields. These values of the fields are one of two types:
overrideable or not overrideable. A simple field, a field with only one entry
(but not a DUP expression), is overrideable. A multiple field, a field with more
than one entry is not overrideable.

Forexample:
FOO DB 1,2 :is not overrideable
BAZ DB 10 DUP(?) ;is not overrideable
700 DB 5 :is overrideable

If the expression following the DEFINE directive contains a string, it may be
overridden by another string. However, if the overriding string is shorter than
the initial string, the assembler pads it with spaces. If the overriding string
is longer, the assembler truncates the extra characters.

Usually, structure fields are used as operands in some expression. The for-
mat for a reference to a structure field is:

<variable>.<field>

Page 10.133

variable represents an anonymous variable, usually set up when the struc-
ture is allocated. To allocate a structure, use the structure name as a direc-
tive with a label (the anonymous variable of a structure reference) and any
override values in angle brackets:

F0O STRUC

FOO ENDS
GO0 F00 <,7,,'JOE'>
The .<field> represents a label given to a DEFINE directive inside a

STRUC/ENDS block (the period must be coded as shown). The value of the
field is the offset within the addressed structure.

Page 10.134

Application

To define a structure:
S STRUC
FIELDL DB 1,2 :not overrideable
FIELD2 DB 10 DUP () :not overrideable
FIELD3 DB 5 ;overrideable
FIELD4 DB 'DOBOSKY' ;overrideable
S ENDS

The DEFINE directives in this example define the fields of the structure and
the order corresponds to the order values are given in the initialization list
when the structure is allocated. Every DEFINE directive statement line in-
side a STRUC block defines a field, whether or not the field is named.

To allocate the structure:

DBAREA S <, 7, 'ANDY'> ;overrides 3rdand5th
;fieldsonly
Toreferto a structure:
MOV AL, [BX].FIELD3

MOV AL, DBAREA. FIELD3

page 10.135

Conditional Directives

Brief
Format: IF <exp>
IFE <exp>
IFt
IF2
IFDEF <symbol>
IFNDEF <symbol>
IFB <arg>
IFNB <arg>
IFIDN <arg1>,<arg2>
IFCIF <argli>,<arg2>
ELSE
ENDIF

Conditional directives permit a block of code to be assembled only if a test
set up by the programmer returns true. The optional ELSE clause specifies
an alternate block to be assembled if the test returns false. Conditionals may
be nested to 255 levels. All arguments must be known on pass one. All ex-
pressions must contain only predefined values. An expression, which must
evaluate to an absolute, is true if it evaluates to non-zero. The structural for-
matis:

TFxxxx

[ELSE

-]
ENDIF

Page 10.136

MACRO-86

Fga S

Details

Conditional directives allow you to design blocks of code which test for spe-
cific conditions then proceed accordingly.

All conditionals follow the format:

IFxxxx [argument]

[ELSE

-]

ENDIF
Each |IFxxxx must have a matching ENDIF to terminate the conditional.
Otherwise, an “unterminated conditional” message is generated at the end

of each pass. An ENDIF without a matching IF causes error code 8, “Not
in conditional block”.

Each conditional block may include the optional ELSE directive, which al-
lows alternate code to be generated when the opposite condition exists.
Only one ELSE is permitted for a given IF. An ELSE is always bound to the
most recent, open IF. A conditional with more than one ELSE or an ELSE
without a conditional causes error code 7, “Already had ELSE clause”.

Conditionals may be nested up to 255 levels. Any argument to a conditional
must be known on pass one to avoid Phase errors and incorrect evaluation.
For IF and IFE the expression must involve values which were previously
defined, and the expression must be Absolute. If the name is defined after
an IFDEF or IFNDEF, pass one considers the name to be undefined, but
considers it defined on pass two.

Page 10.137

MACRO-86

The assembler evaluates the conditional statement to TRUE (which equals
any non-zero value), or to FALSE (which equals 0000H). If the evaluation
matches the condition defined in the conditional statement, the assembler
either assembles the whole conditional block or, if the conditional block con-
tains the optional ELSE directive, assembles from IF to ELSE; the ELSE to
ENDIF portion of the block is ignored. If the evaluation does not match, the
assembler either ignores the conditional block completely or, if the condi-
tional block contains the optional ELSE directive, assembles only the ELSE
to ENDIF portion; the IF to ELSE portion is ignored.

IF <exp> If the expression evaluates to nonzero, the statements within the
conditional block are assembled.

IFE <exp> If the expression evaluates to 0, the statements in the condi-
tional block are assembled.

IF1 Pass one Conditional. If the assembler is in pass one, the statements
in the conditional block are assembled. IF1 takes no expression.

IF2 Pass two Conditional. If the assembler is in pass two, the statements
in the conditional block are assembled. IF2 takes no expression.

IFDEF <symbol> If the symbol is defined or has been declared External,
the statements in the conditional block are assembled.

IFNDEF <symbol> If the symbol is not defined or not declared External,
the statements in the conditional block are assembled.

Page 10.138

MACRO-86

IFB <arg> The angle brackets around the argument are required.

If the argument is blank (none given) or null (two angle brackets with nothing
in between, <>), the statements in the conditional block are assembled.

IFB (and IFNB) are normally used inside macro blocks. The expression fol-
lowing the IFB directive is typically a dummy symbol. When the macro is
called, the dummy is replaced by a parameter passed by the macro call. If
the macro call does not specify a parameter to replace the dummy following
IFB, the expression is blank, and the block is assembled. (IFNB is the oppo-
site case.)

IFNB <arg> The angle brackets around the argument are required.

If the argument is not blank, the statements in the conditional block are as-
sembled.

IFNB (and IFB) are normally used inside macro blocks. The expression fol-
lowing the IFNB directive is typically a dummy symbol. When the macro is
called, the dummy is replaced by a parameter passed by the macro call. If
the macro call specifies a parameter to replace the dummy following IFNB,
the expression is not blank, and the block is assembled. (IFB is the opposite
case.)

IFIDN <arg1>,<arg2> The angle brackets around the arguments are re-
quired.

If the string in argument one is identical to the string the argument two, the
statements in the conditional block are assembled.

IFIDN (and IFDIF) are normally used inside macro blocks. The expressions
following the IFIDN directive are typically two dummy symbols. When the
macro is called, the dummies are replaced by parameters passed by the
macro call. If the macro call specifies two identical parameters to replace
the dummies, the block is assembled. (IFDIF is the opposite case.)

Page 10.139

IFDIF <arg1>,<arg2> The angle brackets around the two arguments are
required.

If the string in argument one is different from the string in argument two, the
statements in the conditional block are assembled.

IFDIF (and IFIDN) are normally used inside macro blocks. The expressions
following the IFDIF directive are typically two dummy symbols. When the
macro is called, the dummies are replaced by parameters passed by the
macro call. If the macro call specifies two different parameters to replace
the dummies, the block is assembled. (IFIDN is the opposite case.)

ELSE The ELSE directive allows you to generate alternate code when the
opposite condition exists. May be used with any of the conditional directives.
Only one ELSE is allowed for each IFxxxx conditional directive. ELSE takes
no expression.

ENDIF This directive terminates a conditional block. An ENDIF directive
must be given for every IFxxxx directive used. ENDIF takes no expression.
ENDIF closes the most recent, unterminated IF.

Page 10.140

Macro Directives
Brief

Source code blocks used repeatedly within a program can be entered once
as a “macro definition.” A one line “macro call” causes the assembler to in-
sert the code at any desired point in the program. Nesting of macro calls is
limited only by memory size. These are the macro directives of MACRO-86:

MACRO ENDM EXITM LOCAL PURGE REPT IRP IRPC
These are the special macro operators:

& 3 ! %

Details

The macro directives allow you to write blocks of code which can be re-
peated without recoding. The blocks of code begin with either the macro def-
inition directive or one of the repetition directives and end with the ENDM
directive. All of the macro directives may be used inside a macro block. In
fact, nesting of macros is limited only by memory.

The macro directives of the MACRO-86 macro assembler include:

macro definition:
MACRO

termination:
ENDM
EXITM

unique symbols within macro blocks:
LOCAL

Page 10.141

undefine a macro:

PURGE
repetitions:
REPT (repeat)
IRP (indefinite repeat)

IRPC (indefinite repeat character)
The macro directives also include some special macro operators:

& ' 1 %

Page 10.142

MACRO-86

Macro Definitions
Brief

Format: <name> MACRO [<dummy>...]

ENDM

MACRQO is the first line of a macro definition. It is preceded by a macro name
and followed by an optional chain of dummy arguments enclosed in angle
brackets and separated by commas. When the macro is called, the calling
statement will replace all occurrences of dummy arguments inside the
macro with actual values. ENDM is the last line of a macro definition. In pars-
ing a source line, the assembler checks the macro definition table first. Any
reserved word can be redefined as a macro. This necessitates caution in
choosing macro names.

Details

The block of statements from the MACRO statement line to the ENDM state-
ment line comprises the body of the macro, or the macro’s definition.

Name is like a LABEL and conforms to the rules for forming symbols. After
the macro has been defined, name is used to invoke the macro.

A dummy is formed as any other name is formed. A dummy is a place holder
that is replaced by a parameter in a one-for-one text substitution when the
MACRUO block is used. You should include all dummies used inside the
macro block on this line. The number of dummies is limited only by the length
of a line. If you specify more than one dummy, they must be separated by
commas. MACRO-86 interprets a series of dummies the same as any list
of symbol names.

page 10.143

MACRO-86

NOTE: A dummy is always recognized exclusively as a dummy. Even if a
register name (such as AX or BH) is used as a dummy, it is replaced by a
parameter during expansion.

One alternative is to list no dummies:
<name>MACRO

This type of macro block allows you to call the block repeatedly, even if you
do not want or need to pass parameters to the block. In this case, the block
will not contain any dummies.

A macro block is not assembled when it is encountered. Rather, when you
call a macro, the assembler “expands” the macro call statement by bringing
in and assembling the appropriate macro block.

MACRO is an extremely powerful directive. With it, you can change the
value and effect of any instruction mnemonic, directive, label, variable, or
symbol. When MACRO-86 evaluates a statement, it first looks at the macro
table it builds during pass one. If it sees a name there that matches an entry
in a statement, it acts accordingly. (Remember: MACRO-86 evaluates mac-
ros, then instruction mnemonics/directives.)

If you want to use the TITLE, SUBTTL, or NAME directives for the portion
of your program where a macro block appears, you should be careful about
the form of the statement. If, for example, you enter SUBTTL MACRO DEFI-
NITIONS, MACRO-86 assembles the statement as a macro definition with
SUBTTL as the macro name and DEFINITIONS as the dummy. To avoid
this problem, alter the word MACRO in some way; e.g., -MACRC, MAC-
ROS, and soon.

Page 10.144

Calling aMacro

Brief

Format: <name> [<parameter>,...]

Call a macro by entering its name. Pass arguments by enclosing them in
angle brackets and separating them with commas. If you pass more argu-
ments than specified in the definition, the extras are ignored. If you pass too
few, the unused dummies become nulls. Multiple values separated by com-
mas within angle brackets are passed as a single argument. A plus sign
flags each line of a listing which was generated by amacro call.

Details

Touse amacro, enter a macro call statement:
Name is the name of the MACRO block. A parameter replaces a dummy
on a one-for-one basis. The number of parameters is limited only by the
length of a line. If you enter more than one parameter, they must be sepa-
rated by commas, spaces, or tabs. If you place angle brackets around pa-
rameters separated by commas, the assembler passes all the items inside
the angle brackets as a single parameter. For example:

F001,2,3,4,5
passes five parameters to the macro, but:

F00<1,2,3,4,5>

passes only one.

Page 10.145

The number of parameters in the macro call statement need not be the same
as the number of dummies in the MACRO definition. If there are more pa-
rameters than dummies, the extras are ignored. If there are fewer, the extra
dummies are made null. The assembled code includes the macro block after
each macro call statement.

Application

GEN MACRO XX, YY, ZZ
MoV AX, XX
ADD AX, YY
MOV 7Z,AX
ENDM

If you then enter a macro call statement:
GENDUCK, DON, FOO

assembly generates the statements:
MoV AX, DUCK
ADD AX, DON

MOV F00, AX

On your program listing, these statements are preceded by a plus sign (+)
to indicate that they came from a macro block.

Page 1 0.146

End Macro

Brief

Format: ENDM

ENDM is the last line of a macro definition. It also terminates REPT, IRP,
and IRPC blocks.

Details

ENDM tells the assembler that the MACRO or Repeat block is ended.

Every MACRO, REPT, IRP, and IRPC must be terminated with the ENDM
directive. Otherwise, the error message is generated. An unmatched ENDM
also causes an error.

If you wish to be able to exit from a MACRO or repeat block before expansion
is completed, use EXITM.

Page 10.147

Exit Macro

Brief

Format: EXITM

EXITM terminates a macro expansion from the point where it is encoun-
tered. It is normally used after a conditional directive. If ENDM is executed
within a nested macro, assembly continues at the next higher level.

Details

The EXITM directive is used inside a MACRO or Repeat block to terminate
an expansion when some condition makes the remaining expansion un-
necessary or undesirable. Usually EXITM is used in conjunction with a con-
ditional directive.

When an EXITM is assembled, the expansion is exited immediately. Any re-
maining expansion or repetition is not generated. If the block containing the
EXITM is nested within another block, the outer level continues to be ex-
panded.

Application

FOO MACRO X

X = 0
REPT X

X = X+1
IFE X-OFFH ;testX
EXITM ;if true, exit REPT
ENDIF
DB X
ENDM

Page 10.148

MACRO-86

LOCAL

Brief

Format: LOCAL <dummy>[,<dummy>...]

LOCAL creates unique names within each expansion of a macro. Without
it, names used within a macro definition (except =) generate a “symbol is
muti-defined” error. LOCAL must be the second line of a macro definition.
It is followed by dummy arguments enclosed in angle brackets and sepa-
rated by commas. A unique name of the form ??nnnn replaces each dummy
name used in the definition whenever the macro is called. Avoid using
names of the form ??nnnn, since this function might attempt to “steal” them,
causing an error. For example:

FOO MACRO ; DEFINITION
LOCAL <A>

A: MOVAL, AH
ENDM
FO0 ; EXPANSION

+770000: MOVAL, AH

Details

The LOCAL directive is allowed only inside a MACRO definition block. A
LOCAL statement must precede all other types of statements in the macro
definition.

When LOCAL is executed, the assembler creates a unique symbol for each
occurrence of the dummy in the expansion. These unique symbols are usu-
ally used to define a label within a macro, thus eliminating multiple-defined
labels on successive expansions of the macro. The symbols created by the
assembler range from ??0000 to ??FFFF. You should avoid the form
??nnnn for use as one of your own symbols.

Page 10.149

o 2
i

/‘«‘"\\J

Application
0000 FUN SEGMENT
ASSUME CS: FUN, DS: FUN
FOO MACRO NUM,Y
LOCAL A,B,C,D,E
A: DB 7
B: DB 8
C: DB Y
D: DW Y+1
E: DW NUM+1
JMP A
ENDM
FOO OCOOH, OBEH
0000 07 + 770000 DB 1
0001 08 + 770001: DB 8
0002 BE + 770002: DB OBEH
0003 00BF + 770003 DW 0BEH+1
0005 0CO1 + 770004: DW 0COOH+1
0007 EB F7 + JMP 770000
FOO 03COH, OFFH
0009 07 + 770005: DB T
000A 08 + 770006: DB 8
000B FF + 770007 DB OFFH
000C 0100 + 770008: DW OFFH+1
000E 03C1 + 770009: DW 03COH+1
0010 EB F7 + JMP 770005
0012 FON ENDS
END

Notice that MACRO-86 has substituted LABEL names in the form ??nnnn
for the instances of the dummy symbols.

Page 10.150

MACRO-86

PURGE

Brief

FORMAT: PURGE <macro-name>[...]

PURGE deletes a macro definition. It is followed by the name of one or more
macros enclosed in angle brackets and separated by commas. It is not nec-
essary to PURGE a macro before defining a new one with the same name.
The deletion in this case is automatic . A PURGE statement may occur any-
where in aprogram.

Details

PURGE deletes the definition of the macro(s) listed after it.

PURGE provides three benefits:

1.

2.

Itfrees text space of the macro body.

It returns any instruction mnemonics or directives that were re-
defined by macros to their original function.

It allows you to “edit” macros from a macro library file. You may
find it useful to create a file that contains only macro definitions.
This method allows you to use macros repeatedly with easy ac-
cess to their definitions. Typically, you would then place an IN-
CLUDE statement in your program file. Following the INCLUDE
statement, you could place a PURGE statement to delete any
macros you do not plan to use in this program.

Itis not necessary to PURGE a macro before redefining it. Sim-
ply place another MACRO statement in your program, reusing
the macro name.

Page 10.151

Application

INCLUDE MACRO.LIB
PURGE MAC1 ; frees spaceusedbyMAC1

Page 10.152

MACRO-86

REPEAT DIRECTIVES

Brief

REPEAT permits a block of code to be assembled a specific number of
times. Unlike a MACRO, the parameters are built into the block and remain
the same on each pass. REPEAT directives may be used inside or outside
aMACRO. ENDM ends the block.

Details

The directives in this group allow the operations in a block of code to be re-
peated for the number of times you specify. The major differences between
the REPEAT directives and MACRO directives are:

1. MACRO gives the block a name by which to call in the code
wherever and whenever needed; the macro block can be used
in many different programs by simply entering a macro call
statement.

2. MACRO allows parameters to be passed to the MACRO block
when a MACRO is called; hence, parameters can be changed.

REPEAT directive parameters must be assigned as a part of the code block.
If the parameters are known in advance and are not going to change, and
if the repetition is to be performed for every program execution, then
REPEAT directives are convenient. With the MACRO directive, you must
callin the MACRO eachtime itis needed.

Note that each REPEAT directive must be matched with the ENDM directive
to terminate the repeat block.

Page 10.153

MACRO-86

REPT

Brief

Format: <exp>

ENDM

REPT is followed by an expression which evaluates to the number of repeti-
tions. The code block follows REPT and ends with ENDM. External symbols
areillegal in the expression. For example:

X=0 : DEFINITION
REPT 10

X=X+1

DB X

ENDM

0000 01 + DB X ; ASSEMBLED CODE
0001 02 + DB X
0002 03 + DB X ;ETC HRU 0A

Details

Repeat block of statements between REPT and ENDM <exp> times. The
expression is evaluated as a 16-bit unsigned number. If the expression con-
tains an external symbol or undefined operands, an error is generated.

Page 10.154

oA T 5
i A { 1
AYIFAS L A

Application

X = 0
REPT 10 ; generatesDB1-DB 10
X = X+1
DB X
ENDM
END
Assembles as:
0000 X = 0
REPT 10 ;generates DB 1 - DB 10
X = X+1
DB X
ENDM
0000 01 + DB X
0001 02 + DB X
0002 03 + DB X
0003 04 + DB X
0004 05 + DB X
0005 06 + DB X
0006 07 + DB X
0007 08 + DB X
0008 09 + DB X
0009 0A + DB X

£
]

P@e10ﬂ55

IRP INDEFINITE REPEAT

Brief

Format:
IRP <dummy>,<parameters (inside angle brackets)>

ENDM

IRP takes two arguments. The second argument is enclosed in angle brack-
ets and separated from the first argument by a comma. The firstis a dummy
variable. The second is a series of values delimited by commas. A block of
code under the IRP statement is assembled once for each value in the sec-
ond argument. Either argument may be passed from a macro call, since the
angle brackets are stripped before it is passed. ENDM ends the block. This
definition produces the same code shown for REPT:

IRP X,<1,2,3,4,5,6,7,8,9,10>
DB X
ENDM

Details

Parameters must be enclosed in brackets. Parameters may be any legal
symbol, string, numeric, or other character constant. The block of state-
ments is repeated for each parameter. Each repetition substitutes the next
parameter for every occurrence of dummy in the block. If a parameter is null
(i.e.,<>), the block is processed once with a null parameter.

Page 10.156

Application
IRP X,<1,2,3,4,5,6,7,8,9,10>
DB X
ENDM

This example generates the same bytes (DB 1 — DB 10) as the REPT ex-
ample.

When IRP is used inside a MACRO definition block, angle brackets around
parameters in the macro call statement are removed before the parameters
are passed to the macro block. An example, which generates the same code
as above, illustrates the removal of one level of brackets from the parame-
ters:

FOO MACRO X

IRP Y, <x>
DB Y
ENDM

ENDM

When the macro call statement
F00<1,2,3,4,5,6,7,8,9,10>

is assembled, the macro expansion becomes:

IRP Y,<1,2,3,4,5,6,7,8,9,10>
DB Y
ENDM

The angle brackets around the parameters are removed, and all items are
passed as a single parameter.

Page 10.157

IRPC INDEFINITE REPEAT CHARACTER

Brief

Format: IRPC <dummy>,<string>

ENDM

IRPC functions similar to IRP, except the second argument is a string en-
closed in angle brackets. The block is assembled once for each character
in the string. The corresponding character replaces the dummy variable on
each pass. Forexample:

IRPC X, <0123456789>
DB X+1
ENDM

Details

The statements in the block are repeated once for each character in the
string. Each repetition substitutes the next character in the string for every
occurrence of the dummy in the block.

Application

IRPC X, 0123456789
DB X+1
ENDM

This example generates the same bytes (DB 1 — DB 10) as the two previous
examples.

Pme10j58

SPECIAL MACRO OPERATORS

Brief

The following special macro operators provide additional capabilities within
macro definitions:

& <> 5! %

Details

Several special operators can be used in a macro block to select additional
assembly functions.

& Ampersand concatenates text or symbols. (The & may not be
used in a macro call statement.) A dummy parameter in a quoted
string is not substituted in expansion unless preceded im-
mediately by &. To form a symbol from text and a dummy, put &

between them.
Forexample:
ERRGEN MACRO X
ERROR&X: PUSH BX
MOV BX, '&X'
JMP ERROR
ENDM

The call ERRGEN A then generates:

ERRORA: PUSH BX
MOV BX, 'A!
JMP ERROR

Page 10.159

WMACHO-86

In MACRO-86, unlike MACRO-80, the ampersand does not appear in the
expansion. One ampersand is removed each time a dummy& or &dummy
is found. For complex macros, where nesting is involved, extra ampersands
may be needed. You need to supply as many ampersands as there are
levels of nesting.

Forexample:
Correctform Incorrect form
FOO MACRO X FOO MACRO X
IRP 7,<1,2,3> IRP 7,<1,2,3>
X&&Z DB Z X&7 DB
ENDM ENDM
ENDM ENDM

1. MACRO build, find dummies and change to di

When called, for example, by FOO BAZ, the expansion would be: (shown
correctly in the left column, incorrectly in the right)

IRP Z,<1,2,3> IRP Z,<1,2,3>
disZ DB Z diz DB I
ENDM ENDM

2. MACRO expansion, substitute parameter text for di

IRP 7,<1,2,3> IRP Z,-1,2,3-
BAZ&Z DB Z BAZZ DB 7
ENDM ENDM

3. IRP build, find dummies and change to di

BAZ&d1 DB di BAZZ DB di

Page 10.160

MACRO-86

4. IRP expansion, substitute parameter text for di

BAZ1 DB 1 BAZZ DB 1
BAZ2 DB 2 BAZZ DB 2 ;here it's an error,
BAZ3 DB 3 BAZZ DB 3 ;multi-defined symbol

<text> Angle brackets cause MACRO-86 to treat the text between the
angle brackets as a single literal. Placing either the parameters
to a macro call or the list of parameters following the IRP directive
inside angle brackets causes two results:

1. All text within the angle brackets is seen as a single pa-
rameter, even if commas are used.

2. Characters that have special functions are taken as lit-
eral characters. For example, the semicolon inside angle
brackets <;> becomes a character, not the indicator that
acomment follows. One set of angle brackets is removed
each time the parameter is used in a macro. When using
nested macros, you need to supply as many sets of angle
brackets around parameters as there are levels of nest-

ing.

5 In a macro or repeat block, a comment preceded by two semico-
lons is not saved as a part of the expansion.

The default listing condition for macros is .XALL (see “Listing Directives”,
Page 10.153). Under the influence of .XALL, comments in macro blocks are
not listed because they do not generate code.

Page 10.161

MACRO-86

If you decide to place the .LALL listing directive in your program, then com-
ments inside macro and repeat blocks are saved and listed. This can be the
cause of an out of memory error. To avoid this error, place double semico-
lons before comments inside macro and repeat blocks, unless you specifi-
cally wantacomment to be retained.

%

An exclamation point may be entered in an argument to indicate
that the next character is to be taken literally. Therefore, !; is equi-
valentto <;>.

The percent sign is used only in a macro argument to convert the
expression that follows it (usually a symbol) to a number in the cur-
rent radix. During macro expansion, the number derived from con-
verting the expression is substituted for the dummy. Using the %
special operator allows a macro call by value. (Usually, a macro
call is a call by reference with the text of the macro argument sub-
stituting exactly for the dummy.)

The expression following the % must evaluate to an absolute
(non-relocatable) constant.

Application

PRINTE MACRO MSG,N
%OUT ~ *MSG,N*
ENDM
SYMI EQU 100
SYM2 EQU 200
PRINTE <SYM1 + SYM2 =>.,%(SYML + SYM2)

Normally, the macro call statement would cause the string (SYM1
+ SYM2) to be substituted for the dummy N. The result would be:

%0UT *SYM1 + SYM2 = (SYM1 + SYM2) *

When the % is placed in front of the parameter, the assembler
generates:

%0UT * SYML + SYM2 = 300 *

Page 10.162

Assembling a Source File

Listing Directives
Brief

These directives are used to adjust the parameters of the assembler listing:

PAGE TITLE SUBTTL %0UT
.LIST XLIST .SFCOND .LFCOND
.TFCOND XALL .LALL SALL
.CREF .XCREF

Details

Listing directives perform two general functions: format control and listing
control. Format control directives allow the programmer to insert page
breaks and direct page headings. Listing control directives turn on and off
the listing of all or part of the assembled file.

Page 10.163

PAGE

Brief

Format: PAGE [<length>][,<width>]
PAGE[+]

Details

PAGE with no arguments or with the optional [+] argument causes the as-
sembler to start a new output page. The assembiler puts a form feed charac-
terinthe listing file at the end of the page.

The PAGE directive with either the length or width arguments does not start
anew listing page.

The value of the length, if included, becomes the new page length (mea-
sured in lines per page) and must be in the range 10 to 255. The default page
lengthis 50 lines per page.

The value of the width, if included, becomes the new page width (measure
in characters) and must be in the range of 60 to 132. The default page width
is 80 characters.

The plus sign (+) increments the major page number and resets the minor
page number to one. Page numbers are in the form major-minor. The PAGE
directive without the + increments only the minor portion of the page
number.

Page 10.164

Application
PAGE + ;increment Major, setminorto1
PAGE 58, 60 :page length=58 lines,

;width=60characters

Page 10.165

TITLE

Brief

Format: TITLE <text>

Details

TITLE specifies a title to be listed on the first line of each page. The <text>
may be up to 60 characters long. If more than one TITLE is given, an error
results. The first six characters of the title, if legal, are used as the module
name, unless a NAME directive is used.

Application

TITLE PROGL - 1st Program

If the NAME directive is not used, the module name is now PROG1 - 1st Program.
This title text appears at the top of every page of the listing.

Page 10.166

SUBTTL

Brief

Format: SUBTTL <text>

Details

SUBTTL specifies a subtitle to be listed in each page heading on the line
after the title. The text is truncated after 60 characters.

Any number of SUBTTLs may be given in a program. Each time the assem-
bler encounters SUBTTL, it replaces the text from the previous SUBTTL with

the text from the most recently encountered SUBTTL. To turn off SUBTTL
for part of the output, enter a SUBTTL with a null string for text.

Application

SUBTTL SPECIAL I/0 ROUTINE

SUBTTL

The first SUBTTL causes the subtitte SPECIAL 1/O ROUTINE to be printed
at the top of every page. The second SUBTTL turns off subtitle (the subtitle
line onthe listing is left blank).

Pme10J67

%O0UT

Brief

Format: %OUT <text>

Details

The text is listed on the terminal during assembly. %OUT is useful for dis-
playing progress through a long assembly or for displaying the value of con-
ditional assembly switches.

%QUT outputs on both passes. If only one printout is desired, use the IF1
or IF2 directive, depending on which pass you want displayed. See “Condi-
tional Directives,” Page 10.135, for descriptions of the IF1 and IF2 direc-
tives.

Application

%OUT *Assembly half done*

The assembler sends the delimited message to the terminal screen when
the line is processed.

IF1
%0UT *Pass 1 started*
ENDIF

1F2
%OUT *Pass 2 started*
ENDIF

Page 10.168

LIST

XLIST

Brief

Format: .LIST
XLIST

Details

.LIST lists all lines with their code (the default condition).
XLIST suppresses all listing.

If you specify a listing file following the Listing prompt, a listing file with all
the source statements included s listed.

When XLIST is encountered in the source file, source and object code are
notlisted. .XLIST remainsin effectuntila .LIST is encountered.

Page 10.169

Application
. XLIST :listing suspended here, ".XLIST" is not printed
.LIST -1isting resumes here, “.LIST" is printed

.SFCOND suppresses portions of the listing containing conditional expres-
sions that evaluate as false.

.LFCOND assures the listing of conditional expressions that evaluate false.
This is the default condition.

.TFCOND toggles the current setting. .TFCOND operates independently
from .LFCOND and .SFCOND. .TFCOND toggles the default setting, which
is set by the presence or absence of the /X switch when running the assem-
bler. When /X is used, .TFCOND causes false conditionals to list. When /X
is notused, . TFCOND suppresses false conditionals.

XALL is the default.

XALL lists source code and object code produced by a macro, but source
lines which do not generate code are notlisted.

.LALL lists the complete macro text for all expansions, including lines that
do not generate code. Comments preceded by two semicolons (;;) are not
listed.

.SALL suppresses listing of all text and object code produced by macros.

Page 10.170

.CREF
XCREF

Brief

Format: .CREF
XCREF [<variable list>]

Details

.CREF is the default condition. .CREF remains in effect untii MACRO-86
encounters .XCREF.

.XCREF without arguments turns off the .CREF (default) directive. .XCREF
remains in effect until MACRO-86 encounters .CREF. Use .XCREF to sup-
press the creation of cross references in selected portions of the file. Use
.CREF torestart the creation of a cross reference file after using the .XCREF
directive.

If you include one or more variables following .XCREF, these variables are
placed in the listing or cross reference file. All other cross referencing is not
affected by an .XCREF directive with arguments. Separate the variables
with commas.

Neither .CREF nor .XCREF without arguments takes effect unless you
specify a cross reference file when you run the assembler. .XCREF vari-
able list suppresses the variables from the symbol table listing regardless
of the creation of a cross reference file.

page 10.171

Example:

.XCREF CURSOR, F0O, GO0, BAZ, Z00
:these variables will not be
:in the listing or cross reference file

Application

Use assembler directives to specify the actions or assumptions you want
MACRO-86 to make in processing your source code. Their use can greatly
simplify the task of assembly language programming. Macro and conditional
source modules eliminate repetitious code entry. Listing directives produce
a clear and readable printout. Data definition directives allow you to name
and structure storage areas consistent with the way they will be accessed.
All of these features are tools designed to enhance development of your as-
sembly language programs.

page 10.172

MACRO-86

INTRODUCTION
Brief:

Assembling with MACRO-86 requires two types of commands: a command
to invoke MACRO-86 and answers to command prompts. In addition, three
switches control alternate MACRO-86 features. Usually, you enter all the
commands to MACRO-86 on the terminal keyboard. As an option, answers
to the command prompts and any switches may be contained in a batch file.
Some command characters are provided to assist you while you enter as-
sembler commands.

Details

Invoke MACRO-86 by entering MASM on the terminal. The assembler re-
sponds with a series of four queries requesting names for the .ASM, .OBJ,
LST, and .CREF files. You may override the queries by entering responses
to all four, separated by commas, following MASM. There is no default for
the first query. A source filename must be supplied. Unless an extension is
entered, the assembler assumes it to be .ASM. The source filename be-
comes the default option for the .OBJ file. The default for the last two queries
is not to produce a file. A RETURN selects the default for a query. In the
group method, adjacent commas perform the same function. After the first
query, a semicolon followed by a return may be entered at any time to termi-
nate the query process. Defaults are then assigned to all remaining
filenames. Control-C aborts the assembler at any time. The Z-DOS prompt
indicates the end of assembly.

-

Page 10.173

Invoking MACRO-86

MACRO-86 may be invoked two ways. By the first method, you enter the
commands as answers to individual prompts. By the second method, you
enter all commands on the line used to invoke MACRO-86.

Summary of Methods to invoke MACRO-86:

Method 1 MASM

Method 2 MASM <source>,<object>,<listing>,<cross-ref>
[/switch...]

page 10.174

METHOD CNE: MASM

Enter:

MASM

MACRO-86 loads into memory. Then, MACRO-86 returns a series of four
text prompts that appear one at a time. You answer the prompts as com-
mands to MACRO-86 to perform specific tasks.

At the end of each line, you may enter one or more switches, each of which
must be preceded by a slash mark. If a switch is not included, the MACRO-
86 default is to not perform the function described for the switches in the

chartbelow.

The command prompts are summarized here. Following the summary of

prompts is a summary of switches.

PROMPT

RESPONSES

Source filename [ASM]:

List .ASM file to be assembled. (No
default: filename response required)

Object filename [source.OBJ]

List filename for relocatable object
code. (Default: source-filename.OBJ)

Source listing [NUL.LST]:

List filename for listing file (default: no
listing file)

Cross reference [NU..CRF]

List filename for cross reference file
(used with CREF to create a cross re-
ference listing). (default: no cross re-
ferencefile)

Page 10.175

SWITCH ACTION

/D Produce alisting on both assembler passes.

/0 Show generated object code and offsets in octal
radix on listing.

/X Suppress the listing of false conditionals. Also
used with the . TFCOND directive.

Command Switches Summary
Command Characters

MACRO-86 provides two command characters.

Use a single semicolon (;), followed immediately by a RETURN,
at any time after responding to the first prompt (from Source
filename on) to select default responses to the remaining prompts.
This feature saves time and overrides the need to keep entering
RETURNS.

NOTE: Once the semicolon has been entered, you can no longer
respond to any of the prompts for that assembly. Therefore, do not
use the semicolon to skip over some prompts. For this, use
RETURN.

Example:

Source filename [.ASM]: FUN RETURN
Object filename [FUN.OBJ]: ; RETURN

The remaining prompts are skipped, and MACRO-86 uses the default
values (including no listing file and no cross reference file).

Page 10.176

CTRL-C

To achieve exactly the same result, you could alternatively enter:
Source filename [. ASM] : FUN; RETURN
This response produces the same files as the previous example.

Use CTRL-C at any time to abort the assembly. If you enter an
erroneous response, such as the wrong filename or an incorrectly
spelled filename, you must press CTRL-C to exit MACRO-86 then
reinvoke MACRO-86 and start over. If the error has been typed
and not entered, you may delete the erroneous characters, but for
thatline only.

page 10.177

METHOD TWO: MASM<FILENAMES> </x>

Enter:
MASM <source>,<object>,<listing>,<cross-ref></x...>

MACRO-86 is loaded into memory. Then MACRO-86 immediately begins
assembly. The entries following MASM are responses to the command
prompts. The entry fields for the different prompts must be separated by
commas where <source> is the source filename; where <object> is the
name of the file to receive the relocatable output; where <listing> is the
name of the file to receive the listing; where <crossref> is the name of the
file to receive the cross reference output; and where </x...> are optional
switches, which may be placed following any of the response entries (just
before any of the commas or after the <cross-ref>, as shown.

To select the default for a field, simply enter a second comma without space
in between (see the example below).

Example:
MASM FUN, , FUN/D/X, FUN

This example causes MACRO-86 to be loaded, then causes the source file
FUN.ASM to be assembled. MACRO-86 then outputs the relocatable object
code to a file named FUN.OBJ (default caused by two commas in a row),
creates a listing file named FUN.LST and a cross reference filenamed
FUN.CRF. If names were not listed for listing and cross reference, these files
would not be created. If listing file switches are given but no filename, the
switches are ignored.

Page 10.178

MACRO-86 Command Prompts

MACRO-86 is commanded by entering responses to four text prompts.
When you have entered a response to the current prompt, the next appears.
When the last prompt has been answered, MACRO-86 begins assembly au-
tomatically without further command. When assembly is finished, MACRO-
86 exits to the operating system.

MACRO-86 prompts you for the names of source, object, listing, and cross
reference files.

All command prompts accept a file specification as a response. You may
enter:

Afilename only,
A device designationonly,
Afilename and an extension,
A device designation and filename,
or
adevice designation, filename, and extension.

You may not enter only a filename extension.

Source filename [.ASM]:

Enter the filename of your source program. MACRO-86 assumes by default
that the filename extension is .ASM, as shown in square brackets in the
prompt text. If your source program has any other filename extension, you
must enter it along with the filename. Otherwise, the extension may be omit-
ted.

Page 10.179

MACRO-86

Do S E B DS FS

Object filename [source.OBJ;:

Enter the filename you want to receive the generated object code. If you sim-
ply press the RETURN key when this prompt appears, the object file is given
the same name as the source file, but with the filename extension .OBJ. If
you want to change only the filename but keep the .OBJ extension, enter
the filename only. To change the extension only, you must enter both the
filename and the extension. If you specify a drive other than the default drive
for the source filename prompt, that specified drive name is not carried over
into the default response for this prompt. If you want the object file to be on
the same non-default drive as the source file, you must specify the drive
name here.

Source listing [NUL.LST]:

Enter the name of the file, if any, that you want to receive the source listing.
If you press the RETURN key, MACRO-86 does not produce this listing file.
If you enter a filename only, the listing is created and placed in a file with
the name you enter plus the filename extension .LST. You may also enter
your own extension.

The source listing file contains a list of all the statements in your source pro-
gram and shows the code and offsets generated for each statement. The
listing also shows any error messages generated during the session.

Cross reference [NUL.CRF]:

Enter the name of the file, if any, you want to receive the cross reference
file. If you press only the RETURN key, MACRO-86 does not produce a
cross reference file. If you enter a filename only, the cross reference file is
created and placed in a file with the name you enter plus the filename exten-
sion .CRF. You may also enter your own extension.

The cross reference file is used as the source file for the CREF Cross Refer-
ence Facility. CREF converts this cross reference file into a cross reference
listing, which you can use to aid you during program debugging.

The cross reference file contains a series of control symbols that identify rec-
ords in the file. CREF uses these control symbols to create a listing that
shows all occurrences of every symbol in your program. The occurrence that
defines the symbolis also identified.

Page 10.180

MACRO-86

MACRO-86 Command Switches
Brief

/D, /O, and /X switches may be entered at the end of any query line contain-
ing a filename. /D produces a listing on both passes. It is useful for locating
phase errors. On pass 1, all forward references generate error messages.
/O causes octal listings of object code and relative offsets. It has no effect
on the .OBJ file. /X suppresses the listing of false conditionals. .LFCOND
and .SFCOND directives have a higher priority. The .TFCOND directive al-
ters the effect of /X.

Details

The three switches control alternate assembler functions. Switches must be
entered at the end of a prompt response, regardless of which method is used
to invoke MACRO-86. Switches may be grouped at the end of any one of
the responses, or may be scattered at the end of several. If more than one
switch is entered at the end of one response, each switch must be preceded
by the slash mark (/). You may not enter only a switch as a response to a
command prompt.

Switch Function

/D Produce a source listing on both assembler passes. The listing,
when compared, shows where in the program phase errors occur
and, possibly, gives you a clue as to why the errors occur. The /D
switch does not take effect unless you command MACRO-86 to
create a source listing (enter a filename in response to the source
listing command prompt).

/0 Output the listing file in octal radix. The generated code and the
offsets shown on the listing are all given in octal. The actual code
‘in the object file is the same as if the /O switch were not given.

The /O switch affects only the listing file.

Page 10.181

&€

MACRO-86

Suppress the listing of false conditionals. If your program contains
conditional blocks, the listing file shows the source statement but
no code if the condition evaluates false. To avoid the clutter of con-
ditional blocks that do not generate code, use the /X switch to sup-
press the blocks that evaluate false from your listing.

The /X switch does not affect any block of code in your file that
is controlled by either the .SFCOND or .LFCOND directives.

If your source program contains the .TFCOND directive, the /X
switch has the opposite effect. That is, normally the . TFCOND di-
rective causes listing or suppressing of blocks of code that it con-
trols. The first . TFCOND directive suppresses false conditionals,
the second restores listing of false conditionals, and so on. When
you use the /X switch, false conditionals are already suppressed.
When MACRO-86 encounters the first. TFCOND directive, listing
of false conditionals is restored. When the second .TFCOND is
encountered (and the /X switch is used), false conditionals are
again suppressed from the listing.

Of course, the /X switch has no effect if no listing is created.

Page 10.182

The following chart illustrates the various effects of the conditional listing di-
rectives in combination with the /X switch. ON = false condition listed; OFF
= false not listed.

PSEUDO-OP NO/X X

{(none) OFF ON
.SFéOND OfF OfF
.LFéOND Oﬁ 0&
,TFéOND O& OfF
.TFéOND OfF Oﬁ
.TFéOND Oﬁ OfF
.SFéOND OfF Oﬁ
.TFéOND Oﬁ OfF

NOTE: True conditions are always listed and assembled.

Page 10.183

MACRO-86

Formats of Listings and Symbol Tables

Brief

The assembler listing is divided into two parts. In part one, each line con-
tains: 1) a line number, unless .CREF is suppressed; 2) the offset address,
if the line generates code; 3) the object code; 4) a + or a C for a macro or
INCLUDE block; 5) the source code. Part two contains an error message
count plus the name and description of all macros, structures, records, seg-
ments, groups, and symbols.

Details

The source listing produced by MACRO-86 (created when you specify a
filename in response to the Source listing prompt) is divided into two parts.

The first part of the listing shows:

The line number for each line of the source file, if a cross reference file is
also being created.

The offset of each source line that generates code.

The code generated by each source line.

A plus sign (+), if the code came from a macro or a letter C, if the code came
from an INCLUDE file.

The source statementline.

The second part of the listing shows:

Macros - name and length in bytes.

Structures and records - name, width and fields.

Segments and groups - name, size, align, combine and class.
Symbols - name, type, value, and attributes.

The number of warning errors and severe errors.

Page 10.184

PROGRAMLISTING

The program portion of the listing is essentially your source program file with
the line numbers, offsets, generated code, and (where applicable) a plus
sign to indicate that the source statements are part of a macro block or a
letter C to indicate that the source statements are from a file input by the
INCLUDE directive.

If any errors occur during assembly, the error message appears printed di-
rectly below the statement where the error occurred.

On the next page is part of a listing file, with notes explaining what the vari-
ous entries represent.

The comments have been moved down one line because of format restric-
tions. If you print your listing on 132 column paper, the comments shown
here would easily fit on the same line as the rest of the statement.

page 10.185

Explanatory notes are spliced into the listing at points of special interest.
R = linker resolves entry to left of R
E = External

= segment name, group name, or segment variable used in
MOV AX,<---->, DD <---->, JMP <----> and soon.

= = statement has an EQU or = directive
nn: = statement contains a segment override
nn/ = REPxx or LOCK prefix instruction. Example:
003C F3/ A5 REP MOVSW ;move DS:Sl to ES:Dluntil CX=0

[xx] = DUP expression;xx is the value in parentheses following the
DUP; for example: DUP(?) places ?? where xx is shown here

+ = line comes from a macro expansion
C = line comes from file name in INCLUDE directive

Summary of Listing Symbols

Page 10.186

The Microsoft MACRO-86 MACRO Assembler mm-dd-yy PAGEP-P

ENTX PASCAL entry for initializing programs

0000 STACK SEGMENT WORD STACK 'STACK'
=0000 HEAPbeg EQU THIS BYTE
+__Indicates EQU or = directive

:Base of heap before init

done
0000 14 [DB 20 DUP (?)
7?7 «shows value in parentheses—-T
] B
‘: Indicates DUP expression
= 0014 SKTOP EQU THIS BYTE
0014 STACK ENDS
0000 MAINSTARTUP SEGMENT 'MEMORY'
DGROUP GROUP DATA, STACK, CONST, HEAP, MEMORY
ASSUME CS:MAINSTARTUP, DS: DGROUP,
ES: DGROUP, SS: DGROUP
PUBLIC BEGXQQ ;Maln entry
0000 BEGXQQ PROC FAR
0000 B8 ----R MOV AX, DGROUP
;get assumed data segment

value
0003 8E D8 MOV DS, AX ;Set DS seg
0005 8C 06 0022 R MOV CESXQQ, ES

~ - e e

T generated name action T comment
code expression
offset

000C 26: 8B 1E 0002 MoV BX, ES: 2 :Highest Paragraph

L__ segment override —f

Page 10.187

The Microsoft MACRO-86 MACRO Assembler

m-dd-yy PAGEP-P

ENTX PASCAL entry for initializing programs

0011 2B D8

0013 81 FB 1000

0017 TE 03

0019 BB 1000

001C SMLSTK:
001C D1 E3

001E D1 E3

0020 D1 E3

0022 D1 E3

macro theselines
block from macro
0024 8B E3

0069 EA 0000 ---- R

-

SUB BX,AX ;Get a paras for DS

CMP BX, 4096 ;More than 64K?

JLE SMLSTK :No. Use what we have
MOV BX,4096;Can only address 64K

REPT 4 -

SHL BX,1
;Convert para to offset
ENDM

SHL BX,1

;Convert para to offset
SHL BX,1

;Convert para to offset
SHL BX, 1

;Convert para to offset
SHL BX, 1

;Convert para to offset

macro
directives

MOV SP.BX
:Set stack to top of memory

J¥ FAR PTR STARTmain

Lsignal to linker

e cmm—

number of
repetitions

segmentvariable

inker resolves: indicates segment name, group name,

or segment variable used in MOV AX,<---->;
DD <---->; JMP <----> _etc. (See other
examples in this listing.)

page 10.188

0006E BEGXQQ ENDP
007E MAINSTARTUP ENDS
0000 ENTXCH SEGMENT WORD 'CODE'

ASSUME CS: ENTXCM
PUBLIC ENDXQQ, DOSXQQ

Page 10.189

MACHO-86

The Microsoft MACRO-86 MACRO Assembler mm-dd-yy PAGEP-P

ENTX PASCAL entry for initializing programs
0000 STARTmain PROC FAR ;This code remains
0000 9A 0000 — E CALL ENTGQQ

;call main program

0005 ENDXQQ LABEL FAR
;termination entry point
0005 9A 0000 — E CALL ENDOQQ
;user system termination
000A 9A 0000 — E CALL ENDYQQ
;close all openfiles
000F 9A 0000 —— E —=—j CALL ENDUQQ
;file system termination
0014 C7 06 0020 R 0000 Mov DOSOF. 0
T LTILET T T
offset
External
symbol

linker signal; goes with number to left; shows DOSOFF is in segment

00 2E 0020 R STARTmain ENDP

00317 ENTXCM ENDS
END BEGXQQ

Page 10.190

MACRO-86

Py

Differences Between Pass One Listing and Pass Two Listing

If you give the /D switch when you run MACRO-86 to assemble your file,
the assembler produces a listing for both passes. The option is especially
helpful for finding the source of phase errors.

The following example was taken from a source file that assembled without
reporting any errors. When the source file was reassembled using the /D

switch, an error was produced on pass one, but not on pass two (which is
when errors are usually reported).

Application

During Pass one a jump with a forward reference produces:

0017 TE 00 JLE SMLSTK ;No. Use what we have
Error --- 9: Symbol not defined
0019 BB 1000 MOV BX,4096 ;Can only address 64K
001C SMLSTK: REPT 4

During Pass two this same instruction is fixed up and does not return an
error.

9017 1TE 03 JLE SMLSTK ;No, use what we have
0019 BB 1000 MOV BX,4096 ;Can only address 64K
001C SMLSTK: REPT 4

Notice that the JLE instruction’s code now contain 03 instead of 00: a jump
of three-bytes.

The same amount of code was produced during both passes, so there was
no phase error. The only difference in this case is content, not of size.

-

Page 10.191

Symbol Table Format

The symbol table portion of a listing separates all “symbols” into their re-
spective categories, showing appropriate descriptive data. This data gives
you an idea how your program is using various symbolic values. Use this
information to help you debug.

Also, you can use a cross reference listing, produced by CREF, to help you
locate uses of the various “symbols” in your program.

On the next page is a complete symbol table listing. Following the complete
listing, sections from different symbol tables are shown with exp!anatory
notes.

For all sections of symbol tables, this rule applies: if there are no symbolic
values in your program for a particular category, the heading for the category
is omitted from the symbol table listing. For example, if you did not use mac-
ros in your program, there is no macro section in the symbol table.

Page 10.192

The Microsoft MACRO-86 MACRO Assembler

CALLER - SAMPLE ASSEMBLER ROUTINE (EXMP1M.ASM)

Macros:

BIOSCALL
DISPLAY.

Name

NAMETEXT
TERMINATOR

Segments and groups:
Name

Warning Severe
Errors Errors
0 0

Length
0002
0005
0002
0003
0003
0004

width # fields
Shift width Mask

001C 0004

0000

0001

0002

001B

Size align combine
0044 PARA PUBLIC
0200 PARA STACK
0031 PARA PUBLIC

Type Value Attr

N PROC 0036 CSEG

Date

PAGE Symbols-1

Initial

class'
‘CODE'
'STACK!
'DATA'

Length =000E

Number 0019

L BYTE 001C WORKAREA

L 001C 0000 WORKAREA

L FAR 0000 External

F PROC 0000 CSEG

Length =0036

Page 10.193

Macros:
Name Length = number of 32 byte blocks
BIOSCALL. 0002 macro occupies
DISPLAY 0005 inmemory
DOSCALL 0002
KEYBOARD. 0003
LOCATE. 0003
SCROLL. 0004

names of macros

This section of the symbol table tells you the names of your macros and how
big they are in 32-byte block units. In this listing, the macro DISPLAY is §
blocks longor (5 x 32 bytes =) 160 bytes long.

Structures and records:
Example for Structures
This line applies to structure names
(beginincolumn 1)
Name width # fields
shift Width Mask Initial<—— Thisline
PARMLIST 001C -~ 0004 for fields
BUFSIZE 0000 of records
NAMESIZE 0001 (indented).
NAMETEXT 0002 Number of fields
TERMINATOR 001B in structure
field names of Qﬁset of field The number of
PARMLIST structure into structure bytes wide of the

structure

Page 10.194

MACRO-86

| - & o0 g g
ing a Sot

Example for Records
Name Width # fields /
shift Wwidth Mask Initial
BAZ. =—>0008 0003 =
FID1 0006 0002 00C0) 0040
FD2 0003§=y 00030038 | 0000 —=
FID3 0000 0003 0007 | 0003
BAZ1 —=000B | 0002 , —
BZ1. 0003 - 0008 07F8 | 0400
BZ2. : : 5 5 ¢« . . 0000 0003 0007) 0002
number of Shift number of
bits in Record count bits in field
toright

This section lists your structures and/or records and their fields. The upper
line of column headings applies to structure names, record names, and to
field names of structures. The lower line of column headings applies to field
names of records.

For structures:

Width (upper line) shows the number of bytes your structure occupies in
memory.

fields shows how many fields comprise your structure.

For records:

Width (upper line) shows the number of bits the record occupies.
fields shows how many fields comprise your record.

For fields of structures:

Shift shows the number of bytes the fields is offset into the structure. The
other columns are not used for fields of structures.

Thislineis
for fields
of records.

number of fields in Record.

initial value

MASK of field
(maximum value)

Page 10.195

For fields of records:

Shift is the shift count to the right.
10.185

Mask shows the maximum value of record, expressed in hexadecimal, if
one field is masked and ANDed (field is set to all 1’s and all other fields are
settoall0’s).

Using field BZ1 of the record BAZ1 above to illustrate:

0 00 0 0 I 1 1 1 1 1 1 1 0 0 0 €&—MASK=07&8
HNEEEEEEEREREERE
15 11|10 4]3 f

|
| | l l
shift count=0003

WIDTH=0008

Initial shows the value specified as the initial value for the field, if any.

When naming the field, you specified:
fieldname:# = value

fieldname is the name of the field, # is the width of the field in bits and
value is the initial value you want this field to hold. The symbol table
shows this value as if it is placed in the field and all other fields are
masked (equal 0). Using the example and diagram from above:

l initial = 80H I
80H =128 decimal

Page 10.196

Segments and groups:
Name Size align combine class
called Private
H LINK chapter
AAAXQQ 0000 WORD NONE ‘CODE ' -«——segment
DGROUP GROUP group
DATA 0024 WORD PUBLIC 'DATA'
STACK. 0014 WORD STACK 'STACK' segments
CONST. 0000 WORD PUBLIC 'CONST' \ —of
HEAP. 0000 WORD PUBLIC ‘MEMORY' DGROUP
MEMORY. 0000 WORD PUBLIC 'MEMORY’
ENTXCM 00317 WORD NONE ‘CODE’
MAINSTARTUP. . . . 007E PARA NONE 'MEMORY'

N— -’
-~

length statement line entries
of
segment

page 10.197

MACRO-86

File

For groups:

the name of the group appears under the Name column, beginning in col-
umn 1 with the applicable segment names indented 2 spaces. The word
Group appears under the Size column.

For segments:

the segment names may appear in column 1 (as here) if you do not declare
them part of a group. If you declare a group, the segment names appear
indented under their group name.

For all segments, whether a part of a group or not:
Size is the number of bytes the segment occupies.
Align is the type of boundary where the segment begins:

PAGE = page — address is xxx000H (low byte = 0); begins on a 256
byte boundary
PARA = paragraph— address is xxxxOH (low nibble = 0); default
WORD = word — address is xxxxeH (low bit of low byte = 0) bit map
- IXIXIXIXIXIXIXIOI
BYTE = byte—addressisxxxxxH (anywhere)

Combine describes how LINK utility combines the various segments. (See
LINK Utility Chapter for a full description.)

Class is the class name under which LINK combines segments in memory.
(See LINK Utility Chapter for a full description.)
10.187

Symbols:

Name Type Value Attr
FOO. Number 0005
FOO1 Text 1.234
FOO2 . w s ¢ 5 = « = Number 0008 all formed by
FOO3 Alias F00 EQU or =
FOO4 Text 5[BP]} [DI] directive

FOO5 Opcode

Page 10.198

Type

L WORD
L FAR
F PROC
L WORD
L WORD
L WORD
L WORD
L WORD
L WORD
L WORD
F PROC
L WORD
L FAR
L FAR
L FAR
L FAR
L FAR
F PROC
L WORD
L WORD
BYTE
BYTE

L FAR
L WORD
L WORD
L WORD
L WORD
L WORD
BYTE

L NEAR
F PROC
L WORD
L WORD

Value

0012
0000
0000
0022
0002
001C
001E
0000
0014
0020
001E
0016
0000
0000
0005
0000
0000
006E
0006
0008
0000
0000
0000
0004
0010
000C
000E
000A
0014
001C
0000
0018
0014

Attr
DATA Global
External
MAIN.STARTUP Global Length =006E
DATA Global 1
DATA Global I-———-length
DATA Global of PROC

DATA Global
DATA Global
DATA Global
DATA
ENTXCM Global Length =0019
DATA Global
External
External
ENTXCM Global
External
External
MAIN.STARTUP Global Length =0010
DATA Global
DATA Global
STACK <—7— EQU statements
HEAP <«———4 showing segment
External
DATA Global
DATA Global
DATA Global
DATA Global
DATA Global
STACK -—m———
MAIN_STARTUP
EXTXCM Length =001E
DATA Global
DATA Global

If MACRO-86 knows this length as one of the
type lengths (BYTE, WORD, DWORD, QWORD,
TBYTE), it shows that type name here.

Page 10.199

This section lists all other symbolic values in your program that do not fit
under the other categories.

Type shows the symbol’s type:

L = Label

F=Far

N = Near

PROC = Procedure

Number

Alias all defined by EQU or = directive
Text

Opcode

These entries may be combined to form the various types shown in the
example.

For all procedures, the length of the procedure is given after its attribute
(segment).

You may also see an entry under “Type” like:
L 0031
This entry results from code such as the following:
BAZ LABELF00
where FOOis a STRUC thatis 31 bytes long.
BAZ is shown in the symbol table with the L 0031 entry. Basically,
Number (and other similar entries) indicates that the symbol was de-
fined by an EQU or = directive.
Value (usually) shows the numeric value the symbol represents. (In some

cases, the value column shows some text — when the symbol was defined
by the EQU or = directives.)

Page 10.200

MACRO-86

Attr always shows the segment of the symbol, if known. Otherwise, the Attr
column is blank. Following the segment name, the table shows either Exter-
nal, Global, or a blank (which means not declared with either the EXTRN
or PUBLIC directive). The last entry applies to PROC types only. This is a
length = entry, which is the length of the procedure.

If type is Number, Opcode, Alias, or Text, the symbols section of the listing

is structured differently. Whenever you see one of these four entries under

type, the symbol was created by an EQU directive or an = directive. All infor-

mation that follows one of these entries is considered its “value,” even if the

“value”is simple text.

Each of the four types shows a value as follows:

Number shows a constant numeric value

Opcode shows a blank. The symbol is an alias for an instruction mnemonic.
Sample directive statement: F00 EQU ADD

Alias shows a symbol name which the named symbol equals.

Sample directive statement: F00 EQU BAX

Text shows the “text” the symbol represents. “Text” is any other operand to
an EQU directive that does not fit one of the other three categories above.

Sample directive statements:

GOO EQU 'Wow'
BAZ EQU DS: 8 [BX]
Z00 EQU 1.234

SUMMARY

The ability to rapidly and effectively debug programs is essential to the pro-
ductive use of assembly language. The symbol and cross reference tables,
as well as the object listing itself, all exist to speed the debugging task. You
can greatly increase your programming effectiveness by learning to under-
stand and rely on the information they contain.

Page 11.1

Introduction to LINK

FEATURES AND BENEFITS OF LINK

LINK is a relocatable linker designed to link together separately produced
modules of 8086 object code. The object modules must be 8086 files only.

For all the necessary and optional commands, LINK gives prompts. Your
answers to the prompts are the commands for LINK.

The output file from LINK (run file) is not bound to specific memory
addresses and, therefore, can be loaded and executed at any convenient
address by your specification.

LINK uses a dictionary-indexed library search method, which substantially
reduces link time for sessions involving library searches.

LINK is capable of linking files totaling 384K bytes.

Page 11.2

LINK

Overview of LINK Operation

LINK combines several object modules into one relocatable load module

called arunfile.

As it combines modules, LINK resolves external references between object
modules and can search multiple library files for definitions for any external

references left unresolved.

LINK also produces a list file that shows external references resolved and

any error messages.

LINK uses available memory as much as possible. When available memory
is exhausted, LINK then creates a disk file and becomes a virtual linker.

//(\‘\

Compiler Assembler
.0BJ .08BJ .0BlJ .0BJ .0BJ .0BJ
Y Y
= e
LINK
libraries listing
.LIB * L LST

Up to eight libraries PUBLIC symbols
may be searched. cross referenced.
Used only if run run-file
file is larger Vs FME _EXE
than memory.

LINK Operations

Page 11.3

LINK

Definitions

Three terms appear frequently in the LINK error messages. These terms de-
scribe the underlying functioning of LINK. An understanding of the concepts
that define these terms provides a basic understanding of the way LINK
works.

SEGMENT

A Segment s a continuous area of memory up to 64K bytes in length. A Seg-
ment may be located anywhere in 8086 memory on a “paragraph” (16 byte)
boundary. The contents of a Segment are addressed by a Segment-regis-
ter/offset pair.

GROUP

A Group is a collection of Segments which fit within 64K bytes of memory.
The Segments are named to the Group by the assembler, by the compiler,
or by you. The Group name is given by you in the assembly language pro-
gram. For the high-level languages (BASIC, FORTRAN, COBOL, Pascal),
the naming is carried out by the compiler.

The Group is used for addressing Segments in memory. Each Group is ad-
dressed by a single Segment register. The Segments within the Group are
addressed by the Segment register plus an offset. LINK checks to see that
the object modules of a Group meet the 64K byte constraint.

CLASS

A Class is a collection of Segments. The naming of Segments to a Class
controls the order and relative placement of Segments in memory. The
Class name is given by you in the assembly language program. For the high-
level languages (BASIC, FORTRAN, COBOL, Pascal), the naming is car-
ried out by the compiler.

Page 11.4

LINK

The Segments are named to a Class at compile time or assembly time. The
Segments of a Class are loaded into memory continuously. The Segments
are ordered within a Class in the order LINK encounters the Segments in
the object files. One Class precedes another in memory only if a Segment
for the first Class precedes all Segments for the second Class in the input
to LINK, Classes may be loaded across 64K byte boundaries. The Classes
are divided into Groups for addressing.

How LINK Combines and Arranges Segments

LINK arranges the object module according to the combine types (private,
public, stack, ad common) declared in the segment directives. (The memory
combine type available in Microsoft's MACRO-86 is treated the same as
public. LINK does not automatically place memory combine type as the
highest segments.)

LINK combines segments for these combine types as follows:

PRIVATE
O Private segments are loaded separately and remain
A A separate. They may be physically, but not logically,
continuous, even if the segments have the same
o name. Each private segment has its own base ad-

dress.

Page 11.5

PUBLIC

COMMON

Public segments of the same name and class name
are loaded continuously. Offset is from beginning of
first segment loaded through last segment loaded.
There is only one base address for all public seg-
ments of the same name and class name. (Combine
types stack and memory are treated the same as
public. However, the Stack Pointer is set to the first
address of the first stack segment.)

Common segments of the same name and class
name are loaded overlapping one another. There is
only one base address for all common segments of
the same name. The length of the common area is
the length of the longest segment.

Page 1 1 6

Place segments in a Group in the assembler provides offset addressing of
items from a single base address for all segments in that Group.

DS:DGROUP-—->XXXX0H.......... 0 --relative offset

Any number of other A An operand of
segments may inter- DGROUP:FOO re-
vene between seg- B turns the offset of FOO
ments of a group.—> FOO from the beginning of
Thus, the offset of C the first segment of
FOO may be greater DGROUP (segment A
than the size of seg- here)

ments in group com-
bined, but no larger
than 64K.

Segments are grouped by declared class names. LINK loads all the seg-
ments belonging to the first class name it encounters, then loads alithe seg-
ments of the next class name it encounters, and so on until all classes have
been loaded.

If your program contains: They load as:

ASEGMENT 'FOO' 'FOO'

B SEGMENT 'BAZ' A

C SEGMENT 'BAZ' E

D SEGMENT *Z0O' ‘BAZ'

E SEGMENT ' FOO' B

C

] ZOOI

Page 11.7

LINK

If you are writing assembly language programs, you can exercise control
over the ordering of classes in memory by writing a dummy module and list-
ing it first after the LINK Object Modules prompt. The dummy module de-
clares segments into classes in the order you want the classes loaded.

NOTE: Do not use this method with BASIC, COBOL, FORTRAN, or Pascal
programs. Allow the compiler and the linker to perform their own class order-
ing without dummy modules.

Forexample:
A SEGMENT 'CODE'
A ENDS
B SEGMENT 'CONST'
B ENDS
C SEGMENT 'DATA'
C ENDS
D SEGMENT STACK 'STACK'
D ENDS
E SEGMENT 'MEMORY'
E ENDS

You should be careful to declare all classes to be used in your program in
this module. If you do not, you lose absolute control over the ordering of
classes.

If you want the memory combine type to be loaded as the last segment of
your program, you can use this method. Simply add MEMORY between
SEGMENT and ‘MEMORY’ in the E segment line above. Note, however,
that these segments are loaded last only because you imposed this control
on them, not because of any inherent capability in the linker or assembler
operations.

Page 11.8

Files That LINK Uses

LINK works with one or more input files, produces two output files, may
create a virtual memory file, and may be directed to search one to eight Ii-
brary files. For each type of file, you may give a three-part file specification.
The format for LINK file specifications is:

d:filename.ext

where d: is the drive designation. Permissible drive designations for LINK
are A through D. The colon is always required as part of the drive designa-
tion; where filename is any legal flename of one to eight characters; and
where .ext is a one- to three-character extension to the filename. The period
is always required as part of the extension.

INPUTFILES

If no extensions are given in the input (object) file specifications, LINK recog-
nizes by default:

File Default Extension
Object .0BJ
Library .LIB

OUTPUTFILES

LINK appends to the output (run and list) files the following default exten-
sions:

File Default Extension

Run .EXE (may not be overridden)
List .MAP (may be overridden)

Page 11.9

VM.TMPFILE

LINK uses available memory for the link session. If the files to be linked
create an output file that exceeds available memory, LINK creates a tempo-
rary file and names it VM.TMP. If LINK needs to create VM.TMP, it displays
the message:

VM. TMP has been created,
Do not change diskette in drive. <d:>

Once this message is displayed, you must not remove the disk from the de-
fault drive until the link session ends. If the disk is removed, the operation
of LINK is unpredictable, and LINK might return the error message:

Unexpected end of file on VM. TMP

LINK uses VM.TMP as a virtual memory. The contents of VM. TMP are sub-
sequently written to the file named following the run file: prompt. VM. TMP
is aworking file only and is deleted at the end of the linking session.

NOTE: Do not use VM.TMP as a file name for any file. If you have a file
named VM.TMP on the default drive and LINK requires the VM. TMP file,
LINK deletes the old VM.TMP. Thus, the contents of the previous VM. TMP

file are lost.

Page 11.10

LINK

Running LINK

LINK requires two types of commands: a command to invoke LINK and an-
swers to command prompts. In addition, six switches control alternate LINK
features. Usually you enter all the commands to LINK on the terminal
keyboard. As an option, answers to the command prompts and any switches
may be contained in a response file. Some Command Characters are pro-
vided to assist you while you are entering linker commands.

Invoking LINK

There are three ways you may invoke LINK. With the first method, you enter
the commands as answers to individual prompts. With the second method,
you enter all commands on the line used to invoke LINK. With the third

method, you create a response file that contains all the necessary com-
mands.

Summary of Methods to invoke LINK
Method 1 LINK
Method 2 LINK <filenames>[</x>]

Method 3 LINK @<filespec>

METHOD 1:LINK

Enter:
A: LINK

LINK loads into memory. Then it returns a series of four text prompts that
appear one at a time. Answer the prompts as commands to LINK to perform
specific tasks.

—

page 11.11

At the end of each line, you may enter one or more switches, each of which
must be preceded by a slash mark. If a switch is not included, LINK defaults
to not performing the function described for the switches in the chart below.

The command prompts are summarized here and described in more detail
under “Command Prompts”, Page 11.16. Following the summary of prompts
is a summary of switches, which are described in more detail under

“Switches”, Page 11.18.

Summary of Prompts

PROMPT

Object Modules [.0BJ]:

Run File [Object-file.EXE]:

List File [NUL.MAP]:

Libraries [.LIB}:

RESPONSES

The .0OBJ files to be linked, sepa-
rated by blank spaces or plus signs
(+). if a plus sign is the last charac-
ter you enter, a prompt will reap-
pear. (No default: response re-
quired.)

The filename for the executable ob-
ject code. (Default: first-object-
filename.EXE.)

The filename for the listing. (De-
fault: NUL filename.)

The filenames to be searched,
separated by blank spaces or plus
signs (+). If a plus sign is the last
character you enter, a prompt reap-
pears. (Default: no search.)

Page 1112

LINK

Summary of Switches

SWITCH ACTION

/DSALLOCATE Load data at the high end of the Data Segment.
This is required for Pascal and FORTRAN pro-
grams.

/HIGH Place the run file as high as possible in memory.
Do not use this with Pascal or FORTRAN Pro-
grams.

/LINENUMBERS Include line numbers in the listfile.

/MAP List all global symbols with definitions.

/PAUSE Halt the linker session and wait for the RETURN

key.

/STACK:<number> Set afixed stack size in the run file.

Command Characters

LINK provides three command characters.

+

Use the plus sign (+) to separate entries and to extend the cur-
rent physical line following the Object Modules and Libraries
prompts. (A blank space may be used to separate object
modules.) To enter a large number of responses (each
which may also be very long), enter a plus sign/
RETURN at the end of the physical line (to extend the logical
line). If the plus sign/ RETURN is the last entry following these
two prompts, LINK prompts you for more module names. When
the Object Modules or Libraries prompt appears again, con-
tinue to enter responses. When all the modules to be linked
have been listed, be sure the response line ends with a module
name and a RETURN and not a plus sign/ RETURN.

Page 11.13

CTRL-C

LINK

Example:

Object Modules [.0BJ]: FUN TEXT TABLE CARE+ RETURN
Object Modules [.0BJ]: FOO+FLIPFLOP+JUNQUE+ RETURN
Object Modules [.0BJ]: CORSAIR RETURN

Use a single semicolon (;) followed immediately by a RETURN
at any time after the first prompt (from run file on) to select de-
fault responses to the remaining prompts. This feature saves
time and overrides the need to enter a series of RETURNS.

NOTE: Once the semicolon has been entered, you can no
longer respond to any of the prompts for that link session.
Therefore, do not use the semicolon to skip over some prompts.
For this, use a RETURN.

Example:

Object Modules [.0BJ]: FUN TEXT TABLE CARE RETURN
RUN Module [FUN.EXE]: ; RETURN

The remaining prompts do not appear, and LINK uses the de-
fault values (including NUL.MAP for the list file).

Use CTRL-C at any time to abort the link session. If you enter
an erroneous response, such as the wrong filename or an in-
correctly spelled filename, you must press CTRL-C to exit
LINK. Then reinvoke LINK and start over. If the error has been
typed but not entered, you may delete the erroneous charac-
ters, but for that line only.

Page 11.14

LINK

METHOD 2: LINK <filenames>[</x>]

Enter:
LINK <object-list>,<runfile>,<listfile>,<lib-list>[</x>...]

The entries following LINK are responses to the command prompts. The
entry fields for the different prompts must be separated by commas.

Where: <object-list> is a list of object modules, separated by plus signs;
<runfile> is the name of the file to receive the executable output; <listfile>
is the name of the file to receive the listing; <lib-list> is a list of library mod-
ules to be searched; and </x> are optional switches, which may be placed
following any of the response entries (just before any of the commas or after
the <lib-list>, as shown).

To select the default for a field, simply enter a second comma without
spacesin between (see the example below).

Example:

LINKFUN+TEXT + TABLE + CARE /P /M, , FUNLIST, COBLIB. LIB

This example causes LINK to be loaded, and then causes the object mod-
ules FUN.OBJ, TEXT.OBJ,TABLE.OBJ, and CARE.OBJ to be loaded. LINK
then pauses (caused by the /P switch). When you press any key, LINK links
the object modules, produces a global symbol map (the /M switch), defaults
to FUN.EXE run file, creates a list file named FUNLIST.MAP, and searches
the library file COBLIB.LIB.

Page 11.15

LINK

METHOD 3: LINK @<filespec>

Enter:

LINK @<filespec>

Where: <filespec> is the name of a response file. A response file contains
answers to the LINK prompts (shown under Method 1 for invoking), and may
also contain any of the switches. Method 3 permits you to conduct the LINK
session without interactive (direct) user responses to the LINK prompts.

NOTE: Before using Method 3 to invoke LINK, you must first create the re-
sponse file.

A response file has text lines, one for each prompt. Responses must appear
in the same order as the command prompts appear.

Switches and Command Characters in the response file are used the same
way as they are used for responses entered on the terminal keyboard.

When the LINK session begins, each prompt displays, in turn with the re-
sponses from the response file. If the response file does not contain answers
for all the prompts, either in the form of filenames or the semicolon Com-
mand Character or RETURNS, LINK will, after displaying the prompt which
does not have a response, wait for you to enter a legai response. When a
legal response has been entered, LINK continues the link session.

Example:

FUN TEXT TABLE CARE
/PAUSE /MAP

FUNLIST

COBLIB. LIB

Page 11.16

LINK

This response file causes LINK to load the four Object modules. LINK
pauses before creating and producing a public symbol map to permit you
to swap disks (see this discussion under /PAUSE in the section on
“Switches”, Page 11.19 before using this feature). When you press
RETURN the output files are named FUN.EXE and FUNLST, and MAP.
LINK searches the library file COBLIB. LIB. LINK uses the default settings
forthe flags.

Command Prompts

You can command LINK by entering responses to four text prompts. When
you have entered a response to the current prompt, the next appears. When
the last prompt has been answered, LINK begins linking automatically with-
out further command. When the link session is finished, LINK exits to the
operating system. When the operating system prompt is displayed, LINK
has finished successfully. If the link session is unsuccessful, LINK returns
the appropriate error message.

LINK prompts you for the names of object, run, list files and libraries. The
prompts are listed in their order of appearance. For prompts which can de-
fault to preset responses, the default response is shown in square brackets
([] following the prompt. The Object Modules: prompt is followed by only
afilename extension default response because it has no preset filename re-
sponse and requires a filename from you.

Object Modules [.0BJ]: Enter a list of the object modules to be linked. LINK as-
sumes by default that the filename extension is .OBJ. If an object module
has any other filename extension, the extension must be given here. Other-
wise, the extension may be omitted.

Modules must be separated by plus signs (+).
Remember that LINK loads Segments into Classes in the order encountered

(see “Definitions” on Page 11.3). Use this information for setting the order
in which the object modules are entered.

p—

Page 11.17

LINK

RunFile [First-Object-filename.EXE]: The filename entered is created to store
the run (executable) file that results from the link session. All run files receive
the filename extension .EXE, even if you specify an extension (your
specified extension is ignored).

If no response is entered to the run file prompt, LINK uses the first filename
entered in response to the Object Modules prompt as the RUN filename.

Example:
Run File [FUN.EXE]: B:PAYROLL/P

This response directs LINK to create the run file PAYROLL.EXE on drive
B:. Also, LINK pauses, which allows you to insert a new disk to receive the
run file.

ListFile [NUL. MAP] : The list file contains an entry for each segment in the input
(object) modules. Each entry also shows the offset (addressing) in the run
file.

The default response is the no list filename with the default filename exten-
sion .MAP.

Libraries [.LIB]: The valid responses are one to eight library filenames or
simply a RETURN. (A RETURN only means no library search.) Library files
must have been created by a library utility. LINK assumes by default that
the filename extensionis .LIB for library files.

Library filenames must be separated by blank spaces or plus signs (+).
LINK searches the library files in the order listed to resolve external refer-

ences. When it finds the module that defines the external symbol, LINK pro-
cesses the module as another object module.

Page 11.18

LINK

If LINK cannot find a library file on the disks in the disk drives, it returns the
message:

Cannot find library <library-name>
Enter new drive letter:

Simply press the letter for the drive designation (for example B).

LINK does not search within each library file sequentially. LINK uses a
method called dictionary indexed library search. This means that LINK finds
definitions for external references by index access rather than by searching
from the beginning of the file to the end, for each reference. This indexed
search reduces the link time for any sessions involving substantial library
searches.

Switches

The six switches control alternate linker functions. Switches must be en-
tered at the end of a prompt response regardless of which method is used
to invoke LINK. Switches may be grouped at the end of any one of the re-
sponses, or may be scattered at the end of several. If more than one switch
is entered at the end of one response, each switch must be preceded by
the slash mark (/).

All switches may be abbreviated, from a single letter through the whole
switch name. The only restriction is that an abbreviation must be a sequen-
tial sub-string from the first letter through the last entered; no gaps or trans-
positions are allowed. For example:

Legal lllegal
/D /DSL
/DS /DAL
/DSA /DLC

/DSALLOCA /DSALLOCT

A\

Vo
/

Page 11.19

LINK

/DSALLOCATE Use of the /DSALLOCATE switch directs LINK to load all
data (DGroup) at the high end of the Data Segment. Otherwise, LINK loads
all data at the low end of the Data Segment. At runtime, the DS pointer is
set to the lowest possible address and allows the entire DS segment to be
used. Use of the /DSALLOCATE switch in combination with the default load
low (that is, the /HIGH switch is not used), permits your application to allo-
cate dynamically any available memory below the area specifically allocated
within DGroup, yet to remain addressable by the same DS pointer. This dy-
namic allocation is needed for Pascal and FORTRAN programs.

NOTE: Your application program may dynamically allocate up to 64K bytes
(orthe actual amount available) less the amount allocated within DGroup.

IGH Use of the /HIGH switch causes LINK to place the runimage as high
as possible in memory. Otherwise, LINK places the run file as low as possi-
ble.

NOTE: Do not use the /HIGH switch with Pascal or FORTRAN programs.

/LINENUMBERS Use of the /LINENUMBERS switch directs LINK to in-
clude in the list file the line numbers and addresses of the source statements
in the input modules. Otherwise, line numbers are not included in the list file.

NOTE: Not all compilers produce object modules that contain line number
information. In these cases, of course, LINK cannot include line numbers.

/MAP /MAP directs LINK to list all public (global) symbols defined in the
input modules. If /MAP is not given, MS/LINK lists only errors (which in-
cludes undefined globals).

The symbols are listed alphabetically. For each symbol, LINK lists its value
and its segment:offset location in the run file. The symbols are listed at the
end of the listfile.

Page 11.20

/PAUSE The /PAUSE switch causes LINK to pause in the link session)
when the switch is encountered. Normally, LINK performs the linking ses--
sion without stop from beginning to end. This allows you to swap the disks:
before the LINK outputs the run (.EXE) file.

When LINK encounters the /PAUSE switch, itdisplays the message:

About to generate .EXE file
Change disks <hit ENTER>

LINK resumes processing when you press ENTER or RETURN.

NOTE: Do not swap the disk which will receive the list file, or the disk used
forthe VM. TMP file, if created.

/ISTACK:<number> Number represents any positive numeric value (in
hexadecimal radix) up to 65536 bytes. If the /STACK switch is not used for
alink session, LINK calculates the necessary stack size automatically.

if you enter avalue from 1to 511, LINK uses 512.

All compilers and assemblers should provide information in the object mod-
ules that allow the linker to compute the required stack size.

At least one object (input) module must contain a stack allocation statement.
If not, LINK returns a WARNING: NO STACK STATEMENT error message.

Page 12.1

LIB

Introductionto LIB

FEATURES AND BENEFITS OF LIB
Brief

LIB creates an indexed master file of up to 500 .OBJ files produced by the
MACRO-86 assembler. Directing LINK to search a library greatly speeds
program development. Once a library is built, you may create a complex pro-
gram by writing and assembling a single control module based upon calls
to external routines. Specify the control module as the .OBJ file to be linked
and the library name as the .LIB file to be searched. All required modules
will be extracted and linked to your program.

Details

LIB creates and modifies library files that are used with Microsoft’s LINK Util-
ity. LIB can add object files to a library, delete modules from a library, and
place the extracted modules into separate object files.

LIB provides a means of creating either general or special libraries for a vari-
ety of programs or for specific programs only. With LIB you can create a li-
brary for a language compiler, or you can create a library for one program
only, which would permit very fast linking and possibly more efficient execu-
tion.

You can modify individual modules within a library by extracting the mod-
ules, making changes, then adding the modules to the library again. You can
also replace an existing module with a different module or with a new version
of an existing module.

The command scanner in LIB is the same as the one used in Microsoft's
LINK, MS-PASCAL, MS-FORTRAN, and other 16-bit Microsoft products. If
you have used any of these products, using LIB is familiar to you. Command
syntax is straightforward, and LIB prompts you for any of the commands it
needs that you have not supplied.

Page 12.2

OVERVIEW OF LIB OPERATION

Brief

LIB provides five basic functions:

Create alibrary (.LIB)file.

Add amodule.

Delete amodule.

Replace a module with a revised version.
Copy amodule to a separate .OBJ file.

AN

You may also select an optional cross reference of all PUBLIC symbols.

Details

LIB performs two basic actions: it deletes modules from a library file, and
it changes object files into modules and appends them to a library file. These
two actions underlie five library manager functions:

1.

Delete a module.

Extract amodule and place itin a separate object file.
Append an object file as a module of alibrary.
Replace a module in the library file with a new module.

Create alibrary file.

Page 12.3

LIB

During each library session, LIB first deletes or extracts modules, then ap-
pends new ones. In a single operation, LIB reads each module into memory,
checks it for consistency, and writes it back to the file. If you delete a module,
LIB reads in that module but does not write it back to the file. When LIB writes
back the next module to be retained, it places the module at the end of the
last module written. This procedure effectively “closes up” the disk space
to keep the library file from growing larger than necessary. When LIB has
read through the whole library file, it appends any new modules to the end
of the file. Finally, LIB creates the index, which LINK uses to find modules
and symbols in the library file, and outputs a cross reference listing of the
PUBLIC symbols in the library, if you request such a listing. (Building the
library index may take some extra time — up to 20 seconds in some cases.)

Forexample:
LIBPASCAL _HEAP-HEAP;

first deletes the library module HEAP from the library file, then adds the file
HEAP.OBJ as the module in the library. This order of execution prevents
confusion in the library file. Note that the replace function is simply the delete
and append functions in succession. Also, note that you can specify delete,
append, or extract functions in any order; the order is insignificant to the LIB
command scanner.

Consistency

check only

Delete
Module C;
Module D
written to
space of
Module C

E .0BJ

Append
Object file
E.OBJ as
Module E
at end of
Library file

(+)

new

Ll E
LI I T
(=)
LIB !III IIIl C/D § <D
S py
opopoRa

N’

Page 12.5

Extract
Module E;
place in a
separate
Object file;
return to
library

£ .OBJ

(%)

LIB

()

Consistency
check, then
output a
reference
listing of
PUBLIC
symbols

LiB

L) B [[

CROSSLST

Page 12.6

LIB

Running LIB

Brief

Invoke LIB by entering LIB after the operating system prompt. LIB responds
with a series of three queries asking the name of the library file to be manipu-
lated, the operation(s) to be performed, and the name for an optional listing
file. Syntactic details of the responses are covered in the next brief.

You must enter a library filename. LIB expects it to have an extension of .LIB.
Any other extension must be entered. If the file does not exist, you are given
the option to create it. The default for the operations query is to perform no
operations. The default for the listing query is not to produce a listing file.
Select the default for a query by entering a carriage return. You may enter
a semicolon any time after the filename to select the default for all of the re-
maining queries.

If the desired operations do not fit on one line, end the line with an amper-
sand. An additional “operations” query will be provided.

You may override the query process by entering all the responses after the
LIB entry. There is no delimiter between the library filename and the opera-
tions response. A comma separates the operations response from the listing
filename. Alternately, a batch response file may be created to eliminate user
interaction. Control-C aborts LIB at any time.

Details

Running LIB requires two types of commands: acommand to invoke LIB and
answer to command prompts. Usually you enter all the commands to LIB
on the terminal keyboard. As an option, answers to the command prompts
may be contained in a response file. Some Command Characters exist.
Some are used as a required part of LIB commands. Others assist you while
entering LIB commands.

P

Page 12.7

INVOKING LIB

LIB may be invoked three ways. By the first method, you enter the com-
mands as answers to individual prompts. By the second method, you enter
all commands on the line used to invoke LIB. By the third method, you must
firstcreate a response file that contains all the necessary commands.

Method 1 LIB
Method 2 LIB <library><operations>,<list>
Method 3 LIB @<filespec>

Summary of Methods to Invoke LIB

Page 12.8

LIB

Method 1:LIB

Enter:

LiB

LIB loads into memory. Then, LIB returns a series of three text prompts that
appear one at a time. You answer the prompts as commands to LIB to per-

form specific tasks.

The Command Prompts and Command Characters are summarized here.
The Command Prompts and Command Characters are described fully on

Pages 12.15and 12.17 respectively.

PROMPT

RESPONSES

Library file:

List filename of library to be manipulated (defauit:
filename extension .LIB).

Operations:

List command character(s) followed by module
name(s) or object filename(s) (default action: no
changes — default object filename extension:
.0BJ).

Listfile:

List filename for a cross-reference listing file (de-
fault: NUL; no file).

Summary of Command Prompts

Page 12.9

KEY | ACTION

+ Append an object file as the last module.

- Delete a module from the library.

* Extract a module and place in an objectfile.

; Use default responses to remaining prompts.

& Extend current physical line; repeat command prompt.

CTRL-C| Abortlibrary session.

Summary of Command Characters

Page 12.10

LIB

Method 2: LIB <library><operations>,<list>
Brief

There are three possible responses to the operations query:

Enter a plus (+) followed by the name of an accessible object file to enter
it into the library. A default extension of .OBJ is expected. Any other exten-
sion must be specified. You may include a drive specifier. LIB strips both
the driver specifier and the extension, leaving a module name equal to the
basic filename.

Enter aminus (—) followed by the name of a library module to delete it.

Enter an asterisk (*) followed by the name of a library module to copy it to
anew .OBJfile. You may not override the .OBJ extension or specify an alter-
nate drive.

Operations responses may be chained without delimiters. A replacement
operation is equal to a deletion plus an entry. Deletions are always per-
formed before entries, regardless of their sequence in the command line.
This simplifies replacement operations by allowing use of the same module
name. LIB makes all additions to the end of the library and compacts the
file to fill space left by deletions. Lastly, the module index is generated. The
operating system prompt will appear when all operations are complete.

Details

Enter:
LIB <library><operations>,<list>

The entries following LIB are responses to the command prompts. The li-
brary and operations fields and all operations entries must be separated by
one of the command characters, plus, minus, and asterisk (+, —, *). Ifa
cross-reference listing is wanted, the name of the file must be separated
from the last operations entry by a comma.

P

Page 12.11

LIB

Library is the name of a library file. LIB assumes that the filename extension
is .OBJ, which you may override by specifying a different extension. If the
filename given for the library field does not exist, LIB prompts you:

Library file does not exist. Create?

Enter Yes (or any response beginning with “Y”) to create a new library file.
Enter No (or any other response not beginning with Y) to abort the library
session.

Operations is deleting a module, appending an object file as a module, or
extracting a module as an object file from the library file. Use the three com-
mand characters, plus (+), minus (—), and asterisk (*) to direct LIB what
to do with each module or object file.

Listing is the name of the file you want to receive the cross reference listing
of PUBLIC symbols in the modules in the library. The list is compiled after
allmodule manipulation has taken place.

To select the default for remaining field(s), you may enter the semicolon
command character.

If you enter a library filename followed immediately by a semicolon, LIB
reads through the library file and performs a consistency check. No changes
are made to the modules in the library file.

Page 12.12

If you enter a library filename followed immediately by a comma and a List
filename, LIB performs its consistency check of the library file, then pro-
duces the cross-reference listing file.

Example:

LIBPASCAL-HEAP+HEAP;
This example causes LIB to delete the module HEAP from the library file
PASCAL.LIB, then append the object file HEAP.OBJ as the last module of
PASCAL.LIB (the module is then named HEAP).
If you have many operations to perform during a library session, use the am-
persand (&) command character to extend the line so that you can enter ad-
ditional object filenames and module names. Be sure to always include one
of the command characters for operations (+, —, *) before the name of
each module or object filename.
Example:

LIBPASCAL; RETURN

causes LIB to perform a consistency check of the library file PASCAL.LIB.
No other action is performed.

Example:

LIB PASCAL,PASCROSS.PUB RETURN

causes LIB to perform a consistency check of the library file PASCAL.LIB,
then output a cross-reference listing file named PASCROSS.PUB.

T

Page 12.13

LIB

Method 3: LIB @<filespec>
Brief

Enter:

LIB @<filespec>

Filespec is the name of a response file. A response file contains answers
to the LIB prompts (summarized under Method 1 for invoking, and described
fully on Page 12.8. Method 3 permits you to conduct the LIB session without
interactive (direct) user responses to the LIB prompts.

NOTE: Before using Method 3 to invoke LIB, you must first create the re-
sponse file.

A response file has text lines, one for each prompt. Responses must appear
inthe same order as the command prompts appear.

Use Command Characters in the response file the same way as they are
used for responses entered on the terminal keyboard.

When the library session begins, each prompt displays in turn with the re-
sponses from the response file. If the response file does not contain answers
for all the prompts, LIB uses the default responses (no changes to the mod-
ules currently in the library file for Operation, and no cross-reference listing
file created).

If you enter a library filename followed immediately by a semicolon, LIB
reads through the library file and performs a consistency check. No changes
are made to the modules in the library file.

If you enter a library filename followed by a carriage return, then a comma
and a list flename, LIB performs its consistency check of the library file, then
produces the cross-reference listing file.

Page 12.14

Example:

PASCAL RETURN
+ CURSOR + HEAP-HEAP*FOIBLES RETURN
CROSSLST RETURN

This response file causes LIB to delete the module HEAP from the
PASCAL LIB library file, extract the module FOIBLES and place in an object
file named FOIBLES.OBJ, then append the object files CURSOR.OBJ and
HEAP.OBJ as the last two modules in the library. Then, LIB creates a cross-
reference file named CROSSLST.

Page 12.15

LIB

Details

Command Prompts

LIB is commanded by entering responses to three text prompts. When you
have entered your response to the current prompt, the next prompt appears.
When the last prompt has been answered, LIB performs its library manage-
ment functions without further command. When the library session is
finished, LIB exits to the operating system. When the operating system
prompt is displayed, LIB has finished the library session successfully. If the
library session is unsuccessful, LIB returns the appropriate error message.

LIB prompts you for the name of the library file, the operation(s) you want
to perform, and the name you want to give to a cross-reference listing file,
if any.

Library file: Enter the name of the library file that you want to manipulate.
LIB assumes that the filename extension is .LIB. You can override this as-
sumption by giving a filename extension when you enter the library filename.
Because LIB can manage only one library file at a time, only one filename
is allowed in response to this prompt. Additional responses, except the
semicolon command character, are ignored.

If you enter a library filename and follow it immediately with a semicolon
command character, LIB performs a consistency check only, then returns
to the operating system. Any errors in the file are reported.

Ifthe filename you enter does not exist, LIB returns the prompt:

Library file does not exist. Create?
You must enter either Yes or No, in either upper or lower (or mixed) case.
Actually, LIB checks the response for the letter Y as the first character. If

any other character is entered first, LIB terminates and returns to the operat-
ing system.

Page 12.16

LIB

Operation: Enter one of the three command characters for manipulating
modules (+, —, *), followed immediately (no space) by the module name
or the object filename. Plus sign appends an object file as the last module
in the library file (see further discussion under the description of plus sign
below). Minus sign deletes a module from the library file. Asterisk extracts
a module from the library and places it in a separate object file with the
filename taken from the module name and a filename extension .OBJ.

When you have a large number of modules to manipulate (more than you
can type on one line), enter an ampersand (&) as the last character on the
line. LIB repeats the Operation prompt, which permits you to enter additional
module names and object filenames.

LIB allows you to enter operations on modules and object files in any order
you want.

More information about order of execution and what LIB does with each
module is given in the descriptions of each Command Character.

List file: If you want a cross-reference list of the PUBLIC symbols in the
modules in the library file after your manipulations, enter a filename in which
you want LIB to place the cross-reference listing. If you do not enter a
filename, no cross-reference listing is generated (a NUL file).

The response to the list file prompt is a file specification. Therefore, you can
specify, along with the filename, a drive (or device) designation and a
filename extension. The list file is not given a default filename extension. If
you want the file to have a filename extension, you must specify it when en-
tering the filename.

The cross-reference listing file contains two lists. The first list is an alphabeti-
cal listing of all PUBLIC symbols. Each symbol name is followed by the
name of its module. The second list is an alphabetical list of the modules
in the library. Under each module name is an alphabetical listing of the
PUBLIC symbols in that module.

Page 12.17

Command Characters

LIB provides six command characters: three of the command characters are
required in responses to the Operation prompt; the other three command
characters provide you with additional helpful commandsto LIB.

+ The plus sign followed by an object flename appends the ob-
ject file as the last module in the library named in response to
the library file prompt. When LIB sees the plus sign, it assumes
that the filename extension is .OBJ. You may override this as-
sumption by specifying a different filename extention.

LIB strips the drive designation and the extension from the ob-
ject file specification, leaving only the filename. For example,
if the object file to be appended as a module to alibrary is:

B: CURSOR. 0BJ
aresponse to the Operation prompt of:
+B: CURSOR. OBJ

causes LIB to strip off the B: and the .OBJ, leaving only
CURSOR, which becomes a module named CURSOR in the
library.

NOTE: The distinction between an object file and a module (or
object module) is that the file possesses a drive designation
(even if it is default drive) and a filename extension. Object
modules possess neither of these.

— The minus sign followed by a module name deletes that module
from the library file. LIB then “closes up” the file space left empty
by the deletion. This cleanup action keeps the library file from
growing larger than necessary with empty space. Remember
that new modules, even replacement modules, are added to
the end of the file, not stuffed into space vacated by deleting
modules.

Page 12.18

LIB

The asterisk followed by a module name extracts that module
from the library file and places it into a separate object file. The
module still exists in the library (extract means, essentially,
“copy the module to a separate object file”). The module name
is used as the filename. LIB adds the default drive designation
and the filename extension .OBJ. For example, if the module
tobe extracted is:

CURSOR

and the current default disk drive is A, a response to the Opera-
tion prompt of:

*CURSOR

causes LIB to extract the module named CURSOR from the li-
brary file and to set it up as an object file with the file specifica-
tion of:

A:CURSOR. 0BJ

(The drive designation and filename extension cannot be over-
ridden. You can, however, rename the file, giving a new
filename extension, and/or copy the file to a new disk drive, giv-
ing a new filename and/or filename extension.)

Use a single semicolon (;) followed immediately by the
RETURN key at any time after responding to the first prompt
(fromlibrary file on) to select default responses to the remaining
prompts. This feature saves time and overrides the need to an-
swer additional prompts.

NOTE: Once the semicolon has been entered, you can no
longer respond to any of the prompts for that library session.
Therefore, do not use the semicolon to skip over some prompts.
For this, hitthe RETURN key.

Example:

Library File: FUN RETURN
Operations: +CURSOR; RETURN

Page 12.19

LIB

CTRL-C

The remaining prompt does not appear, and LIB uses
the default value (no cross-reference file).

Use the ampersand to extend the current physical line.
This command character is needed only for the Opera-
tion prompt. LIB can perform many functions during a
single library session. The number of modules you can
append is limited only to disk space. The number of
modules you can replace or extract is also limited only
by disk space.

The number of modules you can delete is limited only
by the number of modules in the library file. However,
the line length for a response to any prompt is limited
to the line length of your system. For a large number of
responses to the Operation prompt, place an amper-
sand at the end of a line. LIB displays the Operation
prompt again; then you should enter more responses.
You may use the ampersand character as many times

as you need. For example:
i}

Library File: FUN RETURN
Operations: +CURSOR-HEAP +HEAP*FOIBLES&
Operations: *INIT+ASSUME +RIDE; RETURN

LIB deletes the module HEAP, extracts the modules
FOIBLES and INIT (creating two files, FOIBLES.OBJ
and INIT.OBJ), then appends the object files CURSOR,
HEAP, ASSUME, and RIDE. Note, however, that LIB al-
lows you to enter your Operation responses in any
order.

Use CTRL-C at any time to abort the library session. If
you enter an erroneous response, such as the wrong
filename or module name, or an incorrectly spelled
filename or module name, you must press CTRL-C to
exit LIB, then reinvoke LIB and start over. If you have
typed the error but have not entered it, you may delete
the erroneous characters, but for that line only.

Page 12.20

Page 13.1

CREF

Introductionto CREF

FEATURES AND BENEFITS

The CREF Cross-Reference Facility can aid you in debugging your assem--
bly language programs. CREF produces an alphabetical listing of all the
symbols in a special file produced by your assembler. With this listing, you
can quickly locate all occurrences of any symbol in your source program by
line number.

The CREF produced listing is meant to be used with the symbol table pro-
duced by your assembler.

The symbol table listing shows the value of each symbol, and its type and
length, and its value. This information is needed to correct erroneous symbol
definitions or uses.

The cross-reference listing produced by CREF provides you with the loca-
tions, speeding your search and allowing for faster debugging.

OVERVIEW OF CREF OPERATION

CREF produces a file with cross-references for symbolic names in your pro-
gram.

First, you must create a cross-reference file with the assembler. Then,
CREF takes this cross-reference file, which has the filename extension
.CRF, and turns it into an alphabetical listing of the symbols in the file. The
cross-reference listing file is given the default filename extension .REF.

Beside each symbol in the listing, CREF lists the line numbers in the source
program where the symbol occurs in ascending sequence. The line number
where the symbol is defined is indicated by a pound sign (#).

Page 13.2

source
LASM

Assembler

listing I CREF
.CRF
listing
.REF

FOO 20 64 1234 145
GAD 21 454 49 120

Page 13.3

Running CREF

Running CREF requires two types of commands: a command to invoke
CREF, and answers to command prompts. You enter all the commands to
CREF on the terminal keyboard. Some command characters exist to assist
you while entering CREF commands.

Before you can use CREF to create the cross-reference listing, you must
first have created a cross-reference file using your assembler. This step is
reviewed on this page.

CREATING A CROSS-REFERENCEFILE
A cross-reference file is created during an assembly session.

To create a cross-reference file, answer the fourth assembler command
prompt with the name of the file you want to receive the cross-reference file.

The fourth assembler promptis:

Crossreference [NUL. CRF]:

If you do not enter a filename in response to this prompt, or if you in any
other way use the default response to this prompt, the assembler does not
create a cross-reference file. Therefore, you must enter a filename. You may
also specify which drive or device you want to receive the file and what
filename extension you want the file to have, if different from .CRF. If you
change the filename extension from .CRF to anything else, you must re-
member to specify the filename extension when naming the file in response
tothe first CREF prompt (see Page 13.4).

When you have given a filename in response to the fourth assembler
prompt, the cross-referencefile is generated during the assembly session.

You are now ready to convert the cross-reference file produced by the as-
sembler into a cross-reference listing by using CREF.

Page 13.4

CREF

INVOKING CREF

CREF may be invoked two ways. By the first method, you enter the com-
mands as answers to individual prompts. By the second method, you enter
allcommands on the line used to invoke CREF.

Method 1 CREF

Method 2 CREF <crffile>,<listing>

Summary of Methods to Invoke CREF

Method 1: CREF

Enter:
CREF

CREF loads into memory. Then, CREF returns a series of two text prompts
that appear one at a time. You answer the prompts to command CREF to
convert a cross-reference file into a cross-reference listing.

Command Prompts

CREF filename [.CRF]: Enter the name of the cross-reference file you want
CREF to convert into a cross-reference listing. The name of the file is the
name you gave your assembler when you directed it to produce the cross-
referencefile.

CREF assumes that the filename extension is .CRF. If you do not specify
a filename extension when you enter the cross-reference filename, CREF
looks for a file with the name you specify and the filename extension .CRF.
If your cross-reference file has a different extension, specify the extension
when entering the filename.

Page 13.5

See “Format of CREF Compatible Files”, on Page 13.11 for a description
of what CREF expects to see in the cross-reference file. You need this infor-
mation only if your cross-reference file was not produced by a Microsoft as-
sembler.

List filename [crffile. REF]: Enter the name you want the cross-reference list-
ing file to have. CREF automatically gives the cross-reference listing the
filename extension .REF.

If you want your cross-reference listing to have the same filename as the
cross-reference file but with the filename extension .REF, simply press the
RETURN key when the List filename prompt appears. If you want your
cross-reference listing file to be named anything else and/or to have any
other filename extension, you must enter a response following the List
filename prompt.

If you want the listing file placed on a drive or device other than the default
drive, specify the drive or device when entering your response to the Listing
prompt.

Special Command Characters

Use a single semicolon (;) followed immediately by the
RETURN key at any time after responding to the cross-refer-
ence prompt, to select the default response to the Listing
prompt. This feature saves time and overrides the need to an-
swer the Listing prompt.

If you use the semicolon, CREF gives the listing file the
filename of the cross-reference file and the default filename ex-
tension .REF.

Example:

Cref filename [.CRF]: FUN;

CREF processes the cross-reference file named FUN.CRF and
outputs a listing file named FUN.REF.

Page 13.6

CTRL-C Use CTRL-C atany time to abort the CREF session. If you enter
an erroneous response, the wrong filename, or an incorrectly
spelled filename, you must press CTRL-C to exit CREF, then
reinvoke CREF and start over. If the error has been typed but
not entered, you may delete the erroneous characters, but for
thatline only.

Method2: CREF <crffile>,<listing>
Enter:
CREF <crffile>,<listing>

CREF loads into memory, then immediately proceeds to convert your cross-
reference file into a cross-reference listing.

The entries following CREF are responses to the command prompts. The
crffile and listing fields must be separated by acomma.

Crffile is the name of a cross-reference file produced by your assembler,
CREF assumes that the filename extension is .CRF, which you may over-
ride by specifying a different extension. If the file named for the crffile does
not exist, CREF displays the message:

Fatal I/0 Error: 110
in: <crffile>.CRF

Control then returns to your operating system.

Listing is the name of the file you want to receive the cross-reference listing
of symbols in your program.

To select the default filename and extension for the listing file, enter a
semicolon after you enter the crffile name.

~

Page 13.7

Example:

CREF FUN; RETURN

This example causes CREF to process the cross-reference file FUN.CRF
and to produce alisting file named FUN.REF.

To give the listing file a different name, extension, or destination, simply
specify these differences when entering the command line.

CREF FUN,B:WORK.ARG
This example causes CREF to process the cross-reference file named

FUN.CRF and to produce a listing file named WORK.ARG, which is placed
onthediskindrive B:.

Format of Cross-Reference Listings

The cross-reference listing is an alphabetical list of all the symbols in your
program.

Each page is headed with the title of the program or program module.
Then comes the list of symbols. Following each symbol name is a list of the
line numbers where the symbol occurs in your program. The line number

for the definition has a pound sign (#) appended toit.

Onthe next page is a cross-reference listing as an example.

Page 13.8

ENTX PASCAL entry for initializing programs <«comes from TITLE directive

Symbol Cross Reference (# 1s definition) Cref-1
AAXQQ 3¢ 38

BEGHQQ 83 84# 154 176
BEGOQQ 33 162

BEGXQQ 11 126# 223
CESX@Q 9 99# 129
CLNEQQ 67 68#

CODE 37 182

CONST. 104 104 105 110
CRCXQQ 93 94# 210 215
CRDXQQ 95 96# 216
CSXEQQ 65 66# 149
CURHQQ 85 86# 155
DATA 64# 64 100 110
DGROUP 110# 111 111 111 127 153 171 172
DOSOFF 98# 198 199
posXQq 184 204# 219
ENDHQQ 87 88# 158
ENDOQQ 33# 195

ENDUQQ 31# 197

ENDXQQ 184 104#

ENDYQQ 32# 196

ENTGRQ 30# 187

ENTXCM 182# 183 221

FREXQQ 169 170# 178

Page 13.9

HDRFQQ 71 72# 151

HDRVQQ 73 T4# 152

HEAP 42 44 110

HEAPBEG. 54# 153 172

HEAPLOW. 43 171

INIQQ. 31 161

MAIN_STARTUP 109# 111 180

MEMORY 42 48# 48 49 109 110
PNUXQQ 69 70 150

ENTX PASCAL entry for initializing programs Cref -2
RECEQQ 81 82#

REFEQR 71 T8#

REPEQQ 79 80#

RESEQQ 75 T6# 148

SKTOP. 59#

SMLSTK 135 137#

STACK. 53# 53 60 110
STARTMAIN. 163 186# 200

STKBQQ 89 90# 146

STKHQQ 91 92# 160

Page 13.10

CREF

Format of CREF Compatible Files

CREF processes files other than those generated by Microsoft's assembler
as long as the file conforms to the format that CREF expects.

GENERAL DESCRIPTION OF CREF FILE PROCESSING

In essence, CREF reads a stream of bytes from the cross-reference file (or
source file), sorts them, then emits them as a printable listing file (the .REF
file). The symbols are held in memory as a sorted tree. References to the
symbols are held in a linked list.

CREF keeps track of line numbers in the source file by the number of end-of-
line characters it encounters. Therefore, every line in the source file must
contain atleast one end-of-line character (see the charton Page 13.12).

CREF attempts to place a heading at the top of every page of the listing.
The name it uses as aftitle is the text passed by your assembler from a TITLE
(or similar) directive in your source program. The title must be followed by
a title symbol (see the chart on Page 13.12). If CREF encounters more than
one title symbol in the source file, it uses the last title read for all page head-
ings. If CREF does not encounter a title symbol in the file, the title line on
the listing is left blank.

Page 13.11

CREF

FORMAT OF SOURCE FILES

CREF uses the first three bytes of the source file as format specification
data. The rest of the file is processed as a series of records that either begin
or end with a byte that identifies the type of record.

First Three Bytes

(The PAGE directive in your assembler, which takes arguments for page
length and line length, passes this information to the cross-referencefile.)

First Byte— The number of lines to be printed per page (page length ranges
from 1to 255 lines).

Second Byte — The number of characters per line (line length ranges from
1to 132 characters).

Third Byte — The Page Symbol (07) that tells CREF that the two preceding
bytes define listing page size.

If CREF does not see these first three bytes in the file, it uses default values
for size (page length is 58 lines, line length is 80 characters).

Control Symbols

The two charts on Page 13.12 show the types of records that CREF recog-
nizes and the byte values and placement it uses to recognize record types.

Records have a Control Symbol (which identifies the record type) either as
the first byte of the record or as the last byte.

Page 13.12

BYTEVALUE | CONTROL SYMBOL SUBSEQUENTBYTES
01 Reference symbol Record is areference to a symbol
name (1 to 80 characters).
02 Define symbol Record is a definition of a symbol
name (1 to 80 characters).
04 Endofline (None).
05 End of file 1AH
Records That Begin with a Control Symbol
BYTE VALUE | CONTROL SYMBOL PRECEDINGBYTES
06 Title defined Record is title text (1 to
80 characters).
07 Page length/ One byte for page length followed
line length by one byte for line length.

Records That End with a Control Symbol

For all record types, the byte value represents a control character, as fol-

lows:

01 CTRL-A
02 CTRL-B
03 CTRL-C
04 CTRL-D
05 CTRL-E
06 CTRL-F

07 CTRL-G

page 13.13

The Control Symbols are defined as follows:

Reference symbol — Record contains the name of a symbol that is refer-
enced. The name may be from 1 to 80 ASCII characters long. Additional
characters are truncated.

Define symbol— Record contains the name of a symbol that is defined. The
name may be from 1 to 80 ASCII characters long. Additional characters are
truncated.

End-of-line — Record is an end-of-line symbol character only (04H or Con-
trol-D).

End-of-file— Record is the end-of-file character (1AH).

Title defined — ASCII characters of the title to be printed at the top of each
listing page. The title may be from 1 to 80 characters long. Additional charac-
ters are truncated. The last title definition record encountered is used for the
title placed at the top of all pages of the listing. If a title definition record is
not encountered, the title line on the listing is left blank.

Page length/line length — The first byte of the record contains the number
of lines to be printed per page (range is from 1 to 255 lines). The second
byte contains the number of characters to be printed per line (range is from
1 to 132 characters). The default page length is 58 lines; the default line
lengthis 80 characters.

Page 13.14

Summary of CREF File Record Contents

Byte contents Length of record
01 symbol name 2-81 bytes

02 symbol name 2-81 bytes

04 1 byte

051A 2 bytes

title text 06 2-81 bytes

PLLLO7 3 bytes

Part4

Appendices and Index

Page A2

Page A.3

APPENDIX A

Operating System Error Messages

CHKDSK ERRORS
If an error is detected, CHKDSK returns one of the following error messages:
Allocation error for file <filename>

The named file had a data block allocated to it that did not exist (that is, a
data block number larger than the largest possible block number). CHKDSK
truncates the file short of the bad block.

Disk not initialized

No directory or file allocation table was found. If files exist on the disk, and
the disk has been physically harmed, it may still be possible to transfer files
from this disk to recover data.

Directory error-file: <filename>

No valid data blocks are allocated to the named file. CHKDSK deletes the
file.

Files cross-linked: <filename> and <filename>

The same data block is allocated to both files. No corrective action is taken.
To correct the problem, first use the COPY command to make copies of both
files; then, delete the originals. Review each file for validity and edit as nec-
essary.

File size error for file <filename>
The size of the file in a directory is different from its actual size. The size
in the directory is automatically adjusted to indicate its actual size on the
disk. (The amount of useful data may be less than the size shown because
the last data block may not be used fully.)

XXXXX bytes of disk space freed

Disk space shown as allocated was not actually allocated and has been
freed.

Page A.4

APPENDIX A

COPY ERRORS

File cannot be copied onto itself
0 File(s) copied

During a COPY command if the first filespec (source) references a file that
is on the default drive and the second filespec (destination) is not given, the
COPY will be aborted. (Copying a file to itself is not allowed.)

The Z-DOS prompt will reappear following the error message.

Content of destination lost before copy

Itis easy to enter a concatenation COPY command where one of the source
files is the same as the destination, yet this often cannot be detected. For
example, the following command is an error if ALL.LST already exists:

A: COPY *.LST ALL.LST

This is not detected, however, until it is ALL.LST’s turn to be appended. At
this point it could already have been destroyed.

COPY handles this problem like this: as each input file is found, its name
is compared with the destination. If they are the same, that one input file is

skipped, and the message “Content of destination lost before copy” is
printed. Further concatenation proceeds normally.

DATE ERROR
Ifthe parameters or separators are notlegal, Z-DOS returns the messages:

Invalid date, enter as mm-dd-yy
Enter new date:_

and waits for the user to enter a legal date.

A,

Page A.5

APPENDIX A

P
{
L W

perating System Error Messages

DEBUG ERRORS

ERROR

CODE DEFINITION
BF Bad Flag

BP

BR

DF

The user attempted to alter a flag, but the characters entered
were not one of the acceptable pairs of flag values. See the
REGISTER command for the list of acceptable flag entries.

Too many Breakpoints

The user specified more than ten breakpoints as parameters to
the G command. Reenter the Go with ten or fewer breakpoints.

Bad Register

The user entered the R command with an invalid register name.
See the REGISTER command for the list of valid register
names.

Double Flag

The user entered two values for one flag. The user may specify
aflag value only once per RF command.

If a syntax error occurs in a DEBUG command, DEBUG reprints the com-
mand line and indicates the error with an up-arrow and the word error. For

example:

>dcs:100 cs:110

Aerror (not a valid hex digit)

Any combination of upper and lower case may be used in DEBUG com-
mands. Spaces or commas are legal delimiters for parameters. A delimiter
is required only between two consecutive hexadecimal values.

Page A.6

DISKERRORS

If a disk error occurs at any time during any command or program, Z-DOS
retries the operation three times. If the operation cannot be completed suc-
cessfully, Z-DOS returns an error message in the following format:

<type> error <I/0 action> drive d
Abort, Retry, Ignore: _

In this message, type may be one of the following:

Write protect
Not ready

SEEK

DATA

SECTOR NOT FOUND
WRITE FAULT
DISK

The 1/0-action may be either of the following:

reading
writing

The drive dindicates the drive in which the error has occurred.
Z-DOS waits entry of one of the following responses:
A Abort. Terminate the program requesting the disk read or write.

| Ignore. Ignore the bad sector and pretend the error did not
occeur.

R Retry. Repeat the operation. This response is particularly use-
ful if the operator has corrected the error (such as with NOT
READY or WRITE PROTECT).

Page A.7

Usually, you will want to attempt recovery by entering responses in the
order:

R (to try again)
A (to terminate program and try a new disk)
One other error message might be related to faulty disk read or write:
FILE ALLOCATION TABLE BAD FOR DRIVE d
This message means that the copy in memory of one of the allocation tables

has pointers to nonexistent blocks. Possibly the disk was not formatted be-
fore use.

Page A.8

Page B.1

APPENDIX B

MACRO-86 Assembler Error Messages

Most of the messages output by MACRO-86 are error messages. The non-
error messages output by MACRO-86 are the banner MACRO-86 displays
when first invoked, the command prompt messages, and the end of (suc-
cessful) assembly message. These nonerror messages are classified here
as operating messages, I/O handler messages, and runtime messages.

OPERATING MESSAGES

Banner Message and Command Prompts:

The Microsoft MACRO Assembler Version 1.05,
Copyright (c) Microsoft, Inc, 1981, 82

Source filename [.ASM]:
Object filename [source.OBJ]:
Source listing [NUL.LST]:
Cross reference [NUL.CRF]:

End of Assembly Message:

Warning Severe
Errors Errors
n n (n=number of errors)

followed by the Z-DOS system prompt (the currently logged drive).

If the assembler encounters errors, error messages are output, along with
the number of warning and fatal errors, and control is returned to your disk
operating system. The message is output either to your terminal screen or
to the listing file if you command one to be created.

Error messages are divided into three categories: assembler errors, /10
handler errors, and runtime errors. In each category, messages are listed
in alphabetical order with a short explanation where necessary. At the end
of this appendix, the error messages are listed in a single numerical order
list but without explanations.

Page B.2

ASSEMBLER ERRORS

Already defined locally (Code 23)

Tried to define a symbol as EXTERNAL that had already been defined
locally.

Already had ELSE clause (Code 7)

Attempt to define an ELSE clause within an existing ELSE clause (you can-
not nest ELSE without nesting IF...ENDIF).

Already have base register (Code 46)
Trying to double base register.

Already have index register (Code 47)
Trying to double index address.

Block nesting error (Code 0)
Nested procedures, segments, structures, macros, IRC, IRP, or REPT are
not properly terminated. An example of this error is the close of an outer level
of nesting with inner level(s) still open.

Byte register is illegal (Code 58)

Use of one of the byte registers in context where it is illegal. For example,
PUSHAL.

Can't override ES segment (Code 67)

Trying to override the ES segment in an instruction where this override is
notlegal. For example, store string.

Can't reach with segment reg (Code 68)

There is no assume that makes the variable reachable.

Page B.3

Can't use EVEN on BYTE segment (Code 70)

Segment was declared to be byte segment and attempt to use EVEN was
made.

Circular chain of EQU aliases (Code 83)
An alias EQU eventually points to itself.
Constant was expected (Code 42)
Expected a constant but received something else.
CS register illegal usage (Code 59)
Attempt made to use the CS register illegally. For example, XCHG CS,AX.
Directive illegal in STRUC (Code 78)

All statements within STRUC blocks must either be comments preceded by
asemicolon (;), or one of the Define directives.

Division by 0 or overflow (Code 29)
An expression is given that results in a divide by 0.
Illegal use of register (Code 49)

Use of a register with an instruction where there is no 8086 instruction possi-
ble.

Illegal value for DUP count (Code 72)
DUP counts must be a constant thatis not 0 or negative.
Improper operand type (Code 52)

Use of an operand such that the opcode cannot be generated.

Page B.4

Improper use of segment reg (Code 61)

Specification of a segment register where this is illegal. For example, anim-
mediate move to a segment register.

Index displ. must be constant (Code 54)

Label can'thave seg. override (Code 65)
llegal use of segment override.

Left operand must have segment (Code 38)

Used something in right operand that required a segmentin the left operand.
(For example, “..”)

More values than defined with (Code 76)

Too many fields givenin REC or STRUC allocation.
Must be associated with code (Code 45)

Use of data related item where code item was expected.
Must be associated with data (Code 44)

Use of code related item where data related item was expected. For exam-
ple, MOV AX,<code-label>.

Must be AX or AL (Code 60)

Specification of some register other than AX or AL where only these are ac-
ceptable. For example, the IN instruction.

Must be index or base register (Code 48)

Instruction requires a base or index register and some other register was
specified in square brackets, [].

Page B.5

Must be declared in pass 1 (Code 13)

Assembler expecting a constant value but got something else. An example
of this might be a vector size being a forward reference.

Must be in segment block (Code 69)
Attempt to generate code when no + in a segment.
Must be record field name (Code 33)
Expecting a record field name but got something else.
Must be record or field name (Code 34)
Expecting a record name or field name and received something else.
Must be register (Code 18)

Register expected as operand but user furnished symbol — was not a regis-
ter.

Must be segment or group (Code 20)
Expecting segment or group and something else was specified.
Must be structure field name (Code 37)
Expecting a structure field name but received something else.
Must be symbol type (Code 22)
Mustbe WORD, DW, QW, BYTE, or TB but received something else.
Must be var, label or constant (Code 36)

Expecting a variable, label, or constant but received something else.

Page B.6

Must have opcode after prefix (Code 66)
Use of one of the prefix instructions without specifying any opcode after it.
Near JMP/CALL to different CS (Code 64)

Attemptto do a NEAR jump or call to a location in a different CS ASSUME.

No immediate mode (Code 56)

Immediate mode specified or an opcode that cannot accept the immediate.
For example, PUSH.

No or unreachable CS (Code 62)
Trying to jump to a label that is unreachable.

Normal type operand expected (Code 41)

Received STRUC, FIELDS, NAMES, BYTE, WORD, or DW when expecting
avariable label.

Not in conditional block (Code 8)

An ENDIF or ELSE is specified without a previous conditional assembly di-
rective active.

Not proper align/combine type (Code 25)
SEGMENT parameters are incorrect.

One operand must be const (Code 39)
Thisis anillegal use of the addition operator.

Only initialize list legal (Code 77)

Attemptto use STRUC name without angle brackets, < >.

Page B.7

Operand combination illegal (Code 63)

Specification of a two-operand instruction where the combination specified
isillegal.

Operands must be same or 1 abs (Code 40)
lllegal use of subtraction operator.
Operand must have segment (Code 43)
llegal use of SEG directive.
Operand must have size (Code 35)
Expected operand to have a size, butit did not.
Operand not in IP segment (Code 51)
Access of operand is impossible because it is not in the current IP segment.
Operand types must match (Code 31)

Assembler gets different kinds or sizes of arguments in a case where they
must match. For example, MOV.

Operand was expected (Code 27)

Assembler is expecting an operand but an operator was received.
Operator was expected (Code 28)

Assembler was expecting an operator but an operand was received.

Override is of wrong type (Code 81)

In a STRUC initialization statement, you tried to use the wrong size on over-
ride. Forexample, ‘HELLO' for DW field.

Page B.8

APPENDIX B

Override with DUP is illegal (Code 79)
In a STRUC initialization statement, you tried to use DUP in an override.
Phase error between passes (Code 6)
The program has ambiguous instruction directives such that the location of
a label in the program changed in value between pass one and pass two
of the assembler. An example of this is a forward reference coded without
a segment override where one is required. There would be an additional
byte (the code segment override) generated in pass two causing the next
label to change. You can use the /D switch to produce a listing to aid in re-
solving phase errors between passes (see “Switches” on page 11.18).
Redefinition of symbol (Code 4)
This error occured on pass two and succeeding definitions of a symbol.
Reference to mult defined (Code 26)
The instruction references something that has been multi-defined.
Register already defined (Code 2)
This occurs only if the assembler has internal logic errors.
Register can't be forward ref (Code 82)

Relative jump out of range (Code 53)

Relative jumps must be within the range —128 to +127 of the current in-
struction, and the specific jump is beyond this range.

Segment parameters are changed (Code 24)

List of arguments to SEGMENT was not identical to the first time this seg-
mentwas used.

Page B.9

Shift count is negative (Code 30)

A shift expression is generated that results in a negative shift count.
Should have been group name (Code 12)

Expecting a group name but something other than this was given.
Symbol already different kind (Code 15)

Attempt to define a symbol differently from a previous definition.
Symbol already external (Code 73)
Attempt to define a symbol as local that is already external.
Symbol has no segment (Code 21)
Trying to use a variable with SEG, and the variable has no known segment.
Symbol is multi-defined (Code 5)
This error occurs on a symbol that is later redefined.
Symbol is reserved word (Code 16)

Attempt to use an assembler reserved word illegally. (For example, to de-
clare MOV as avariable.)

Symbol not defined (Code 9)
A symbol is used that has no definition.
Symbol type usage illegal (Code 14)
lllegal use of a PUBLIC symbol.
Syntax error (Code 10)

The syntax of the statement does not match any recognizable syntax.

page B.10

Type illegal in context (Code 11)
The type specified is of an unacceptable size.
Unknown symbol type (Code 3)
Symbol statement has something in the type field thatis unrecognizable.
Usage of ? (indeterminate) bad (Code 75)
Improper use of the “?”. For example, ?+5.
Value is out of range (Code 50)
Valueis too large for expected use. For example, MOV AL,5000.

Wrong type of register (Code 19)

Directive or instruction expected one type of register, but another was

specified. Forexample, INC CS.

/O HANDLER ERRORS

These error messages are generated by the I/0O handlers. These messages

appear in a different format from the Assembler Errors:

MASM Error - error-message-text in: filename

The filename is the name of the file being handled when the error oc-

curred.

The error-message-text is the name of the file being handied when the

error ogcurred.
I
14V S

Date format (Code 114)

Device full (Code 108)

Page B.11

APPENDIX B

Device name (Code 102)
Device offline (Code 105)
File in use {Code 112)
File name (Code 107)

File not found (Code 110)
File not open (Code 113)
File system (Code 104)
Hard data {(Code 101)

Line too long (Code 115)

Lost file (Code 106)

Operation (Code 103)
Unknown device (Code 109)
Runtime Errors

These messages may be displayed as your assembled program is being
executed.

Internal Error

Usually caused by an arithmetic check. If it occurs, notify Zenith Software
Consultation.

Out of Memory

This message has no corresponding number. Either the source was too big
or too many labels are in the symbol table.

Page B.12

APPENDIX B

NUMERICAL ORDERLIST OF ERROR MESSAGES

CODE MESSAGE

0 Block nesting error

1 Extra characters on line

2 Register already defined

3 Unknown symbol type

4 Redefinition of symbol

5 +Symbol is multi-defined

6 Phase error between passes

7 Already had ELSE clause

8 Not in conditional block

9 Symbol not defined

10 Syntax error

11 Type illegal in context

12 Should have been group name
13 Must be declared in pass 1
14 Symbol type usage illegal

15 Symbol already different kind
16 Symbol is reserved word

17 Forward reference is illegal
18 Must be register

19 Wrong type of register

20 Must be segment or group

21 Symbol has no segment

22 Must be symbol type

23 Already defined locally

24 Segment parameters are changed
25 Not proper align/combine type
26 Reference to mult defined

21 Operand was expected

28 Operator was expected

29 Division by 0 or overflow

30 Shift count is negative

31 Operand types must match

32 I1legaluseof external

33 Must be record field name

34 Must be record or field name

Page B.13

APPENDIX B

CODE

MESSAGE

36
37
/3/8
39
40
41
A2
43
44
45
46
47
48
49—
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

Operand must have size

Must be var, label or constant
Must be structure field name
Left operand must have segment
One operand must be const
Operands must be same or 1 abs
Normal type operand expected
Constant was expected

Operand must have segment

Must be associated with data
Must be associated with code
Already have base register
Already have index register
Must be index or base register
Illegal use of register

Value is out of range

Operand not in IP segment
Improper operand type

Relative jump out of range
Index displ, must be constant
I1legal register value

No immediate mode

Illegal size for item

Byte register is illegal

CS register illegal usage

Must be AX or AL

Improper use of segment reg.
No or unreachable CS

Operand combination illegal
Near JMP/CALL to different CS
Label can't have seg. override
Must have opcode after prefix
Can't override ES segment
Can't reach with segment req
Must be in segment block

Can't use EVEN on BYTE seg.
Forward needs override

PREND B
CODE MESSAGE
Illegal value for DUP count

3 Symbol already external
14 DUP is too large for linker

15 Usage of ? (indeterminate) bad
() More values than defined with
17 Only initialize list legal
18 Directive illegal in STRUC
79 Override with DUP is illegal
80 Field cannot be overridden
81 Override is of wrong type
82 Register can't be forward ref
83 Circular chain of EQU aliases
101 Hard data

102 Device name

103 Operation

104 File system

105 Device offline

106 Lost file

107 File name

108 Device full

109 Unknown device

110 File not found

111 Protected file

112 File in use

113 File not open

114 Data format

115 Line too long

Page C.1

APPENDIX C

LINK Error Messages

All errors cause the link session to abort. Therefore, after the cause is found
and corrected, LINK mustbe rerun.

ATTEMPT TO ACCESS DATA OUTSIDE OF SEGMENT BOUNDS,
POSSIBLY BAD OBJECT MODULE

Probably caused by a bad object file.
BAD NUMERIC PARAMETER

The numeric value is not in digits.
CANNOT OPEN TEMPORARY FILE

LINK is unable to create the file VM. TMP because the disk directory is full.
Insert a new disk. Do not change the disk that will receive the list. MAP file.

ERROR: DUP RECORD TOO COMPLEX

The DUP record in assembly language module is too complex. Simplify the
DUP record in the assembly language program.

ERROR: FIXUP OFFSET EXCEEDS FIELD WIDTH
An assembly language instruction refers to an address with a short instruc-
tion instead of a long instruction. Edit the assembly language source and
reassemble.

INPUT FILE READ ERROR

Probably caused by a bad object file.

Page C.2

APPENDIX C

INVALID OBJECT MODULE

Object module(s) are incorrectly formed or incomplete (as when assembly
was stopped in the middle).

SYMBOL DEFINED MORE THAN ONCE
LINK found two or more modules that define a single symbol name.

PROGRAM SIZE OR NUMBER OF SEGMENTS EXCEEDS CAPACITY OF
LINKER

The total size may not exceed 348K bytes and the number of segments may
not exceed 255.

REQUESTED STACK SIZE EXCEEDS 64K

Specify a size less than 64K bytes with the /STACK switch.
SEGMENT-SIZE-EXCEEDS 64K

64K bytes is the addressing system limit.
SYMBOL TABLE CAPACITY EXCEEDED

Very many and/or very long names have been entered; exceeding approxi-
mately 25K bytes.

TOO MANY EXTERNAL SYMBOLS IN ONE MODULE
The limitis 256 external symbols per module.
T60 MANY GROUPS

The limitis 10 Groups.

Page C.3

APPENDIX C

TOO MANY LIBRARIES SPECIFIED
The limitis 8.
TOO MANY PUBLIC SYMBOLS
The limitis 1024.
TG0 MANY SEGMENTS OR CLASSES
The limitis 256 (Segments and Classes taken together).
UNRESOLVED EXTERNALS: <list>
The external symbols listed have no defining module among the modules
or library files specified.
VM READ ERROR
This is created by a disk problem; not LINK caused.
WARNING: NO STACK SEGMENT

None of the object modules specified contains a statement allocating stack
space, but you entered the /STACK switch.

WRITE ERROR IN TMP FILE
No more disk space remaining to expand VM.TMP file.
WRITE ERROR ON RUN FILE

Usually, not enough disk space for run file.

page C.4

LIB Error Messages

<symbol> is a multiply defined PUBLIC. Proceed?
Two modules define the same PUBLIC symbol. You are asked to confirm
the removal of the definition of the old symbol. A No response leaves the
library in an undetermined state.

Remove the PUBLIC declaration from one of the object modules and recom-
pile orreassemble.

Allocate error on VM. TWP
Out of space on the disk.
€annot create extract file
No room in directory for extract file.
"gannot create list file
No room in directory for list file.
| €annot nest response file
‘@filespec’ inresponse (or indirect) file.
L€annot write library file
Out of space onthe disk.
Error: An internal error has occurred.
Contact Zenith Software Consultation.
- Fatal Error: Cannot open input file <filename>
Mistyped object file name.
L Fatal Error: Module is not in the library

Trying to delete a module that is not in the library.

Page D.2

= N =
= f i
~e DIXD

i

Input file read error

Bad object module or faulty disk.

atal Error: Invalid object module/library
Bad object module and/or library.

Library Disk is full
No more room on disk.

Listing file write error

Out of space on the disk.

Fatal Error: No library file specified
No response to Library File prompt.
Read error on VM.TMP

Disk not ready for read.
Symbol table capacity exceeded

Too many symbols (about 30K characters are allowed for symbols)

Too many object modules

More than 500 object modules.
Too many public symbols

1024 public symbols maximum.

Fatal Error: Write error on library/extract file
Out of space.

Write error on VM.TMP

Out of space.

Page E.1

APPENDIX E

CREF Error Messages

All errors cause CREF to abort. Control is returned to Z-DOS.

All error messages are displayed in the format:

Fatal I/0 Error <error number>
in File: <filename>

where filename is the name of the file where the error occurs and error
number is one of the numbers in the following list of errors.
Number Error
101 Hard data error
Unrecoverable disk I/O error
101" Device name error
lllegal device specification (for example, X:FOO.CRF)
103 Internal error
Report to Zenith Software Consultation
104 Internal error
Reportto Zenith Software Consultation

105 Device offline

Disk drive door open, no printer attached, and so on.

Page E.2

Number Error
106 Internal error

Report to Zenith Software consultation

108 Disk full

110 File not found

111 Disk is write protected
112 Internal error

Report to Zenith Software Consultation
113 Internal error

Report to Zenith Software Consultation
114 Internal error

Report to Zenith Software Consultation
115 Internal error

Report to Zenith Software Consultation

Page F.1

Memory Test Utility

The MEMTST utility program has been included with your Z-DOS System
to aid you in diagnosing any problems that may arise with the RAM in your
Z-100. MEMTST runs under Z-DOS and may be invoked as a standard com-
mand, in the form:
A:MEMTST RETURN
This test utility is completely menu-driven; after initially invoking the com-
mand, you instruct it to carry out different phases of its testing by selecting
options from menus.
MEMTST consists of a master menu, and two test menus. The master menu
appears onyour screen like:
MEMTST version 1.00
Copyright (C) 1982, Zenith Data Systems
Functions Available:
S - Test System Memory

V - Test Video Memory

E - Exit Program

Select desired function <E>:

Pressing RETURN defaults to E — Exit program.

Page F.2

)
O
I

To test the system memory (memory that is allocated for the operating sys-
tem and user programs), press the S key. The System Memory Test menu
appears and will look like:

Unit contains xxxK of memory
System Memory Test
Functions Available:

A - Test all memory, 0-192K

=
i

Test first bank, 0-64K

[75]
i

Test second bank, 64-128K

3
1

Test third bank, 128-192K

=
1

Exit system memory test.
Select desired function <A>:

Here, if you press RETURN without making a selection, the default is A —
Test all available memory. You can also select the first, second, and third
banks of memory.

If you receive an error message from the A option, and that occurs some-
where within the first bank of memory, you may want to be able to test the
other banks of memory. Or, if you do not want to wait while MEMTST checks
all of memory, you may want to just check a single bank.

F (first bank) checks the memory configured from 0 to 64K; S (second bank)
checks the memory configured from 64 to 128K; and T (third bank) checks
the memory that is configured from 128 to 192K.

Page F.3

APPENDIX F

Press E to exit the System Memory Test, and the master menu will reappear.
If you select the V — Test Video Memory option from the master menu, the

Video Memory Test menu appears on your screen. This third menu appears
like:

Video Memory Test
Functions available:
<A> - Test all video RAM

 - Test blue video ram

<G> - Test green video ram
<R> - Test red video ram
<E> - Exit video memory test

Select desired function <A>:
The default here, is A — Test all video RAM. If you press RETURN without
entering a selection, MEMTST checks all available video memory. This is
the option you would most likely select if you have a black and white monitor
connected to (or built into) your Z-100.
The other three test options are:

<G> to check the green plane of memory, which starts at address
E00000;

<R> to check the red plane of video memory, which starts at address
DO0000H; and

 to check the blue plane of video memory, which starts at address
COOO0O00H.

Press E to exit the Video Memory Test, and the master menu will reappear.

Page F.4

Once a selection (other than E) has been made from either the System or
Video Memory Test menus, the Test displays a message on your monitor
screen. The test messages are shown below:

System Memory:
Testing n bank system memory . . . <Passed>/<Failed>

where n is a number showing which bank of memory is currently being
tested; and where either Passed (in regular video) or Failed (in reverse video)
will appear on your screen at the outcome of the tests on the current bank
of memory.

Video Memory:
Testing video memory X plane . . . <passed>/<failed>

where X is a letter showing which video plane of memory is currently being
tested; and where either passed (in regular video) or failed (in reverse video)
will appear on your screen at the outcome of the tests on the current video
plane of memory.

If the test fails on one bank or plane, you will receive an error message telling
you the offset address (from logical 0000H of that bank or plane) in hex of
the failure. MEMTST also states what it expected to find at that address and
what itactually found. The error message appears like:

Location of failure XXXXH
Expected data XXH Actual data XXH
Hit return to continue test, any other key to abort

Page G.1

APPENDIX G

Instructions for Single Disk Drive Users

For single disk drive users the commands are exactly the same syntax as
for two drive users. The difference lies in your perception of the "arrange-
ment” of the drives.

You must think of this system as having two disk drives: drive A and drive
B. However, instead of A and B designating physical disk drive mechanisms,
the A and B designate disks. Therefore, when you specify drive B while
operating on drive A (the promptis A:), Z-DOS prompts you to “switch drives”
by swapping disks.

The prompts are:
Place disk A in drive B:.
Hit any key when ready.
Place disk B in drive A:.
Hit any key when ready.

These procedures apply to any Z-DOS COMMAND commands (both sys-
tem and file) that can request or direct a different drive as a part of its syntax.
These commands include:

CHKDSK [d:]

COPY [</x>] <filespec> [d:][<filespec>]
DEL <filespec>

DIR [<filespec>] [</x>]
DSKCOMP [d:] [d:]

DSKCOPY [</x>] [d:] [d:]

ERASE <filespec>

FORMAT [d:][</x>...]

REN [<filespec>][<filespec>]
RENAME [<filespec>][<filespec>]
TYPE [<filespec>]

Page G.2

Also, if any of these commands are used in a batch file and call for a different
drive, the single disk drive procedures apply. Execution is halted and the ap-
propriate prompt is displayed.

Example:

The following example may serve as an itllustration for all of the commands
listed above:

A: COPY COMMAND.COM B: RETURN
Place disk B in drive A:.
Hit any Key when ready.

1 File(s) copied

Page H.1

APPENDIX H

Disk Directory Structures and FCB Definition

Disk size 5.26 5.25 5.25 8 8
Tracks perinch 48 48 96 77 77
Sides 1 2 2 1 2
Bytes per sector 512 512 512 128 1024
Reserved sectors 1 1 1 1 1
FATS 2 2 2 2 2 . A
Directory entries 64 112 144 104 192 g
Sectors per unit 1 2 4 4 1
Physical sectors 320 640 1280 2002 1232
Sectors per track 8 8 8 26 8
Tracks per side 40 40 80 77 77
FATID OFFH OFEH OFDH OFEH OFDH
FAT 1 start sector 1(01H) 1(01H) 1(01H) 4 (04H) 1 (01H)
FAT 2 start sector 2(02H) 2(02H) 2(02H) | 10(0AH) | 3(03H)
Dir start sector 3 (03H) 3(03H) 3(03H) 16 (10H) 5 (05H)
Data start sector 7(07H) | 10(0AH) | 12(0CH) | 42(2AH) | 11(0BH)
Reserved sectors (loader) FATl FAT2 Directory Data

. Zecorde | 694 ﬂz'??gntssgtm:tms 1ak/d= [= 1tz/t = |

Diwecory A 510772 18,120d = |Ch|3ed = 740|264 = 19h| 44d= 30,

¢ FAT FEuiries i |

Page H.2

APPENDIX H

FAT Structures

FATID{RES|RES|| b3 b4 b5 b6 b7 b8

The FAT (File Allocation Table) uses a 12-bit entry for each allocation unit
on the disk. These entries are packed, two for every three bytes. The con-
tents of entry number N is found by:

1. multliplying N by 1.5;

2 adding the result to the base address of the allocation table;

3. fetchingthe 16 bit word at this address;

4. if N was odd, shift the word right four bits; and

5. mask to 12 bits.
Entry number zero is used as an end-of-file trap in the DOS and as a flag
for disk structure. Entry 1 is reserved for future use. The first available alloca-
tion unit is assigned entry number two. Entries greater than OFF8H are end-

of-file marks; entries of zero are unallocated. Otherwise, the contents of a
FAT entry is the number of the next allocation unit in the file.

Three Byte Cluster

AL

Reserved Reserved X X Y X Y Y

Page H.3

Loading flips the bytes in the cluster from:

1 2 3 4 5 6
Reserved Reserved X X Y X Y Y
To: 1 i
. . 2 1 4 3
Y”is then masked X X X Y
Orfrom:
1 2 3 4 5 6
Reserved Reserved X X Y X Y Y
i))
To: N A
4 3 6 5
“X"is then masked--> X Y Y Y

Page H.4

The following code shows how to compute the contents of the FAT entry in
AX.

; RFATE--Read FAT entry

: Call with:

; DS:SI -> FAT

: BX = entry number

; Returns:

; DI = contents of FAT entry

: Uses: No registers are modified

RFATE PROC NEAR

LEA DI, [SI+BX] ; Compute addr of FAT+entry number
SHR BX,1 ; Divide entry number by 2
MOV DI, [DI+BX] ; Get word containing entry
JNC EVENE ; Jmp if entry number even
ODDE:
RCL BX, 1 ; Restore entry number
SHR DI,1 ; Shift word right by 4
SHR DI,1
SR DI,1
SR DI,1
RET ; and return
EVENE:
SHL BX,1 ; Restore entry number
AND DI, OFFFH ; Isolate lower 12 bits
RET ; and return

RFATE ENDP

Page H.5

APPENDIX H

Normal FCB

[arTei [/ Tt8] et [e2Tea3]ext[ex2|rs1] rs2] ts1] fs2] s3] fs4]

00 Ot

08 09 10 11 12 13 14 15 16 17 18 19

[a1 2]t we]st]m]s8l cr[rn|r2] 3] r]

20 21

2 23 24 ... 3

32 33 34 35 36

The Z-DOS File Control Block (FCB) is defined as follows:

byte 0
(dr)

bytes 1-8
(f1-18)

bytes 9-11
(e1-e3)

bytes 12-13
(ex1-ex2)

bytes 14-15
(rs1-rs2)

bytes 16-19
(fs1-fs4)

Drive Code. Zero specifies the default drive, 1=drive A,
2=drive B, etc.

Filename. If the file is less than eight characters, the name
must be left justified with trailing blanks.

Extension to filename. If less than three characters, must
be left justified with trailing blanks. May also be all blanks.

Current block (extent). This word (low byte first) specifies
the current block of 128 records, relative to the start of the
file, in which sequential disk reads and writes occur. If
zero, then the first block of the file is being accessed; if
one, then the second, etc. Combined with the current re-
cord field (byte 32) a particular logical record is identified.

Size of the record the user wishes to work with. This word
may be filled immediately after an OPEN of the file if the
default logical record size (128 bytes) is not desired. The
Open and Create functions set this field to 128; it is also
changed to 128 if a read or write is attempted with the field
setto zero.

File size. This is the current size, in bytes, of the file. It
may be read by user programs but must not be written by
them.

Page H.6

APPENDIX H

bytes 20-21 Date. This is normally the date of the last write to the file.

(d1-d2) Itis set by all disk write operations and creates the “today’s
date”. It is set by open to the date recorded in the disk di-
rectory for the file. User programs may modify this field
after writing to a file but before closing it to change the date
recorded in the disk directory.
The format of this 16-bit field is as follows: bits 0 — 4, day
of month; bits 5 — 8, month of year; bits 9 — 15, year minus
1980. Allzero means no date.

bytes 22-23 Time. Similar to Date, above. The format is bits 04,

(t1-t2) seconds/2; bits 5—10, minutes; bits 11—15, hours.

bytes 24-31 Reserved for Z-DOS.

(s1-s8)

byte 32 Current record. Identifies the record within the current

(cr) block of 128 records that will be accessed with a sequen-
tial read or write function. See: Current Block, bytes 12-13.

bytes 33-36 Random record. This field must only be set if the file is to

(r1-r4) be accessed with a random read or write function. If the

record size is greater than or equal to 64 bytes, only the
first 3 bytes are used, as a 24-bit number representing the
position in the file of a record. If the record size is less than
64 bytes, all 4 bytes are used as a 32-bit number of the
same purpose. This field is thus large enough to address
any byte in afile of the maximum size, 230 bytes.

Page H.7

The Extended FCB

Extended FCB:

Flzlz}lz]|z]| z]| A

07 06 05 04 03 02 01

The extended FCB is a special format used to search for files in the disk di-
rectory with special attributes. It consists of 7 bytes in front of a normal FCB,
formatted as follows:

FCB-7 Flag. FF hexis placed here to signal an extended FCB.

(F)

FCB-6to FCB-2 Zero field

()

FCB-1 Attribute byte. If bit 1=1, hidden files will be included in
(A) directory searches. If bit2 = 1, system files will be included

in directory searches.

Any reference in the description of Z-DOS function calls to an FCB, whether
opened or unopened, may use either a normal FCB or an extended FCB.
A normal FCB has the same effect as an extended FCB with the attribute
byte setto zero.

Page H.8

Page 1.3

The values returned are:

writeprotect
disknot ready
dataerror
Seekerror
Sector not found
Writefault

General diskfailure

(@ TN~ I = R N L

The registers will be set up for a BIOS disk call and the returned
code will be in the lower half of the DI register with the upper
half undefined. The user stack will look as follows from top to

bottom:
P Registers such that if an IRET is executed the DOS
CS will respond according to (AL) as follows:
FLAGS
(AL)=0 ignore the error
=1 retry the operation
(IF THIS OPTION USED STACK DS, BX,
CX AND DX MUST NOT BE MODIFIED!)
=2 abort the program
AX USERREGISTERS AT TIME OF REQUEST
BX
CX
DX
Sl
Dl
BP
DS
ES
IP The interrupt from the user to the DOS
CS
FLAGS

Currently, the only error possible when AH bit 7=1 is a bad
memory image of the file allocation table.

Page 1.4

APPENDIX |

25

26

Absolute disk read. This transfers control directly to the DOS
BIOS. Upon return, the original flags are still on the stack (put
there by the INT instruction). This is necessary because return
information is passed back in the flags. Be sure to pop the stack
to prevent uncontrolled growth. For this entry point “records”
and “sectors” are the same size. The request is as follows:

(AL) Drive number (0=A, 1=B, etc.)
(CX) Number of sectors to read

(DX) Beginning logical record number
(DS:BX) Transfer address

The number of records specified are transferred between the
given drive and the transfer address. “Logical record numbers”
are obtained by numbering each sector sequentially starting
from zero and continuing across track boundries. For example,
logical record number 0 is track 0 sector 1, whereas logical re-
cord number 12 hex is track 2 sector 3.

All registers but the segment registers are destroyed by this
call. If the transfer was successful the carry flag (CF) will be
zero. If the transfer was not successful CF=1 and (AL) will indi-
cate the error as follows:

Return Description

Attempt to write on write protected disk
Disk not ready

Data error

Seek error

Sector not found

General disk failure

Write fault

P 2 00 O N O

Absolute disk write. This vector is the counterpart to interrupt
25 above. Except for the fact that this is a write, the description
above applies.

Page |.1

APPENDIX |

Interrupts, Function Calls and Entry Points

INTERRUPTS

Z-DOS reserves interrupt types 20 to 3F hex for its use. This means absolute
locations 80 to FF hex are the transfer address storage locations reserved
by the DOS. The defined interrupts are as follows with all values in hex:

20

21

22

23

Program termination (Normal Exit). This is the normal way to
exit a program. This vector transfers to the logic in the Z-DOS
for restoration of CTRL-C exit addresses to the values they had
on entry to the program. All file buffers are flushed to disk. All
files that have changed in length should have been closed (see
function call 10 hex) prior to issuing this interrupt. If the changed
file was not closed its length will not be recorded correctly in the
directory. When this interrupt is executed, CS MUST point to
the 100H parameter area.

Function request. See “Function Requests” on Page |.5.

Terminate address. The address represented by this interrupt
(88-8B hex) is the address to which control will transfer when
the program terminates. This address is copied into low mem-
ory of the segment the program is loaded into at the time this
segment is created. If a program wishes to execute a second
program, it must set the terminate address prior to creation of
the segment the program will be loaded into. Otherwise, once
the second program executes, its termination would cause
transfer to its host’s termination address.

CTRL-C exit address. If the user types CTRL-C during
keyboard input or video output, “C” will be printed on the con-
sole and aninterrupt type 23 hex will be executed.

Page 1.2

APPENDIX |

24

If the CTRL-C routine preserves all registers, it may end with
a return-from-interrupt instruction (IRET) to continue program
execution. If functions 9 or 10 (buffered output and input), were
being executed, then 1/O will continue from the start of the line.
When the interrupt occurs, all registers are set to the value they
had when the original call to Z-DOS was made. There are no
restrictions on what the CTRL-C handler is allowed to do, in-
cluding Z-DOS function calls, so long as the registers are un-
changedif IRET is used.

If the program creates a new segment and loads in a second
program which itself changes the CTRL-C address, the termi-
nation of the second program and return to the first will cause
the CTRL-C address to be restored to the value it had before
execution of the second program.

Fatal error abort vector. When a fatal error occurs within
Z-DOS, control will be transferred with an INT 24H. On entry
to the error handler, AH will have its bit 7 =0 if the error was a
hard disk error (probably the most common occurrence), bit
7=1if not. If it is a hard disk error, bits 0 — 2 include the follow-

ing:
bt0o O ifread, 1 if write

bit-2 %=1 AFFECTED DISK AREA
0O O Reserved area
0o 1 File allocation table
1 0 Directory
1 1 Data area
AL, CX, DX, and DS:BX will be setup to perform a retry of the

transfer with INT 25H or INT 26H (on next page). DI will have
a 16-bit error code returned by the hardware.

Page 1.5

APPENDIX |

27 Terminate but stay resident. This vector is used by programs
which are to remain resident when COMMAND regains control.
Such a program is loaded as an executing COM file by COM-
MAND. After it has initialized itself, it must set DX to its last ad-
dress plus one in the segment it is executing in, then execute
an interrupt 27H. COMMAND will then treat the program as an
extension of Z-DOS, and the program will not be overlaid when
other programs are executed.

Function Requests

The user requests a function by placing a function numberin the AH register,
supplying additional information in other registers as necessary for the spe-
cific function, then executing an interrupt type 21 hex. When Z-DOS takes
control, it switches to an internal stack. User registers except AX are pre-
served unless information is passed back to the requester as indicated in
the specific requests. The user stack needs to be sufficient to accommodate
the interrupt system. It is recommended that it be 80 hex in addition to the
user needs.

There is an additional mechanism provided for programs that conform to
CP/M calling conventions. The function number is placed in the CL register,
other registers are set as normal according to the function specification, and
anintrasegment call is made to location five in the current code segment.

This method is only available to functions which do not pass a parameter
in AL and whose numbers are equal to or less than 36. Register AX is always
destroyed if this mechanism is used, otherwise it is the same as normal func-
tion requests. The functions are as follows with all values in hex:

0 Program terminate. The terminate and CTRL-C exit addresses
are restored to the values they had on entry to the terminating
program. All file buffers are flushed, but files which have been
changed in length but not closed will not be recorded properly
in the disk directory. Control transfers to the terminate address.

Page 1.6

APPENDIX

Keyboard input. Waits for a character to be typed at the
keyboard, then echos the character to the video device and re-
turnsitin AL. The character is checked for a CTRL-C. If this key
is detected an interrupt 23 hex will be executed.

Video output. The character in DL is output to the video device.
If a.CTRL-C is detected after the output, an interrupt 23 hex will
be executed.

Auxiliary input. Waits for a character from the auxiliary input de-
vice, thenreturns that characterin AL.

Auxiliary output. The character in DL is output to the auxiliary
device.

Printer output. The character in DL is output to the printer.

Direct console I/O. If DL is FF hex, the AL returns with keyboard
input character if one is ready, otherwise 00. If DL is not FF hex,
then DL is assumed to have a valid character which is output
to the video device.

Direct console input. Waits for a character to be typed at the
keyboard, then returns the character in AL. As with function 6,
no checks are made on the character.

Console input without echo. This function is identical to function
1, except the key is not echoed.

Print string. On entry, DS:DX must point to a character string
in memory terminated by a “$” (24 hex). Each character in the
string will be output to the video device in the same form as
function 2.

Page |.7

APPENDIX |

ry Points

Buffered keyboard input. On entry, DS:DX points to an input
buffer. The first byte must not be zero and specifies the number
of characters the buffer can hold. Characters are read from the
keyboard and placed in the buffer beginning at the third byte.
Reading the keyboard and filling the buffer continues until RE-
TURN is typed. If the buffer fills to one less than the maximum,
then additional keyboard input is ignored until a RETURN is
typed. The second byte of the buffer is set to the number of
characters received excluding the carriage return (0D hex),
which is always the last character. Editing of this buffer is de-
scribed in the main Z-DOS document under “template editing”.

Check keyboard status. If a character is available from the
keyboard, AL will be FF hex, otherwise AL will be 00.

Character input with buffer flush. First the keyboard type-ahead
buffer is emptied. Thenif AL is 1, 6, 7, 8, or OA hex, the corres-
ponding Z-DOS input function is executed. If AL is not one of
these values, no further operation is done and AL returns 00.

Disk reset. Flushes all file buffers. Unclosed files that have
been changed in size will not be properly recorded in the disk
directory until they are closed. This function need not be called
before a disk change if all files which have been written have
been closed.

Select disk. The drive specified in DL (0=A, 1=B, etc.) is
selected as the default disk. The number of drives is returned
inAL.

Open file. On entry, DS:DX points to an unopened file control
block (FCB). The disk directory is searched for the named file
and AL returns FF hex if itis not found. Ifit is found, AL will return
a00and the FCBiis filled as follows:

10

11

If the drive code was 0 (default disk), it is changed to actual disk
used (A=1, B=2, etc.). This allows changing the default disk
without interfering with subsequent operations on this file. The
high byte of the current block field is set to zero. The size of the
record to be worked with (FCB bytes E-F hex) is set to the sys-
tem default of 80 hex. The size of the file, and the time and date
are set in the FCB from information obtained from the directory.

It is the user’s responsibility to set the record size (FCB bytes
E-F) to the preferred size, if the default 80 hex is not appropri-
ate. It is also the user’s responsibility to set the random record
field and/or current block and record fields.

Close file. This function must be called after file writes to ensure
that all directory information is updated. On entry, DS:DX points
to an opened FCB. The disk directory is searched and if the file
is found, its position is compared with that kept in the FCB. If
the file is not found in the directory, it is assumed that the disk
has been changed and AL returns FF hex. Otherwise, the direc-
tory is updated to reflect the status in the FCB and AL returns
00.

Search for the first entry. On entry, DS:DX points to an un-
opened FCB. The disk directory is searched for the first match-
ing name (name could have “?”’s indicating any letter matched)
and if none are found AL returns FF hex. Otherwise, locations
atthe disk transfer address are set as follows:

1. If the FCB provided for searching was an extended FCB,
then the first byte is set to FF hex, then 5 bytes of zeros,
then the attribute byte from the search FCB, then the drive
number used (A=1, B=2, etc.), then the 32 bytes of the
directory entry. Thus the disk transfer address contains a
valid unopened extended FCB with the same search attri-
butes as the search FCB.

Page 1.9

12

2. Ifthe FCB provided for searching was a normal FCB, then
the first byte is set to the drive number used (A=1, B=2,
etc.) and the next 32 bytes contain the matching directory
entry. Thus the disk transfer address contains a valid un-

opened normal FCB.

Directory entries are formatted as follows:

Location

0

11

12

22

24

26

28

Bytes Description
11 File name and extension
1 Attributes. Bits 1 or 2
make file hidden
10 Zero field (for expansion)
2 Time.
Bits0-4 =secs*2
5-10 =min
11-15=hrs
2 Date.
Bits 0-4 =day
5-8 =month
9-15 =year
2 First allocation unit
4 File size, in bytes.

(30 bits max.)

Search for the next entry. After function 11 has been called and
found a match, function 12 may be called to find the next match
to an ambiguous request (“?”’s in the search filename). Both in-
puts and outputs are the same as function 11. The reserved
area of the FCB keeps information necessary for continuing the
search, so it must not be modified.

Page 1.10

APPENDIX |

13

14

15

16

17

Delete file. On entry, DS:DX points to an unopened FCB. All
matching directory entries are deleted. If no directory entries
match, AL returns FF, otherwise AL returns 00.

Sequential read. On entry, DS:DX points to an opened FCB.
The record addressed by the current block (FCB bytes C-D)
and the current record (FCB byte 1F) is loaded at the disk trans-
fer address, then the record address is incremented. If end-of-
file is encountered AL returns either 01 or 03. A return of 01 indi-
cates no data in the record, 03 indicates a partial record is read
and filled out with zeros. A return of 02 means there was not
enough room in the disk transfer segment to read one record,
so the transfer was aborted. AL returns 00 if the transfer was
completed successfully.

Sequential write. On entry, DS:DX points to an opened FCB.
The record addressed by the current block and current record
fields is written from the disk transfer address (or, records less
than sector size are buffered for write when a sector’s worth of
data is accumulated). The record address is then incremented.
If the disk is full AL returns with a 01. A return of 02 means there
was not enough room in the disk transfer segment to write one
record, so the transfer was aborted. AL returns 00 if the transfer
was completed successfully.

Create file. On entry DS:DX points to an unopened FCB. The
disk directory is searched for an empty entry, and AL returns
FF if none is found. Otherwise, the entry is initialized to a zero-
length file, the file is opened (see function F), and AL returns
00.

Rename file. On entry, DS:DX points to a modified FCB which
has a drive code and file name in the usual position, and a sec-
ond filename starting 6 bytes after the first (DS:DX+11 hex) in
what is normally a reserved area. Every matching occurrence
of the firstis changed to the second (with the restriction that two
files cannot have the exact same name and extension). If “?”'s
appear in the second name, then the corresponding positions
in the original name will be unchanged. AL returns FF hex if no
match was found, otherwise 00.

Page .11

APPENDIX |

19

1A

iB

21

22

Current disk. AL returns with the code of the current default
drive (0=A, 1=B, etc.). .

Set disk transfer address. The disk transfer address is set to
DS:DX. Z-DOS will not allow disk transfers to wrap around with-
in the segment, nor to overflow into the next segment.

Allocation table address. On return, DS:BX points to the alloca-
tion table for the current drive, DX has the number of allocation
units, and AL has the number of records per allocation unit, and
CX has the physical size of the sector. At DS:[BX — 1], the byte
before the allocation table, is the dirty byte for the table. If set
to 01, it means the table has been modified and must be written
back to disk. If 00, the table is not modified. Any programs which
get the address and directly modify the table must set this byte
to 01 in order for the changes to be recorded. This byte should
NEVER be set to 00—instead, a DISK RESET function (#0D
hex) should be performed to write the table and reset the bit.

Random read. On entry, DS:DX points to an opened FCB. The
current block and current record are set to agree with the ran-
dom record field, then the record addressed by these fields is
loaded at the current disk transfer address. If end-of-file is en-
countered, AL returns either 01 or 03. If 01 is returned no more
data is available. If 03 is returned, a partial record is available,
filled out with zeros. A return of 02 means there was not enough
room in the disk transfer segment to read one record, so the
transfer was aborted. AL returns 00 if the transfer was com-
pleted successfully.

Random write. On entry, DS: DX points to an opened FCB. The
current block and current record are set to agree with the ran-
dom record field, then the record addressed by these fields is
written (or in the case of records not the same as sector sizes—
buffered) from the disk transfer address. If the disk is full AL re-
turns 01. A return of 02 means there was not enough room in
the disk transfer segment to write one record, so the transfer
was aborted. AL returns 00 if the transfer was completed suc-
cessfully.

page .12

APPENDIX |

23

24

25

26

27

File size. On entry, DS:DX points to an unopened FCB. The
disk directory is searched for the first matching entry and if none
is found, AL returns FF. Otherwise the random record field is
set with the size of the file (in terms of the record size field
rounded up) and AL returns 00.

Set random record field. On entry, DS:DX points to an opened
FCB. This function sets the random record field to the same file
address as the current block and record fields.

Set vector. The interrupt type specified in AL is set to the 4-byte
address DS:DX.

Create a new program segment. On entry, DX has a segment
number at which to set up a new program segment. The entire
100 hex area at location zero in the current program segment
is copied into location zero in the new program segment. The
memory size information at location 6 is updated and the cur-
rent termination and CTRL-C exit addresses are saved in the
new program segment starting at 0A hex.

Random block read. On entry, DS:DX points to an opened FCB,
and CX contains a record count that must not be zero. The
specified number of records (in terms of the record size field)
are read from the file address specified by the random record
field into the disk transfer address. If end-of-file is reached be-
fore all records have been read, AL returns either 01 or 03. A
return of 01 indicates end-of-file and the last record is complete,
a 03 indicates the last record is a partial record. If wrap-around
above address FFFF hex in the disk transfer segment would
occur, as many records as possible are read and AL returns 02.
If all records are read successfully, AL returns 00. In any case
CX returns with the actual number of records read, and the ran-
dom record field and the current block/record fields are set to
address the next record.

e

Page .13

28

29

APPENDIX |

Random block write. Essentially the same as function 27
above, except for writing and a write-protect indication. If there
is insufficient space on the disk, AL returns 01 and no records
are written. If CX is zero upon entry, no records are written, but
the file is set to the length specified by the Random Record field,
whether longer or shorter than the current file size (allocation
units are released or allocated as appropriate).

Parse file name. On entry DS:SI points to a command line to
parse, and ES:DI points to a portion of memory to be filled in
with an unopened FCB. Leading TABs and spaces are ignored
when scanning. If bit 0 of AL is equal to 1 on entry, then at most
one leading filename seperator will be ignored, along with any
trailing TABs and spaces. The four filename separators are:

P

If bit 0 of AL is equal to 1, then all parsing stops if a separator
is encountered. The command line is parsed for a file name of
the form d:filename.ext, and if found, a corresponding un-
opened FCB is created at ES:DI. The entry value of AL bits 1,
2, and 3 determine what to do if the drive, filename, and exten-
sion, respectively, are missing. In each case, if the bit is a zero
and the field is not present on the command line, then the FCB
is filled with a fixed value (0, meaning the default drive for the
drive field; all blanks for the filename and extension fields). If
the bit is a 1, and the field is not present on the command line,
then that field in the destination FCB at ES:Dl is left unchanged.
If an asterisk “*” appears in the filename or extension, then all
remaining characters in the name or extension are setto “?”.

The following characters are illegal within Z-DOS file specifica-
tions:

"+ =,

Page |.14

APPENDIX |

2A

2B

2C

2D

2E

Control characters and spaces also may not be given as ele-
ments of file specifications. If any of these characters are en-
countered while parsing, or the period (.) or colon (:) is found
inan invalid position, then parsing stops at that point.

If either “?” or “*” appears in the file name or extension, then AL
returns 01, otherwise 00. DS:SI will return pointing to the first
character after the filename.

Get date. Returns date in CX:DX. CX has the year, DH has the
month (1=Jan, 2=Feb, etc.), and DL has the day. If the time-of-
day clock rolls over to the next day, the date will be adjusted
accordingly, taking into account the number of days in each
month and leap years.

Set date. On entry CX:DX must have a valid date in the same
format as returned by function 2A above. If the date is indeed
valid and the set operation is successful, then AL returns 00.
Ifthe date is not valid, then AL returns FF.

Get time. Returns with time-of-day in CX:DX. Time is actually
represented as four 8-bit binary quantities, as follows: CH has
the hours (0-23), CL has minutes (0-59), DH has seconds
(0-59), DL has 1/100 seconds (0-99). This format is easily con-
verted to a printable form yet can also be calculated upon (e.g.,
subtracting two times).

Set time. On entry, CX:DX has time in the same format as re-
turned by function 2C above. If any component of the time is
not valid, the set operation is aborted and AL returns FF. If the
time is valid, AL returns 00.

Set/Reset Verify Flag. On entry, DL must be 0 and AL has the
verify flag: 0=no-verify, 1=verify after write. This flag is simply
passed to the I/O system on each write, so its exact meaning
is interpreted there.

P e

Page 1.15

ENTRY POINTS

Interrupt Entry Points

File: DEFIPAGE. ASM

; Define the interrupt page offsets

0000 IPAGE_SEG SEGMENT AT 0

0000 ORG 0
0000 INT_ZERO LABEL DWORD

, Hardware defined interrupts

0000 ORG 4*(

0000 INT_DIV LABEL DWORD : Divide error

0004 ORG 4*]

0004 INT_STEP LABEL DWORD ; Single step

0008 ORG 4*2

0008 INT_NMI LABEL DWORD ; Non-maskable interrupt
000C ORG 4*3

000C INT_BRK LABEL DWORD ; Breakpoint

0010 ORG 4*4

0010 INT_OVFL LABEL DWORD ; Overflow error

; MS-DOS defined interrupts

0080 ORG 4*DOSI_TERM

0080 INT_TERM LABEL DWORD ; Terminate program function

0084 ORG 4*DOSI_FUNC

0084 INT_FUNC LABEL DWORD ; Perform function

0088 ORG 4*DOSI_TADDR

0088 INT_TADDR LABEL DWORD ; Resume addr on program termination
008C ORG 4*DOSI_CADDR

008C INT_CADDR LABEL. DWORD ; “C handler

Page .16

0090
0090
0094
0094
0098
0098
009C
009C

0100
0100

0100
0100
0104
0104
0108
0108
010C
010C
0110
0110
0114
0114
0118
0118
011C
011C

0120
0120

0120
0120
0124
0124

ORG
INT_FERADDR
ORG
INT_ADREAD
ORG
INT_ADWRITE
ORG
INT_TERMR

4*DOSI_FERADDR
LABEL DWORD
4*DOSI_ADREAD
LABEL DWORD
4*DOSI_ADWRITE
LABEL DWORD
4*DOSI_TERMR
LABEL DWORD

; Fatal error handler
; Absolute disk read
. Absolute disk write

: Terminate program (but stay resident) function

; Master 8259A interrupt controller defined interrupts

ORG
INT_ZM8259A

ORG
INT_EI
ORG
INT_PS
ORG
INT_TIM
ORG
INT_SLV
ORG
INT_SA
ORG
INT_SB
ORG
INT_KD
ORG
INT_PP

4*ZM8259A1
LABEL DWORD

4* (ZM8259A1 + ZINTEI)
LABEL DWORD
4* (ZMB259A1 + ZINTPS)
LABEL DWORD
4* (ZM8259A1 + ZINTTIM)
LABEL DWORD
4* (ZMB259AT + ZINTSLV)
LABEL DWORD
4% (IM8259A1 + ZINTSA)
LABEL DWORD
4* (ZM8259AI + ZINTSB)
LABEL DWORD
4* (ZM8259A1 + ZINTKD)
LABEL DWORD
4* (ZM8259AI + ZINTPP)
LABEL DWORD

; Base of Master 8259A interrupts

. Parity or $-100 pin 98

; Processor swap

: Timer

: Slave 8259A

: Serial port A

. Serial port B

: Keyboard/Display/Light pen

; Parallel port

; Slave 8259A interrupt controller defined interrupts

ORG
INT_ZS8259A

ORG
INT_SLVO

ORG
INT_SLV1

4*758259A1
LABEL DWORD

4* (ZS8259AI+0)
LABEL DWORD
4% (ZS8259AI+1)
LABEL DWORD

: Base of Slave 8259A interrupts

. Slave line 0

. Slave line 1

Page .17

0128
0128
012C
012C
0130
0130
0134
0134
0138
0138
013C
013C
013C

ORG
INT_SLV2
ORG
INT_SLV3
ORG
INT_SLV4
ORG
INT_SLV5
ORG
INT_SLV6
ORG
INT_SLV7
IPAGE_SEG ENDS

4* (ZS8259AT+2)
LABEL DWORD
4* (ZS8259A1 1 3)
LABEL DWORD
4* (ZS8259A1 +4)
LABEL DWORD
4* (ZS8259A1+5)
LABEL DWORD
4* (Z88259A1+6)
LABEL DWORD
4* (ZS8259AT+ 1)
LABEL DWORD

; Slave line 2

: Slave line 3

; Slave line 4

; Slave line 5

; Slave line 6

: Slave line 7

Page 1.18

The Z2-DOS BIOS Entry Points (Function Calls)
The Z-DOS BIOS version 2.19 and above written by Zenith Data Systems
for their Z-100 computer contains all the functions (entry points) as defined
by MicroSoft in MS-DOS version 1.25 plus a few additional ones for control
of peripheral devices. The MicroSoft defined functions include:

e Consoleinput/output/status.

® Printer output.

o Auxiliary device input/output.

e Diskinput/output/mapping.

e Date-time setting/reading.
The ZDS defined functions provide complete control over:

o Disk.

e Console.

e Printer.

® Auxiliary devices.
In addition, a defined address is provided for the version of the BIOS and
for configuration information. Assembly language include files have been
written to help in program development.
The firstinclude file (DEFMS.ASM) defines:

e Allthe entry points to the BIOS.

e The function codes for “interrupt 21" (perform system call).

Page .19

® The MS-DOS interrupts.

® The program header.

e The“User” file control block (FCB).

® Thedirectory entries.

® Thedrive parameter table used by Z-DOS atiinitialization time.

® Defines the disk error codes.

; Definitions for MS-DOS

$

IFDEF BIOS
FBIOS = BIOS
ELSE
= 0000 FBIOS = 0
ENDIF
IF NOT FBIOS

1l
"

0400 LORGADDR 400H . Loader org address

; BIOS entry points

0000 BIOS_SEG SEGMENT AT 40H : Segment where the BIOS is located
; MicroSoft (MS) defined entry points
0000 ORG 0*3

0000 BIOS_INIT LABEL FAR : Initialization routine (only exists
;at boot time)

Page 1.20

0003
0003
0006
0006
0009
0009
000C
000C
000F
000F
0012
0012
0015
0015
0018
0018
001B
001B
001E
001E
0021
0021
0024
0024
00217
0027
002A
002A
002D
002D
0030
0030
0033
0033
0036
0036
0039
0039
003C
003C

ORG 1*3
BIOS_STATUS
ORG 2%3
BIOS_CONIN
ORG 3*3
BIOS_CONOUT
ORG 4%*3
BIOS_PRINT
ORG 5%3
BIOS_AUXIN
ORG 6%3
BIOS_AUXOUT
ORG 7%3
BIOS_READ
ORG 8%3
BIOS_WRITE
ORG 9*3
BIOS_DSKCHG
ORG 10%*3
BIOS_SETDATE LABEL FAR
ORG 11%3
BIOS_SETTIME LABEL FAR
ORG 12*3
BIOS_GETDATE LABEL FAR
ORG 13*3
BIOS_FLUSH
ORG 14*3
BIOS_MAPDEV
ORG 15*3
BIOS_MRESS
ORG 16*3
BIOS_MRES8
ORG 17*3
BIOS_MRES7
ORG 18*3
BIOS_MRES6
ORG 19*3
BIOS_MRESS
ORG 20*4
BIOS_MRES4

LABEL FAR

LABEL FAR

LABEL FAR

LABEL FAR

LABEL FAR

LABEL FAR

LABEL FAR

LABEL FAR

LABEL FAR

LABEL FAR

LABEL FAR

LABEL FAR

LABEL FAR

LABEL FAR

LABEL FAR

LABEL FAR

LABEL FAR

Console input status
Console input
Console output
Printer output

Aux input

Aux output

Disk input

Disk output

Disk change status
Set current date

Set current time

Get current date
Flush keyboard buffer
Device mapping

Reserved for MicroSoft entry points

Page .21

003F
003F
0042
0042
0045
0045

0048
0048
004B
004B
004E
004E
0051
0051
0054
0054
0057
0057
005A
005A
005D
005D
0060
0060

0061
0061
0063
0063

= 0000
= 0002
= 0004
= 0006

ORG 21*3
BIOS_MRES3 LABEL FAR

ORG 22%4
BIOS_MRES2 LABEL FAR

ORG 23*3
BIOS_MRES1 LABEL FAR

; Zenith Data System(ZDS) defined entry points

ORG 24%*3

BIOS_DSKFUNC LABEL FAR . Disk function
ORG 25*3

BIOS_PRNFUNC LABEL FAR ; PRN: (Printer} function
ORG 26*3

BIOS_AUXFUNC LABEL FAR ; AUX: (modem) function
ORG 27%*3

BIOS_CONFUNC LABEL FAR ; CON: (console) function
ORG 28%*3

BIOS_ZRES4 LABEL FAR ; Reserved for Zenith entry points
ORG 29%*3

BIOS_ZRES3 LABEL FAR
ORG 30*3

BIOS_ZRES2 LABEL FAR
ORG 31*3

BIOS_ZRES1 LABEL FAR
ORG 32*3

BIOS_REL LABEL BYTE ; Bios release number in hex

; (le 012H is release 1.2x)

ORG OFFSET BIOS_REL+1

BIOS_CTADDR LABEL WORD ; Addr of configuration information
ORG OFFSET BIOS_CTADDR+2

BIOS_SEG ENDS

; Configuration vector

bl

CONFG_DSK EQU 0 . Addr of disk vector
CONFG_PRN EQU CONFG_DSK+2 ; Addr of PRN: configuration table
CONFG_AUX EQU CONFG_PRN+2 ; Addr of AUX: configuration table

CONFG_CON EQU CONFG_AUX+2 ; Addr of CON: configuration table

Page 1.22

= 0008 CONFG_FNT EQU CONFG_CON+2 ; Addr of Font information
= 0000 FNT_RAM EQU 0 : Ptr to font table in RAM
= 0004 FNT_ROM EQU FNT_RAM+4 ; Ptr to font table in ROM

= 0008 FNT_SIZE
= 000A FNT_MSIZE
= 000A CONFG_CLOCK
= 0000 BIOS_DATE
= 0002 BIOS_HRS
= 0003 BIOS_MIN
= 0004 BIOS_SEC
= 0005 BIOS_HSEC
= 000C CONFG_DOSTB
= 000E CONFG_MCL

= 0010 CONFG_SIZE

ENDIF

= 0010 BIOS_CREL
= 0100 BIOS_WORKSP

= 03A9 BIOS_RELDATE

= 0001 MS_SIZEMEM

EQU FNT_ROM+4 ; Size of font table in ROM

EQU FNT_SIZE+2 ; Space allocated for font table in RAM
EQU CONFG_FNT+2 ; Addr of Date and time fields

EQU 0 ; Days since Jan 1, 1980

EQU BIOS_DATE+2 ; Hours since midnight

EQU BIOS_HRS+1 ; Minutes

EQU BIOS_MIN+1 ; Seconds

EQU BIOS_SEC+1 ; Hundredths of seconds(a word)
EQU CONFG_CLOCK+2; Addr of DOS disk tables
EQU CONFG..DOSTB+ 2; Addr of value for map control latch
EQU CONFG_MCL+2; ; Length of configuration vector

EQU 10H ; Current release of BIOS

EQU 256 ; Number if bytes needed for
; workspace in BIOS

EQU 937 ; Release date 7/26/82 (this changes
; for each release)

EQU 1 . Flag for DOS to size memory at init

: System functions for "interrupt 21"
; (Note: functions followed by "*" are
: not CP/M compatable

= 0000 DOSF_TERM

= 0001 DOSF_CONIN

= 0002 DOSF_CONOUT
= 0003 DOSF_AUXIN

= 0004 DOSF_AUXOUT
= 0005 DOSF_PRINTOUT
= 0006 DOSF_DRCIO

= 0007 DOSF_DRCI

= 0008 DOSF_DRCINE
= 0009 DOSF_OUTSTR

EQU 0 ; Program terminate

EQU 1 ; Console input

EQU 2 ; Console output

EQU 3 ; Aux input

EQU 4 ; Aux output

EQU 5 ; Printer output

EQU 6 ; Direct console I/0

EQU 1 : * Direct console input
EQU 8 ;- * Console input (no echo)
EQU 9 ; Output string

Page 1.23

APPENDIX |

000A
000B
000C
000D
000E
000F
0010
0011
0012
0013
0014
0015
0016
0017

= 0018

0019
001A
001B

001C
001D
001E
001F
0020
0021
0022
0023
0024
0025
0026
0027

= 0028

0029
002A
002B
002C
002D
002E

DOSF_INSTR
DOSF_STCON
DOSF_CONINF
DOSF_RSDISK
DOSF_SELDISK
DOSF_OPFILE
DOSF_CLFILE
DOSF_SRHFI
DOSF_SRHNX
DOSF_DEFILE
DOSF_SEQREAD
DOSF_SEQWRITE
DOSF_CRFILE
DOSF_REFILE
DOSF_24
DOSF_GETDISK
DOSF_SDIOA
DOSF_GFATA

EQU 10
EQU 11
EQU 12
EQU 13
EQU 14
EQU 15
EQU 16
EQU 17
EQU 18
EQU 19
EQU 20
EQU 21
EQU 22
EQU 23
EQU 24
EQU 25
EQU 26
EQU 27

)

Input string

Status of console

* Flush keyboard buffer and input
Disk system reset

Select default disk

Open file

Close file

Search for first

Search for next

Delete file

Sequential read

Sequential write

Create file

Rename file

* not used

Get default disk

Set disk I/0 address

* Get file allocation table addr

;% The remaining functions are not CP/M compatable

DOSF_GFATA128
DOSF_29
DOSF_30
DOSF_31
DOSF_32
DOSF_RANREAD
DOSF_RANWRITE
DOSF_GFSIZE
DOSF_SFPOS
DOSF_SIVEC
DOSF_CESEG
DOSF_RBLREAD
DOSF_RBLWRITE
DOSF_PARSE
DOSF_GDATE
DOSF_SDATE
DOSF_GTIME
DOSF_STIME
DOSF_CVERF

EQU 28
EQU 29
EQU 30
EQU 31
EQU 32
EQU 33
EQU 34
EQU 35
EQU 36
EQU 37
EQU 38
EQU 39
EQU 40
EQU 41
EQU 42
EQU 43
EQU 44
EQU 45
EQU 46

; Get file allocation table addr
not used

not used

not used

not used

Random read

Random write

Get file size

Set file position

Set interrupt vector
Create segment

Random block read
Random block write
Parse file name

Get date

Set date

Get time

Set time

Set/Reset verify flag

Page .24

0020
0021
0022
0023
0024
0025
0026
0027

0000
0002

0005
000A
000E
0012
005B
005C
006C
0080
0100

0000
0001
0009
000C
000E
0010

)

; Define the interrupts

b

DOSI_TERM
DOSI_FUNC
DOSI_TADDR
DOSI_CADDR
DOSI_FERADDR
DOSI_ADREAD
DOSI_ADWRITE
DOSI_TERMR

. Define the program header

)

PHD_TERM
PHD_MEMSIZE

PHD_AFUNC
PHD_EXADDR
PHD_ABADDR
PHD_FEADDR
PHD_STACK
PHD_FCB1
PHD_FCB2
PHD_DIOA
PHD_CODESTART

)

EQU 20H
EQU 21H
EQU 22H
EQU 23H
EQU 24H
EQU 25H
EQU 26H
EQU 2TH

EQU 000H
EQU 002H

EQU 005H
EQU 00AH
EQU OOEH
EQU 012H
EQU 05BH
EQU 05CH
EQU 06CH
EQU 080H
EQU 100H

. Program terminate
: Perform a function
. Terminate address

AC Exit address

. Fatal error exit addr

; Absolute disk read

: Absolute disk write

. Program terminate, but stay resident

: Termination point (has INT 20H)
: Memory size (first seg num

after end of mem)

. Alternate function entry point
; Exit handler addr

AC handler addr

. Fatal error handler addr

; End of stack area

; First program argument

. Second program argument

: Default disk transfer area

. Start of code (Size of a PHD)

. Define the "User" File control block (FCB)

bl

FCB_DRIVE
FCB_FNAME
FCB_EXT
FCB_CURBLK
FCB_RECSZ
FCB_FILSZ

EQU 0

. Drive number

EQU FCB_DRIVE+1 ; File name
EQU FCB_FNAME+8 ; Extension to file name

EQU FCB_EXT+3

: Current block

EQU FCB_CURBLK+2 ; Record size
EQU FCB_RECSZ+2 ; File size

Page .25

0014 FCB_DATE EQU FCB_FILSZ+4 ; Date file modified

0016 FCB_TIME EQU FCB_DATE+2 ; Time file modified

0018 FCB_RES EQU FCB_TIME+2 ; Reserved

0020 FCB_CURREC EQU FCB_RES+8 ; Current record(in block)
0021 FCB_RANREC EQU FCB_CURREC+1 ; Random record number
0025 FCB_SIZE EQU FCB_RANREC+4 ; Size of a FCB

. Define the extended file control block

0000 XFCB_FLAG EQU 0 : Flag field

0001 XFCB_RES EQU XFCB_FLAG+1 ; Reserved

0006 XFCB_ATTR EQU XFCB_RES+5 ; Attribute byte

0002 XFCBA_HID EQU 02H ; Hidden files

0004 XFCBA_SYS EQU 04H ; System files

0007 XFCB_FCB EQU XFCB_ATTR+1 ; Normal FCB

002C XFCB_SIZE EQU XFCB_FCB+FCB_SIZE ; Size of a XFCB

. Define the directory entries

0000 DE_FNAME EQU 0 : File name

0008 DE_EXT EQU DE_FNAME+8 ; Extension to file name
000B DE_ATTR EQU DE_EXT+3 ; File attribute

0002 DEA_HID EQU 02H : Hidden file

0004 DEA_SYS EQU 04H ; System file

000C DE_RES EQU DE_ATTR+1 ; Reserved

0016 DE_TIME EQU DE_RES+10 ; Time the file was modified
0018 DE_DATE EQU DE_TIME+2 ; Date the file was modified
001A DE_START EQU DE_DATE+2 ; Starting sector of file
001C DE_FSIZE EQU DE_START+2 ; File size

0020 DE_SIZE EQU DE_FSIZE+4 ; Size of a DE (should be 32)

Page 1.26

= 0000
= 0002

= 0003
= 0005
= 0006

= 0008

= 0004

; Define the “Drive parameter table" for MS-DOS usage
; (Used only by the BIOS at init time)

DPT_SECIZ
DPT_CLUSIZ

DPT_RESSEC
DPT_FATCNT
DPT_MAXENT

DPT_DSKSIZ

DPT_SIZE

EH

EQU 0 ; Size in bytes of a physical sector
EQU DPT_SECSIZ+2 ; Number of sectors in an
. allocation unit
EQU DPT_CLUSIZ+1 ; Number of reserved sectors at
. start of disk
EQU DPT_RESSEC+2 ; Number of FAT's
EQU DPT_FATCNT+1 ; Number of directory entries
EQU DPT_MAXENT+2 ; Number of physical sectors on
; the disk
EQU DPT_DSKSIZ+2 ; Size of a DPT

; Define the disk errors

1

DSKE_WRITEP
DSKE_NREADY
DSKE_DATA
DSKE_SEEK
DSKE_SECT
DSKE_WFAULT
DSKE_OTHER

EQU 0 : Write protect
EQU 2 ; Not ready

EQU 4 ; Data error

EQU 6 ; Seek

EQU 8 : Sector not found
EQU 10 . Write fault

EQU 12 : Anything else

Page 1.27

APPENDIX |

Entry Points Defined

BIOS_INIT—System initialization

BIOS_INIT is the entry point used by the boot loader to pass control to the
BIOS. This entry point may be called only from the boot loader during system
initialization. The following functions are performed by BIOS_INIT:

e

All devices (except for the video) are initialized.

The disk drive tables are fixed up to account for characteristics of the
bootdevice.

The DOS isread in from the disk.

The DOS initialization routine is called.

The character font table and the keyboard mapping are setup.

The program “COMMAND.COM” is loaded and control is passed to
it.

n

Q0w

BIOS_STATUS—Console input status
This routine checks to see if a character is ready at the console. If so, that
character is returned. Once a character has been returned with this call, that
same character is returned every time the call is made until a BIOS_CONIN
callis made to read the character.

Returns:

“Z” set—no character ready
“2” clear—AL = first characterin input queue

Uses:

No registers are modified.

Page 1.28

BIOS_CONIN—Console input
This routine waits for a character from the console.
Returns:
AL = character from the console
Uses:
No registers are modified.

BIOS_CONOUT—Console output

This routine waits for the console to be ready and then outputs a character
toit.

Call with:

AL = character to output
Uses:
No registers are modified.

BIOS_PRINT—Printer output

This routine waits for the printer to be ready and then outputs a character
toit.

Call with:

AL = character to output.

Uses:

No registers are modified.

Page .29

BIOS_AUXIN—Aux input

This routine waits for a character to be ready at the auxiliary device and then
reads it.

Returns:
AL = characterread.
Uses:
No registers are modified.
BIOS_AUXOUT—Aux output

This routine waits for the auxiliary device to be ready and then outputs a
charactertoit.

Callwith:

AL = character to write.
Uses:

No registers are modified.

BIOS_READ—Disk input

This routine is used to read sectors from a specified disk device. Up to one
segment of data may be read in one call.

Call with:

AL = Device number

CX = Number of sectors to read
DS = Firstlogical sectorto read
DS:BX = bufferto place data

Page 1.30

Returns:
CX = Number of sectors not read
“CY” clear—operation succeeded

“CY” set—operation failed, AL = error code (see above in file
DEFDSK.ASM)

Uses:
Allregisters may be modified (other than segment registers)
BIOS_WRITE—Disk output

This routine is used to write sectors from a specified disk device. Up to one
segment of data may be written in one call.

Call with:
AL = Device number
AH = Verify flag: 0=no verify, 1=verify after write (not
currently implemented)
CX = Number of sectors to write
DX = Firstlogical sector to write

DS:BX = buffer to get data from
Returns:

CX = Number of sectors not written

“CY” clear—operation succeeded

“CY” set—operation failed, AL = error code (see above in file
DEFDSK.ASM

Uses:

Allregisters may be modified (other than segment registers)

Page .31

BIOS_DSKCHG—Disk change status
Check if the specified disk has been changed.
Caliwith:
AL = drive number
Returns:
CY clear (normal exit)
AH = —1,ifdisk has been changed
AH = 0, ifitis notknown if disk changed
AH = +1, ifdisk could not have changed
AL = drive number (can change or remain the same)
CY set (error exit)
AL = errorcode
Uses:
No other registers are modified.
BIOS_SETDATE—Set currentdate
Sets the current date as days since Jan 1, 1980.
Call with:
AX = the number of days since 1/1/80.

Uses:

No registers are modified.

Page .32

BIOS_SETTIME—Set current time
Sets the current time of day.
Callwith:

CH = hours (0-23)

CL = minutes (0-59)

DH = seconds (0-59)

DL = hundredths of seconds (0-99)

Uses:

No registers are modified.
BIOS_GETDATE—Getdate and time
Returns the current date and time.

Returns:

AX = count of days since 1/1/80

CH = hours (0-23)

CL = minutes (0-59)

DH = seconds (0-59)

DL = hundredths of seconds (0-99)

Uses:

No other registers are modified.
BIOS_FLUSH—FIlush keyboard input buffer
The input character queue associated with the console device is flushed.

Uses:

No registers are modified.

Page 1.33

BIOS_MAPDEV—Map disk
Maps a disk driver given the device number and FAT ID.
Call with:

AL = I/O driver number
AH = Firstbyte of FAT (range F8 to FF)

Returns:

AL = |/Odriver for given media and drive
Uses:

No other registers are modified.

BIOS_DSKFUNC—Disk function
Used to execute an arbitrary disk function.
Call with:

The register pair ES:BX points to a parameter block (for ali func-
tions except GBIOSVEC and MAPDSK). The Parameter block
has the following fields:

DSKPR_DRIVE (byte):
Logical drive number (— 1 to number of drives supported).
DSKPR_SECTOR (word):
Logical sector number. (On read/write track, used as side
flag: 0 =side zero, 1 = side one).
DSKPR_COUNT (word):
Sector transfer count. (Must fitin segment)
DSKPR_BUFF (double word):
Address of I/O buffer. The first word is the offset and the sec-
ond word is the segment.

Page .34

AL = function to perform
AL = DSK_RESET—Reset the disk (home head)
AL = DSK_STATUS—Get disk status
AL = DSK_STEPIN—Stepin head
AL = DSK_READ—Read sectors from the disk
AL = DSK_WRITE—Write sectors to the disk
AL = DSK_VERIFY—Notimplemented
AL = DSK_FORMAT—Format track (write track)
AL = DSK_READTRK—Read track
AL = DSK_GBIOSVEC—Get addr of disk table vector
AL = DSK_MAPDSK—Maps drive number in AH
AL = DSK_SETFDC—Indicates drive has been formatted

Returns:

AX = Status of operation
CY clear—operation succeeded
CY failure—operation failed
For DSK_READ and DSK_WRITE:
DSKPR_COUNT = number of sectors nor read/written
DSKPR_BUFF = updated to next addr
For DSK_GBIOSVEC:
ES: BX-> vector of disk table addresses
For DSK_STATUS:
AH = aux status, AL = status
For DSK_MAPDSK:
AL = mapped device

Uses:

All registers may be used.

Page |.35

APPENDIX |

ind Entry Points

= 0000
= 0001
= 0002
= 0003
= 0004
= 0005
= 0006
= 0007
= 0008
= 0009
= 000A

= 000F
= 0002
= 0004
= 0000
= 0100
= 0200
= 0300
= 0400
= 0500
= 0600
= 0002
= 0000
= 0003
= 0004
= 0001

; Define Functions performed by Disk driver routines

DSK_RESET
DSK_STATUS
DSK_READ
DSK_WRITE
DSK_VERIFY
DSK_FORMAT
DSK_STEPIN
DSK_READTRK
DSK_GBIOSVEC
DSK_MAPDSK
DSK_SETFDC
DSK_FMAX

EQU 0

EQU DSK_RESET +1
EQU DSK_STATUS+1
EQU DSK_READ+1
EQU DSK_WRITE+1
EQU DSK_VERIFY+1
EQU DSK_FORMAT+1
EQU DSK_STEPIN+1
EQU DSK_READTRK +1
EQU DSK_GBIOSVEC+
EQU DSK_MAPDSK+1
EQU DSK_SETFDC+1

; Reset function

H

Status function

Read function

Write function

Verify function

Format (write track) function

Step in function

Read track function

Get BIOS disk vector addr

Get Logical to physical mapping
Show that disk has been formatted

; Max function value

; Define the disk info block (one is needed for each drive)

)

MAXDSK
MAXDSK5
MAXDSK8
DSK_STA
DSKST_FNERR
DSKST_ORERR
DSKST_DNERR
DSKST_DTERR
DSKST_NIERR
DSKST_NDERR
DSK_TYPE
DSK_TZ207
DSK_LTRK
DSK_LOPT
DSK_OWR

EQU 15 ;
EQU 2 :
EQU 4 s
EQU 0 ;
EQU 0100H
EQU 0200H
EQU 0300H
EQU 0400H
EQU 0500H
EQU 0600H

EQU 0

EQU 01H

Maximum number of disks
Maximum 5 inch drives (0-1)
Maximum 8 inch drives (2-3)
Status of last operaton

; Invalid function

; Improper order of function
; Invalid disk number

; Invalid disk type

; Function not implemented
; No disk in drive

EQU DSK_STA+2 ; Disk type

; 2-207 type disk

EQU DKS_TYPE+ ; Last track

EQU DKS_LTRK+ ; Last operation

; Write was last op

Page 1.36

APPENDIX |

= 0002
= 0004
= 0008
= 0010
= 0020
= 0080
= 0005
= 0001
= 0002
= 0004
= 0008
= 0010
= 0020
= 0006
= 0007

= 0008
= 0009
= 000A
= 000B
= 000C
= 000D
= 000F
= 0010
= 0011
= 0012
= 0014
= 0016
= 0018
= 001A
= 001C
= 001E
= 001F
= 0080
= 0040
= 0020
= 000F
= 0020
= 0022

DSK_ORD
DSK_ORS
DSK_0SI
DSK_OFT
DSK_ORT
DSK_OUK
DSK_FLAG
DSK_FDS
DSK_FFS
DSK_FDP
DSK_FWP
DSK_FDC
DSK_FSL
DSK_SEL
DSK_RS

DSK_SPHI
DSK_FMT
DSK_RD
DSK_WR
DSK_SK
DSK_SERR
DSK_MAXT
DSK_NRETRY
DSK_SPT
DSK_BPS
DSK_BPWT
DSK_BPRT
DSK_DELAY
DSK_LDELAY
DSK_PORT
DSK_RDT
DSK_IMGFLG
DSKIF_ID
DSKIF_DV
DSKIF_NM
DSKIF_DN
DSK_TDSEL
DSK_SIZE

EQU 02H ; Read was last op
EQU 04H : Reset was last op
EQU 08H ; Step in was last op
EQU 10H : Format was last op
EQU 20H : Read track was last op
EQU 80H ; Track is unknown
EQU DSK_LOPT+1 ; Flags
EQU 01H ; Disk is double sided
EQU 02H : Drive can be fast stepped
EQU 04H . Disk is 48 tpi and should be double stepped
EQU 08H . Disk is software write protected
EQU 10H . Force Disk has Changed next time
EQU 20H : Skip head load on select

EQU DSK_FLAG+ ; Command to select drive
EQU DSK_SEL+ ; Command to reset drive

EQU DSK_RS+1 ; Command to step in

EQU DSK_SPHI+1 ; Command to format (write) a track

EQU DSK_FMT+1 ; Command to read a sector

EQU DSK_ RD+1 ; Command to write a sector

EQU DSK_WR+1 : Command to seek to a track

EQU DSK_SK+1 ; Number of "soft" errors

EQU DSK_SERR+2 ; Maximum track number of drive

EQU DSK_MAXT+1 ; Maximum retry count

EQU DSK_NRETRY+1; Sectors per track

EQU DSK_SPT+1 ; Number of bytes per sector

EQU DSK_BPS+2 ; Number of bytes per write track operation
EQU DSK_BPWT+2 ; Number of bytes per read track operation
EQU DSK_BPRT+2 ; Counter value for short delay

EQU DSK_DELAY+2 ; Counter value for a long delay

EQU DSK_LDELAY+2; Base Port number

EQU DSK_PORT+2 ; Read track command

EQU DSK RDT+1 ; Imaginary drive flag

EQU 80H (0 - real drive; 1 - imaginary drive)

EQU 40H . (0 - disk is not in drive; 1 - disk is in drive)
EQU 20H : (0 - can map imag to drive; 1 - can't)

EQU OFH : (Mask for disk in drive)

EQU DSK_IMGFLG+1 ; Time to wait before deselecting drive(in 100ths of secs)
EQU DSK_TDSEL+2 ; Size of DSK

P o ¢

Page .37

; Define the parameter table passed to the disk drive routines

)

0000 DSKPR_DRIVE EQU 0 ; Logical drive number

0001 DSKPR_SECTOR EQU DSKPR DRIVE+1 ; Logical sector number

0003 DSKPR_COUNT EQU DSKPR_SECTOR+2 ; Sector transfer count

0005 DSKPR_BUFF EQU DSKPR_COUNT+2 ; Buffer addr (offset,paragraph)
0009 DSKPR_SIZE EQU DSKPR_BUFF+4 ; Size of this thing

]

Page 1.38

BIOS_PRNFUNC—PRN function
BIOS_AUXFUNC—AUX function
BIOS_CONFUNC—CON function

These three entry points are used to perform any of five functions on the
device after which they are named. The functions are write a character, read
acharacter, get status, perform control type operation, and read a character,
but leaveitin the input queue (nondestructive read). The file DEFCHR.ASM,
which is included below, has the needed definitions to use these entry
points.

Callwith:
AH = function to perform

AH = CHR_WRITE— Write character function
AL = character to write
AH = CHR_READ— Read character function
AH = CHR_STATUS— Status function
AL = Subfunction
AL = CHR_SFGS— Get status
AL = CHR_SFGC— Return configurationinfo to ES:BX
AH = CHR_CONTROL— Control function
AL = subfunction
AL = CHR_CFSU— Setup using new
configuration info at ES:BX
AL = CHR_CFCIl—Clear input
AL = CHR_CFCO—Clear output
AH = CHR_LOOK— Nondestructive read function

Page .39

Returns:

CY clear (normal exit)
Write— nothing returned
Read— AL = character read

Status

Get status— AH = status, AL = raw status,

BH = input queue size, BL = charsinqueue
Get config info— Config info copied to ES:BX

Control— nothing returned

Look— AL = first character ininput queue

CY set (error exit)
AX = error code

File: DEFCHR.ASM

= 0000
= 0001
= 0002
= 0000
= 0001
= 0002
= 0004
= 0080
= 0040
= 0020
= 0010
= 0008
= 0001
= 0003
= 0000

: DEFCHR - Definitions for the character devices (CON:, AUX:, and PRN:)

: Define functions of BIOS_CONFUNC, BIOS_PRNFUNC, and BIOS_AUXFUNC

CHR_WRITE
CHR_READ
CHR_STATUS
CHR_SFGS
CHRS_WA
CHRS_WD
CHRS_SN
CHRS_TXR
CHRS_RXR
CHRS_RXOF
CHRS_RXE
CHRS_TXE
CHR_SFGC
CHR_CONTROL
CHR_CFSU

EQU 0 ; Write function
EQU CHR_WRITE+ ; Read function
EQU CHR_READ+ ; Status function

EQU 0
EQU 00000001B
EQU 000000108
EQU 00000100B
EQU 100000008
EQU 010000008
EQU 001000008
EQU 000100008
EQU 00001000B
EQU CHR_SFGS+1
EQU CHR_STATUS+1

EQU 0

: Get status subfunction
; <ETX> sent, waiting for <ACK>
; <DC3> seen, waiting for <DCI>
: Sending nulls
; Transmitter ready to send data
; Receiver has data
; Receiver queue overflow
; Other type of reciver error
. Transmitter error
. Get configuration info subfunction

; Control function

; Setup new configuration parms subfunction

Page 1.40

= 0001 CHR_CFCI EQU CHR_CFSU+1 ; Clear input subfunction

= 0002 CHR_CFCO EQU CHR_CFCI+1 ; Clear output subfunction

= 0001 CHR_LOOK EQU CHR_CONTROL+1; Nondestructive read function
= CHR_FMAX EQU CHR_LOOK ; Maximum function number

; Configuration information packet

= (0000 CHRD_CLASS EQU 0 : Device class

= 0000 CHRDCL_CRT EQU 0 : Internal keyboard/display

= 0001 CHRDCL_SER EQU CHRDCL_CRT+1; 2661 serial port

= 0002 CHRDCL_PAR EQU CHRDCL_SER+1; PIA parallel port

= CHRDCL_MAX EQU CHRDCL_PAR ; Maximum class value

= 0001 CHRD_ATTR EQU CHRD_CLASS+1 ; Attributes

= (0001 CHRDA_SPI EQU 00000001B : Strip parity on input

= 0002 CHRDA_SPO EQU 00000010B ; Strip parity on output

= 0004 CHRDA_MLI EQU 00000100B : Map lower to upper case on input
= 0008 CHRDA_MLO EQU 00001000B ; Map lower to upper case on output

© The remaining fields are used only with the 2661 serial ports
. (except CHRD_NCHR and CHRD_NCNT which can be used by parallel printer)

= 0002 CHRD_PORT EQU CHRD_ATTR+1 ; Port number
= (0004 CHRD_BAUD EQU CHRD_PORT+2 ; Baud rate
= 0000 BD455 EQU 0 ; 45,9

= (001 BD050 EQU 1 ;90

= 0002 BDOT5 EQU 2 ;15

= 0003 BD110 EQU 3 ;110

= 0004 BD134 EQU 4 ; 134.5
= 0005 BD150 EQU 5 ;150

= 0006 BD300 EQU 6 ; 300

= 0007 BD600 EQU 7 ; 600

= 0008 BD120 EQU 8 ;1200

= 0009 BD180 EQU 9 ;1800

= (000A BD200 EQU 10 ;2000

= (000B BD240 EQU 11 ;2400

= 000C BD480 EQU 12 ; 4800

= 000D BD960 EQU 13 ;9600

= 000E BD192 EQU 14 ; 19200

Page .41

000F

0005
0000
0001
0002
0003
0004
0005
0006

0006

00Co
0040
0080
00C0
0020
0010
000C
0000
0004
0008
000C
0007

0008

0009

000A
0010

BD384
BDMAX
CHRD_HSHK
CHRDH_NO
CHRDH_EAH
CHRDH_DCH
CHRDH_DCDH
CHRDH_DCDL
CHRDH_DSRH
CHRDH_DSRL
CHRDH_MAX
CHRD_BCTL

CHRDB_SB
CHRDB_SB1
CHRDB_SB15
CHRDB_SB2

CHRDB_PT

CHRDB_PC

CHRDB_CL
CHRDB_CL5
CHRDB__CL6
CHRDB_CL7
CHRDB_CL8

CHRD_ECNT

CHRD_NCNT

CHRD_NCHR

CHRD_RES
CHRD_SIZE

EQU 15 ;
EQU BD384 ;
EQU CHRD_BAUD+1 ; H
EQU 0 :
EQU CHRDH_NO+1 ;
EQU CHRDH EAH+1 ;
EQU CHRDH_DCH+1 ;
EQU CHRDH_DCDH+1;
EQU CHRDH_DCDL+1;
EQU CHRDH_DSRH+1;

38400

Maximum valid baud rate
andshaking protocol

None

<EXT>/<ACK>

<DC3>/<DC1> (CTRL-S/CTRL-Q)
DCD (data carrier detect) high
DCD low

DSR (data set ready) high

DSR low

EQU CHRDH_DSRL

EQU CHRDH_HSHK+1 ;

EQU 110000008
EQU 040H
EQU 080H
EQU OCOH

EQU 001000008

EQU 00010000B

EQU 000011008
EQU 00H
EQU 04H
EQU 08H
EQU OCH

EQU CHRD_BCTL+1 ;

EQU CHRD_ECNT+1 ,

EQU CHRD_NCNT+1 ;
EQU CHRD_NCHR+1 ;
EQU CHRD_RES+6

; Maximum valid value
Stop bits/parity char length
: (2661 Mode register 1)
; Stop bits
1 stop bit
: 1.5 stop bits
: 2 stop bits
. Parity type(0=odd, 1=even)
. Parity contr (0=disabled, 1=enabled)
; Character length
. 5 bits
;6 bits
;7 bits
: 8 bits
If <ETX>/<ACK> used, chars to
send before <ETX> sent
Number of NULLs to send after
CHRD_NCHR seen
Character after which to send NULLS
Reserved for future use
Size of a CHRD

Page 1.42

APPENDIX |

= 0000
= 0001
= 0002
= 0003
= 0004
= 0005
= 0006
= 0007
= 0008
= 0009
= 000A

= 0000
= 0010

= 0000
= 0002
= 0004
= 0012
= 0000
= 0001
= 0014
= 0016
= 0018
= 001A
= 001C
= 001D
= 001E
= 001F
= 0020
= 0021
= 0022
= 0023

; Error codes that are returned

CHRE_ILGFH
CHRE_ILGFL
CHRE_NWR
CHRE_NRD
CHRE_BSUP
CHRE_WRB
CHRE_RDNR
CHRE_HTO
CHRE_ILR
CHRE_IQE
CHRE_NIQ

EQU 0 ; Illegal function code in AH
EQU CHRE_ILGFH+1; Illegal function code in AL
EQU CHRE_ILGFL+1; No writes allowed to device
EQU CHRE_NWR+1 ; No reads allowed to device
EQU CHRE_NDR+1 ; Bad set up parameters

EQU CHRE_BSUP+1 ; Device busy on write

EQU CHRE_WRB+1 ; Device not ready on read
EQU CHRE_RDNR+1 ; Software handshake time out
EQU CHRE_HTO+1 ; Illegal response from device
EQU CHRE_ILR+1 ; Input queue empty

EQU CHRE_IQE+1 ; Device has no input queue

; Internal character device control table (It includes an embedded CHRD)

CID_CHRD
CID_CLASS

CIDCL_CRT
CIDCL_SER
CIDCL_PAR
CID_TYPE
CIDTY_NORM
CIDTY_CSP
CID_IPORT
CID_OPORT
CID_SPORT
CID_CPORT
CID_ST
CID_IRM
CID_IPM
CID_ORM
CID_OPM
CID_ECTR
CID_NCTR
CID_SIZE

EQU 0 ; A CHRD
EQU CID_CHRD+CHRD_SIZE ; Class of character device
; (must be mult of 2)
EQU CHRDCL_CRT*2 ; Internal video/keyboard
EQU CHRDCL_SER*2 ; 2661 serial port
EQU CHRDCL_PAR*2 ; PIA parallel port
EQU CID_CLASS+2 ; Special types
EQU 0 ; Normal type
EQU CIDTY_NORM+1 ; Special CRT
EQU CID_TYPE+2 ; Input port
EQU CID_IPORT+2 ; Output port
EQU CID_OPORT+2 ; Status port
EQU CID_SPORT+2 ; Control port
EQU CID_CPORT+2 ; Status(see CHRD_SFGS for values)
EQU CID_ST+1 ; Input ready mask
EQU CID_IRM+1 ; Input polarity mask
EQU CID_IPM+1 ; Output ready mask
EQU CID_ORM+1 ; Output polarity mask
EQU CID_OPM+1 ; Char counter for sending<ETX>
EQU CID_ECTR+1 ; Null down countr
EQU CID_NCTR+1 ; Size of the CID

Page 1.43

= 0000
= 0002
= 0004
= 0006
= 0008
= 0009
= (000B
= 000D

)

: Define input queue for character devices

b

CQ_SADDR
CQ_EADDR
CQ_QSIZE
CQ_ELMTS
CQ_STATUS
CQ_FRONT
CQ_REAR
CQ_SIZE

EQU 0

EQU CQ_SADDR+2
EQU CQ_EADDR +2
EQU CQ_QSIZE+2
EQU CQ_ELMTS+2
EQU CQ_STATUS+1
EQU CQ_FRONT +2
EQU CQ_REAR+2

; Addr of start of queue

H

;. Addr of end of queue

Size of queue

Number of elements currently in queue
Status (as defined under CHR_STATUS)
Addr of first element in queue

Addr of last element in queue

Size of a CQ

Page 1.44

. DEFCONFG. ASM

00BO

00AE
E000
D000
€000
00D8

00DC

00DE
0007
00F0
00EQ

; Configuration type info

’

Z207A EQU 0BOH ; First Z-207 disk controller base port
; (See DEFZ207 to program controller)

Z217A EQU OAEH ; Reserved for future use

ZGRNSEG EQU OE000H ; Segment of green video plane

ZREDSEG EQU 0DOOOH : Segment of red video plane

ZBLUSEG EQU 0CO0CH ; Segment of blue video plane

ZVIDEOG EQU OD8H ; Video 68A21 port

; PAO -> enable red display

; PAl -> enable green display

; PA2 -> enable blue display

; PA3 -> not flash screen

; PA4 -> not write multiple red

; PA5 -> not write multiple green
; PA6 -> not write multiple blue

; PAT -> disable video RAM

: PAT-PBO -> LA15-LA8

; CAl - not used

: CA2 -> clear screen

; CB1 - not used

: CB2 -> value to write (0 or 1) on clear screen
; (see DEF6821 to program the 6821

ZCRTC EQU ODCH ; Video 6845 CRT-C port
; (see DEF6845 to program the 6845)
ZLPEN EQU ODEH ; Light pen latch
ZLPEN_BIT EQU 00000111B ; Bit hit by pen
ZLPEN_ROW EQU 11110000B ; Row hit by pen
ZPIA EQU OEOH ; Parallel printer plus light pen and

; video vertical retrace 68A21 port
: PAO -> PDATAlL
; PA1 -> PDATA2
; PA2 -> not STROBE
; PA3 -> not INIT
. PA4 <- VSYNC

Page 1.45

00E4
61A8

00FB
0001
0002
00E8
00EC

00F2
0000
0001
0002
0003
0004
0005
0006
0007

0040
00F0
0048

: PA5 -> clear VSYNC flip flop

: PA6 <- light pen switch

. PAT -> clear light pen flip flop
; PB0 <- BUSY

; PBl <- not ERROR

: PB2 -> PDATA3

: PB3 -> PDATA4

; PB4 -> PDATAS

; PB5 -> PDATA6

; PB6 -> PDATAT

; PBT -> PDATA8

: CAl <- light pen hit (from flip flop)
: CA2 <- VSYNC (from flip flop)

; CB1 <- not ACKNLG

: CB2 <- BUSY

; (See DEF6821 to program the PIA)

ZTIMER EQU OE4H : Timer 8253 port
ZTIMEVAL EQU 25000 : 100ms divide by N value
: (See DEF8253 to program the 8253)

ZTIMERS EQU OFBH : Timer interrupt status port
ZTIMERSO EQU 001H ; Timer 0 interrupt
ZTIMERS2 EQU 002H : Timer 2 interrupt

ZSERA EQU OE8H : First 2661-2 serial port

ZSERB EQU OECH ; Second 2661-2 serial port
: (See DEFEP2 to program 2661-2)

ZM8259A EQU OF2H . Master 82594 interrupt controller port
ZINTEI EQU 0 ; Parity error or $-100 pin 98 interrupt
ZINTPS EQU 1 : Processor swap interrupt
ZINTTIM EQU 2 ; Timer interrupt
ZINTSLV EQU 3 ; Slave 8259A interrupt
ZINTSA EQU 4 ; Serial port A interrupt
ZINTSB EQU 5 ; Serial port B interrupt
ZINTKD EQU 6 : Keyboard, Display, or Light pen interrupt
ZINTPP EQU 7 . Parallel port interrupt
; (See DEF8259A to program the 82594)

ZM8259A1 EQU 64 . Base interrupt number for master

7582594 EQU OF0H : Secondary 8259A interrupt controller port

ZS8259A1 EQU 72 : Base interrupt number for slave

Page 1.46

APPENDIX |

= 00F4 ZKEYBRD EQU OF4H ; Keyboard port

= 00F4 ZKEYBRDD EQU ZKEYBRD+0 ; Keyboard data port

= 00F5 ZKEYBRDC EQU ZKEYBRD+1 ; Keyboard command port

= 0000 ZKEYRES EQU 0 ; Reset command

= 0001 ZKEYARD EQU 1 ; Autorepeat on command

= 0002 ZKEYARF EQU 2 ; Autorepeat off command

= 0003 ZKEYKCO EQU 3 ; Key click on command

= 0004 ZKEYKCF EQU 4 ; Key click off command

= 0005 ZKEYCF EQU 5 ; Clear keyboard FIFO command

= 0006 ZKEYCLK EQU 6 ; Generate a click sound command
= 0007 ZKEYBEP EQU 17 ; Generate a beep sound command
= 0008 ZKEYEK EQU 8 ; Enable keyboard command

= 0009 ZKEYDK EQU 9 ; Disable keyboard command

= 000A ZKEYUDM EQU 10 ; Enter UP/DOWN mode command

= 000B ZKEYNSM EQU 11 ; Enter normal scan mode command
= 000C ZKEYEI EQU 12 ; Enable keyboard interrupts command
= 000D ZKEYDI EQU 13 ; Disable keyboard interrupts command
= 00F5 ZKEYBRDS EQU ZKEYBRD+1 ; Keyboard status port

= 0001 ZKEYOBF EQU 001H ; Output buffer not empty

= 0002 ZKEYT™F EQU 002H ; Input buffer full

= 00FC ZMCL EQU OFCH ; Memory control latch

= 0003 ZMCLMS EQU 00000011B ; Map select mask

= 0000 ZSMO EQU 0 ; Map select 0

= 0001 ZSM1 EQU 1 ; Map select 1

= 0002 ZSM2 EQU 2 ; Map select 2

= 0003 ZSM3 EQU 3 ; Map select 3

= 000C ZMCLRM EQU 00001100B ; Monitor ROM mapping mask

= 0000 ZRMO EQU 0*4 ; Power up mode - ROM everywhere on reads
= 0004 ZRM1 EQU 1*4 ; ROM at top of every 64K page

= 0008 ZRM2 EQU 2%4 ; ROM at top of 8088's addr space
= 000C ZRM3 EQU 3*4 ; Disable ROM

= 0010 ZMCLPZ EQU 00010000B ; 0=Set Parity to the zero state

= 0020 ZMCLPK EQU 00100000B ; 0=Disable parity checking circuity

Page .47

APPENDIX |
= 00FD ZHAL EQU OFDH . Hi-address latch
= 00FF ZHALS85 EQU OFFH ; 8080 Mask
= 000F ZHALSS EQU OFOH ; 8088 Mask
= Q0FE ZPSP EQU OFEH ; Processor swap port
= 0080 ZPSPPS EQU 10000000B ; Processor select (0=8085, 1=8088)
= 0000 ZPSPPS5 EQU 00000000B ; Select 8085
= 0080 ZPSPPS8 EQU 10000000B ; Select 8088
= 0002 ZPSPSI EQU 00000010B ; Generate interrupt on swapping
= 0001 ZPSPI8 EQU 00000001B ; 8088 processes all interrupts
= Q0FF ZDIPSW EQU OFFH ; Configuration dip switches
= 0007 ZDIPSWBOOT EQU 00000111B ; Boot device field
= 0008 ZDIPSWAB EQU 00001000B ; 1=Auto boot(0=Manual boot)

= 0070 ZDIPSWRES EQU 01110000B ; Reserved
= 0080 ZDIPSWHZ EQU 10000000B ; 0=60Hz (1=50HZ)

Page .48

MONITOR-100 Subroutine Entry Points:

MTR-100 Global Subroutine Vectors (Address Offsets from FEOOOH Base)

Monitor Subroutine Vectors

File: DEFMTR.ASM

0000
0000
0000
0005
0005
000A
000A
000F
000A
0014
0014
0019
0019
001E
001E
0023
0023
0023

. Definitions for the Monitor ROM

. Entry points to ROM monitor

MTR_SEG SEGMENT AT OFEO1H

ORG
MTR_RES
ORG
MTR_MON
ORG
MTR_SWIM
ORG
MTR_DCRT
ORG
MTR_DKBD
ORG
MTR_SCRT
ORG
MTR_SKBD
ORG

000H
LABEL
005H
LABEL
00AH
LABEL
00FH
LABEL
014H
LABEL
019H
LABEL
01EH
LABEL
023H

MIR_TTY_INTR LABEL

MTR_SEG ENDS

FAR

FAR

FAR

FAR

FAR

FAR

FAR

FAR

H

Segment addr for Monitor ROM calls
Reset function

Reset function

Monitor call

Trace/breakpoint handler

Dumb display output

Dumb keyboard handler

Smart display output

. Smart keyboard input

- Vertical retrace interrupt handler

Page 1.49

0000
0000

0000
0000
0005
= 0001
0006

MIR_D_SEG SEGMENT AT 0

ORG

000H

; Monitor Parameters

MTR_WIP

MTR_VER
MTR_CVER
MIR_DS_SIZE

LABEL FAR
DB 5 DUP(?)
DB ?

EQU 01H

ow ?

; ROM Monitor data segment (not really located at 0)

; Far jump to wild interrupt handler

; the far jump

; BCD version of ROM monitor

; Lowest version BIOS can run on

; Size of the ROM monitor data segment

Page 1.50

APPENDIX |

s

; Boot parameters

0008 MTR_BINDX DB ? ; Boot device index

0009 MTR_BPORT DB ? ; Boot device base port number
000A MTR_BSTRING DB 80 DUP(?) ; Boot string

005A MTR_BUNIT DB ? : Boot unit number

; Pointers to All sorts of things

005B MTR_DCI DD ? : Addr of Display Character Initialization Routine

005F MTR_DFC DD ? ; Addr of Display Font Character Routine

0063 MTR_DXMTC DD ? ; Addr of Dumb Keyboard Transmit Character Routine

0067 MTR_EDC DD ? ; Addr of Erase Display Character Routine

006B MTR_EMEC DD ? . Addr of Extended-Mode Escape Character Handler Routine
006F MTR_FONT DD ? ; Addr of Character Font table

= 07E0 MTR_FNT_SIZE EQU 9*(235-' ') ; Size of reserved font table (number of bytes copied from rom fon

0073 MTR_MDC DD ? ; Addr of Move Display Characters Routine

0077 MTR_MDL DD ? ; Addr of Display Line Routine

0078 MTR_PROMPT DD ? : Addr of Display ROM Monitor Prompt Routine

007F MTR_RDC DD ? : Addr of Read Displayed Character Routine

0083 MTR_SXMTC DD ? ; Addr of Smart Keyboard Transmit Character Routine
0087 MTR_UIES DD ? . Addr of Unimplemented Escape Sequence Handler Routine
008B MTR_XCA DD ? : Addr of Transmit Character Attributes Routine

. If version = 1, next word is not present, and all references must have
: -2 added to them for labels beyond this point

008F MTR_FNTSIZ DW ? ; Size of FONT in bytes (If version > 1)
0091 MTR_KYB DW 256 DUP (?) ; Keyboard map table
0191 MTR_CHR DW 256 DUP (?) ; Display map table

0291 MTR_HORP DW ?
0292 MTR_VERP DW ?
0293 MTR_D_SEG ENDS

: Horizontal position of cursor (column)
; Vertical position of cursor (row)

0000 TPAGE_SEG SEGMENT AT 0
03FE ORG 03FEH
03F3 MTR-DS LABEL WORD : Location that contains monitor DS value

; The interrupt area page

03FE IPAGE_SEG ENDS

Page J.1

APPENDIX J

System Structure and Memory Maps

System Memory Map

ROM INTERFACE & LOOKUP TABLES

GREEN

RED

BLUE

ANANNNANANANNNAN

OPTIONAL USER MEMORY
ON S-100 BOARDS

ANAANNAAANANA

OVERLAID COMMAND.COM

Resident Portion of
COMMAND.COM

Z-DOS.SYS

ROM WORK SPACE (1K)

10.SYS WORK SPACE (256 bytes)

10.SYS

Interrupt Vectors

~—See Detail
onPageJ.2

-~ E0000

-—DO0000

- C0000

- Top of
Contiguous
RAM
(128-192K)

<0040

page J.2

ROM Interface & Lookup Tables

8088 RESET JUMP VECTOR

FONT DEFINITIONS

MTR-100 IMPLEMENTATION

GLOBAL SUBROUTINE VECTORS

8085 INTIAL RESET CODE

~FFFFF

~<FFFFO

~<FFB70

-<«FEO050

-<FEO10

-FE000

Page J.3

APPENDIX J
Z-100 Memory Map by ROM Option
ROMoption: (0) (1) (2) (3)
1 MB
FE000>
FOO0O0H
GREEN GREEN GREEN GREEN
EO000H
RED RED RED RED
DO000OH
BLUE BLUE BLUE BLUE
CO0000H
VAAAAAN V V.V V.V, V.V VANAANNN \AANAAN
192K-> 192K->] 192K-> = 192K->
184K/
128K-> 128K-> 128K-> 128K->
120K/
64K-> 64K-> 64K-> 64K->
56
00H OOH OOH 00H
MEMCTL: Bit3 =0 Bit3=0 Bit3 =1 Bit3 =1
Bit2=0 Bit2 =1 Bit2=0 Bit2=1
(AIIROM) (8K at Top of (8KatTop (NoROM)
each Page) 8088 Address)
RAMMEMCTL:Bit0 = MAPSELO Bit1 = MAPSEL1
Option: (0) (1) (2)
Bit1=0 Bit1=0 Bit1=1
Bit0=0 Bit0 =1 Bit0=0
(Power Up (Replaces (Replaces
Contiguous 0-48K 0-48K
Addresses) with Seg with Seg
64K-112K) 112K-160K)

(These keep 48K-64K constant)

Page J.4

“t)
X

i
P

I/0 Port Assignments

Device Name

DIP Switch
Swap Port (PSP)

High Address Latch (HIGHADDR)

Memory Control Latch (MEMCTL)
Timer Status (TIMRSTAT)

reserved

8041A Keyboard
8259A Master
8259A Slave

SerialB
Serial A
8253 Timer

68A21 Parallel
reserved
6845 CRTC

Video 68A21
reserved
Secondary Z-207

Primary Z-207
reserved

Port Address

FF
FE
FD

FC
FB
fa-f6

F5-F4
F3-F2
F1-FO

EF-EC
EB-E8
E7-E4

E3-EO
df-de
DD-DC

DB-D8
d7-c0
BF-B8

B7-B0O
af-a8

Page J.5

Keyboard Port Addresses and Command Summary

Port

Command Port
Status Port
Data Port

Command

Reset

Autorepeat On
Autorepeat Off

Key Click On

Key Click Off
ClearFIFO

Click

Beep

Enable Keyboard
Disable Keyboard
Key Up/Down Mode
Normal Scan Mode

Address

D5
D5
D4

Code

00
01

02
03
04
05
06
07
08
09
0A
0B

page J.6

Page K.1

MACRO-86 Table of Directives

Memory Directives

ASSUME <seg-reg>:<seg-name>[,<seg-reg>:<seg-name>...]

ASSUME NOTHING

COMMENT <delim><text><delim>

<name>
<name>
<npame>
<name>
<name>

<name>
<name>

<name>

<name>

<nhame>

<proc-name>

<name>

<name>
<name>

<seg-name>

<name>

<struc-name>

DB <exp>
DD <exp>
DQ <exp>
DT <exp>
DW <exp>

END [<exp>]

EQU <exp>

= <exp>

EXTRN <name>:<type>[,<name>:<type>...]
PUBLIC <name>[,<name>...]

LABEL <type>

NAME <module-name>

PROC [NEAR]
PROC[FAR]

ENDP

.RADIX <exp>
RECORD <field>:<width>[=<exp>][,...]

GROUP <segment-name>[,...]
SEGMENT [<align>][<combine>][<class>]

ENDS

EVEN

ORG <exp>
STRUC

ENDS

Page K.2

Macro Directives

ENDM

EXITM

IRP <dummy>,<parameters in angle brackets>

IRPC <dummy>,string

LOCAL <parameter>[,<parameter>...]
<name> MACRO <parameter>{,<parameter>...]

PURGE <macro-name>|,...]

REPT <exp>

Special Macro Operators

& (ampersand) — concatenation

<text> (angle brackets — single literal)

;; (double semicolons) — suppress comment

I (exclamation point) — next character literal

% (percent sign) — convert expression to number

Conditional Directives

ELSE

ENDIF

IF <exp>

IFB <arg>

IFDEF <symbol>
IFDIF <arg1>,<<arg2>
IFE <exp>

IFIDN <arg1>,<arg2>
IFNB <arg>

IFNDEF <symbol>

IF1
IF2

Page K.3

Listing Directives

.CREF

.LALL
.LFCOND
LIST

%O0UT <text>
PAGE <exp>
SALL
.SFCOND
SUBTTL <text>
.TFCOND
TITLE <text>
XALL
XCREF
XLIST

Attribute Operators
Override operators

Pointer (PTR)
<attribute> PTR <expression>
Segment Override (:) (colon)
<segment-register>:<address-expression>
<segment-name>:<address-expression>
<group-name>:<address-expression>
SHORT
SHORT <label>
THIS
THIS <distance>
THIS <type>

Page K.4

Value Returning Operators

SEG

SEG <label>

SEG <variable>
OFFSET

OFFSET <label>

OFFSET <variable>
TYPE

TYPE <label>

TYPE <variable>
.TYPE

.TYPE <variable>
LENGTH

LENGTH <variable>
SIZE

SIZE <variable>

Record Specific operators

Shift-count— <record-fieldname >
<record-fieldname>
MASK
MASK <record-fieldname>
WIDTH
WIDTH <record-fieldname>
WIDTH <record>

Page K.5

Precedence of Operators
All operators in a single item have the same precedence, regardless of the
order listed within the item. Spacing and line breaks are used for visual clar-
ity, not to indicate functional relations.
1. LENGTH, SIZE, WIDTH, MASK
Entries inside:
parenthesis ()
angle brackets < >
square brackets|[]
structure variable operand: <variable>.<field>
2. segmentoverride operator: colon (:)
3. PTR,OFFSET, SEG, TYPE, THIS
4. HIGH,LOW
5. *,/,MOD, SHL, SHR

6. +, — (bothunary andbinary)

7. EQ,NE,LT,LE,GT,GE
8. LogicalNOT
9. Logical AND

10. Logical OR, XOR

11. SHORT,.TYPE

Page K.6

Page L.1

[
]

8088 (8086) Instructions (Alphabetic)

The mnemonics are listed alphabetically with their full names. The 8086 in-
structions are also listed in groups based on the type of arguments the in-
struction takes, (see Appendix M).

Mnemonic FullName

AAA ASCI! adjust for addition
AAD ASCII adjust for division
AAM ASCII adjust for multiplication
AAS ASCI! adjust for subtraction
ADC Add with carry

ADD Add

AND AND

CALL CALL

CBW Convert byte to word

CLC Clearcarryflag

CLD Clear direction flag

CL! Clear interruptflag

CMC Complement carry flag

CMP Compare

CMPS Compare byte or word (of string)
CMPSB Compare byte string
CMPSW Compare word string

CwWD Convert word to double word
DAA Decimal adjust for addition
DAS Decimal adjust for subtraction
DEC Decrement

DIV Divide

ESC Escape

HLT Halt

DIV Integer divide

IMUL Integer multiply

IN Input byte or word

INC Increment

INT Interrupt

INTO Interrupt on overflow

IRET Interrupt return

JA Jump on above

Page L.2

Mnemonic

JAE
JB
JBE
JC
JCXZ
JE
JG
JGE
JL
JLE
JMP
JNA
JNAE
JNB
JNBE
JNC
JNE
JNG
JNGE
JNL
JNLE
JNO
JNP
JNS
JNZ
JO
JP
JPE
JPO
JS
JZ
LAHF
LDS
LEA
LES
LOCK

Full Name

Jump on above or equal
Jump onbelow

Jump on below or equal
Jumponcarry

Jumpon CX zero

Jump on equal

Jump on greater

Jump on greater or equal
Jumponlessthan

Jumpon less than or equal
Jump

Jump on not above

Jump on not above or equal
Jump on not below

Jump on not below or equal
Jumponnocarry

Jump on not equal

Jump on not greater

Jump on not greater or equal
Jump on not less than
Jump on not less than or equal
Jump on not overflow
Jump on not parity

Jump on not sign

Jumpon not zero

Jump on overflow

Jump on parity

Jump on parity even

Jump on parity odd

Jump onsign

Jump on zero

Load AH with flags

Load pointer into DS

Load effective address
Loadpointerinto ES

LOCK bus

Page L.3

Mnemonic

LODS
LODSB
LODSW
LOOP
LOOPE
LOOPNE
LOOPNZ
LOOPZ
MOV
MOVS
MOVBS
MOVSW
MUL
NEG
NOP
NOT
OR
ouT
POP
POPF
PUSH
PUSHF
RCL
RCR
REP
REPE
REPZ
REPNE
REPNZ
RET
ROL
ROR
SAHF
SAL
SAR
SBB
SCAS

Full Name

Load byte or word (of string)
Load byte (string)

Load word (string)

LOOP

LOOP while equal

LOOP while notequal
LOOP while not zero
LOOP while zero

Move

Move byte or word (of string)
Move byte (string)

Move word (string)
Multiply

Negate

No operation

NOT

OR

Output byte orword

POP

POP flags

PUSH

PUSH flags

Rotate through carry left
Rotate through carry right
Repeat

Repeatonequal
Repeaton zero

Repeat on notequal
Repeat on not zero
Return

Rotate left

Rotate right

Store AH into flags

Shift arithmetic left

Shift arithmetic right
Subtract with borrow
Scan byte or word (of string)

page L.4

Mnemonic Full Name
SCASB Scan byte (string)
SCASW Scanword (string)
SHL Shift left
SHR Shift right
STC Setcarryflag
STD Setdirection flag
STI Setinterruptflag
STOS Store byte or word (of string)
STOSB Store byte (string)
STOSW Store word (string)
suB Subtract
TEST TEST
WAIT WAIT
XCHG Exchange
XLAT Translate
XOR Exclusive OR

Page M.1

APPENDIX M

8088 (8086) Instructions (by Argument)

In this appendix, the instructions are grouped according to the type of argu-
ment(s) they take. In each group the instructions are listed alphabetically in
the first column. The formats of the instructions with the valid argument
types are shown in the second column. If a format shows OP, that format
is legal for all the instructions shown in that group. If a format is specific to
one mnemonic, the mnemonic is shown in the format instead of OP.

The following abbreviations are used in these lists:

OP = opcode; instruction mnemonic
reg = byteregister (AL,AH,BL,BH,CL,CH,DL,DH)
or word register (AX,BX,CX,DX,SI,DI,BP,SP)
r/m = register or memory address orindexed and/or based
accum = AXorALregister
immed = immediate
mem = memory operand
segreg = segmentregister (CS,DS,SS,ES)

General Operand Instructions

Mnemonics Argument Types
ADC OPreg,r/m

ADD OPr/m,reg

AND OP accum,immed
CMP OP r/m,immed
OR

SBB

suB

TEST

XOR

Page M.2

CALL and JUMP Type Instructions

Mnemonics Argument Types
CALL OP mem (NEAR)(FAR) direction
JMP OP r/m (indirect data -- DWORD, WORD)

Relative jumps

Argument Type

OP addr (+129 or — 126 of IP at start, or =127 at end of jump

instruction)
Mnemonics
JA JC JZ JNGE JNP
JNBE JNAE JG JLE JPO

JAE JBE JNLE JNG JNS
JNB JNA JGE JNE JO
JNC JCXZ JNL JNZ JP
JB JE JL JNO JPE
JS

Loop instructions

Same as Relative Jumps

Mnemonics

LOOP LOOPE LOOPZ LOOPNE LOOPNZ
Return Instructicn

Mnemonic Argument Type

RET [immed] (optional, number of words to POP)

Page M.3

No Operand Instructions

Mnemonics

AAA CLD DAA LODSB PUSHF
AAD CLl DAS LODSW SAHF
AAM CMC HLT MOVSB SCASB
AAS CMPSB INTO MOVSW SCASW
cBwW CMPSW IRET NOP STC
CLC CWD LAHF POPF STD

Load Instructions

Mnemonics

Argument Type

LDS
LEA
LES

OP r/m (except that OP regis illegal)

Move Instructions

Mnemonic

Argument Types

MOV

OP mem,accum

OP accum,mem

OP segreg,r/m (except CSisillegal)
OPr/m,segreg

OPr/m,reg

OPreg,r/m

OPreg,immed

OPr/m,immed

STl
STOSB
STOSW
WAIT
XLAT

Page M.4

Push and Pop Instructions

Mnemonics Argument Types

PUSH OP word-reg
POP OP segreg (POP CSisillegal)
OPr/m

Shift/Rotate Type Instructions

Mnemonics Argument Types

RCL OPr/m,1
RCR OPr/m,CL
ROL

ROR

SAL

SHL

SAR

SHR

Input/Output instructions

Mnemonics Argument Types

IN IN accum,byte-immed (immed = port 0 — 255)
IN accum,DX

ouT OUT immed,accum
OUT DX,accum

Increment/Decrement Instructions

Mnemonics Argument Types

INC OP word-reg
DEC OPr/m

Page M.5

Arithmetic — Multiply/Division/Negate/Not

Mnemonics Argument Types

DIV OP r/m (implies AXOP r/m, except NEG)
iDIV

MUL

IMUL

NEG (NEG implies AXOP NOP)

NOT

Interrupt instruction

Mnemonic Argument Types

INT INT 3 (value 3 is one byte instruction)
INT byte-immed

Exchange instruction

Mnemonic Argument Types

XCHG XCHG accum,reg
XCHG reg,accum
XCHG reg,r/m
XCHG r/m,reg

Miscellaneous Instructions

Mnemonics Argument Types

XLAT XLAT byte-mem (only checks argument, not
in opcode)
ESC ESC 6-bit-number,r/m

Page M.6

String Primitives

These instructions have bits to record only their operand(s), if they are byte
orword, and if a segment override is involved.

Mnemonics Argument Types

CMPS CMPS byte-word,byte-word
(CMPS right operand is ES)
LODS LODS byte/word,byte/word
(LODS one argument = no ES)
MOVS MOVS byte/word,byte/word
(MOVS leftoperand is ES)
SCAS SCAS byte/word,byte/word
(SCAS one argument = ES)
STOS STOS byte/word,byte/word

(STOS one argument = ES)

Repeat Prefix to String Instructions
Mnemonics

LOCK REP REPE REPZ REPNE REPNZ

Page N.1

APPENDIX N

Character Font Files

To make the Z-100 more useful, seven alternate character fonts have been
provided — Danish, English, French, German, Italian, Spanish, and
Swedish. These are the files on Distribution Disk Il that have .CHR exten-
sions and a filename of the language (e.g., FRENCH.CHR is the French
Character Font).

To use the alternate font, boot your Z-100 with a Z-DOS system disk. After
the system has booted, rename the correct font file of the language you need
to ALTCHAR.SYS, like:

A: COPY <filename>.CHR=ALTCHAR.SYS RETURN
The next time that you boot from this disk, the new font and keyboard map-
ping will be reconfigured to match the language set that you have chosen.
Forinstance, for German, you enter:

A: COPY GERMAN.CHR=ALTCHR.SYS RETURN
The alternate font is implemented by 10.SYS after it has initialized the hard-

ware, Z-DOS and the disks. It then looks at the disk to see if there is a file
named ALTCHAR.SYS on the booted disk.

Page N.2

If no ALTCHAR.SYS file is found, 10.SYS continues its regular functions and
loads COMMAND.COM.

If ALTCHAR.SYS is found, I0.SYS read the file and changes the mapping
for both the font and the key codes.

The format of the alternate font file is in two basic parts — keyboard map and
the fontindex. The keyboard mapper occurs first in the form:

Keyboard Map
<code> <swap>

FF FF

where code is the value generated by the keyboard processor; swap is the
value that code is to be mapped to; and FFH is the terminator for both code
and swap data.

The font index follows the keyboard map and is a one byte font index fol-
lowed by a nine byte description. The font information terminates with FFH
as the fontindex, or an End-of-file (EOF) terminator.

page O.1

ASCII Character and Escape Sequence Codes

Control Characters

Dec Hex ASCIl Control Z-100 Z-DOSUsage
Char Character KEY Description

000 00H NUL CTRL-@

001 01H SOH CTRL-A

002 02H STX CTRL-B

003 03H ETX CTRL-C Aborts currentcommand.
004 04H EOT CTRL-D

005 05H ENQ CTRL-E

006 06H ACK CTRL-F

007 07H BEL CTRL-G

008 08H BS CTRL-H BACK Removeslastcharacter
SPACE fromcommandline,
and erases character
from video screen.
009 O9H HT CTRL-I TAB
010 OAH LF CTRL-J LINE Inserts physical end-of-

FEED line, but does not empty

command line. Uses
LINE FEED to extend the
current logical line
beyond the physical limi-
tation of one terminal
line.

011 OBH VT CTRL-K

012 OCH FF CTRL-L

013 ODH CR CTRL-M RETURN

014 OEH SO CTRL-N Cancels echoing of
outputto line printer.

015 OFH Si CTRL-O

016 10H DLE CTRL-P Echoes terminal output
toline printer.

017 11H DC1 CTRL-Q

018 12H DC2 CTRL-R

Page 0.2

APPENDIX
ASCIl Character scape Sequ
Dec Hex ASCIl Control Z-100 Z-DOS Usage
Char Character KEY Description
019 13H DC3 CTRL-S Suspends display of out-
put to terminal screen.
(Any other key resumes
display.)
020 14H DC4 CTRL-T
021 15H NAK CTRL-U
022 16H SYN CTRL-V
023 17H ETB CTRL-W
024 18H CAN CTRL-X Cancels the current line,
empties the command
line, and then outputs a
back slash (\\),
RETURN and LINE
FEED. The template
used by special editing
commands is not af-
fected.
025 19H EM CTRL-Y
026 iAH SUB CTRL-Z
027 iBH ESC CTRL- ESCAPE
028 1ICH FS CTRL-\
029 iDH GS CTRL-]
030 1EH RS CTRL-*
031 1FH us CTRL--
Printable Characters
Dec Hex CHR Name
032 20H SP Space
033 21H ! Exclamation point
034 22H ” Quotation mark
035 23H # Number sign
036 24H $ Dollar sign
037 25H % Percent sign
038 26H & Ampersand
039 27H ' Acute accent or Apostrophe
040 28H (Opening parenthesis
041 29H) Closing parenthesis
042 2AH * Asterisk
043 2BH + Plus sign

Page 0.3

Dec Hex CHR Name

044 2CH , Comma

045 2DH - Hyphen or Minus sign
046 2EH . Period or Decimal point
047 2FH / Slash

048 30H 0 Number zero

049 31H 1 Number one

050 32H 2 Numbertwo

051 33H 3 Number three

052 34H 4 Number four

053 35H 5 Number five

054 36H 6 Number six

055 37H 7 Number seven

056 38H 8 Number eight

057 39H 9 Number nine

058 3AH : Colon

059 3BH ; Semicolon

060 3CH < Less than or Left angle bracket
061 3DH = Equalsign

062 3EH > Greater than or Right angle bracket
063 3FH ? Question mark

064 40H @ Atsign

065 41H A LetterA

066 42H B LetterB

067 43H C LetterC

068 44H D LetterD

069 45H E LetterE

070 46H F LetterF

071 47H G Letter G

072 48H H LetterH

073 49H I Letter|

074 4AH J LetterJ

075 48BH K LetterK

076 4CH L LetterL

077 4DH M LetterM

078 4EH N LetterN

079 4FH 0] Letter O

080 50H P LetterP

081 51H Q LetterQ

082 52H R Letter R

Page 0.4

Dec Hex CHR Name

083 53H S LetterS
084 54H T LetterT

085 55H U LetterU
086 56H Vv LetterV
087 57H w Letter W
088 58H X Letter X
089 59H Y LetterY
090 5AH Z LetterZ

091 5BH [Left bracket
092 5CH . Back slash
093 5DH] Right bracket
094 5EH A Caret

095 5FH _ Underscore
096 60H N Grave Accent
097 61H a Lettera

098 62H b Letterb

099 63H c Letterc

100 64H d Letterd

101 65H e Lettere

102 66H f Letterf

103 67H g Letterg

104 68H h Letterh

105 69H i Letteri

106 6AH | Letter]j

107 6BH k Letterk

108 6CH | Letter|

109 6DH m Letterm
110 6EH n Lettern

111 6FH o] Lettero

112 70H p Letterp

113 71H q Letterq

114 72H r Letterr

115 73H S Letters

116 74H t Lettert

117 75H u Letteru

118 76H ' Letterv

119 77H w Letterw
120 78H X Letterx

Page Q.5

Dec Hex CHR Name

121 79H y Lettery
122 7AH z Letterz
123 7BH { Leftbrace
124 7CH | Stile

125 7DH } Rightbrace
126 7EH ~ Tilde

127 7FH DEL DELETE

Z-100 Escape Sequence Functions

Sequence Description

ESC * Transmit Current Line
ESC- Transmit Character at Cursor
ESCiO Zenith Identify Terminal Type

Z-100 Responses:
ESC i E <banks> <size>

where <banks> is either 1 (1 Bank of VRAM) or 3 (3
banks of VRAM)

where <size> is A (32K VRAM parts) or B (64K VRAM
parts)

Page 0.6

ESC m <fore> <back>
Set Foreground and Background Colors where fore is fore-
ground color; where back is background color; and the color
is inthe range O through 7:

0 = Black

1 = Blue

2 =Red

3 = Magenta

4 = Green

5= Cyan

6 = Yellow

7 = White
ESCx; Set Non-Blinking Cursor
ESCx< Disable Keyboard Autorepeat
ESCx? Enable Key Expansion (Keyboard generates Escape Se-

quences)

Sequence Description

ESCy; Set Blinking Cursor
ESCy< Enable Keyboard Autorepeat

ESCy? Disable Key Expansion (Keyboard generates 8-bit charac-
ters)

Page 0.7

Z-100
FO

F1

F2

F3

F4

F5

F6

F7

F8

F9
F10
F11
F12
I/D Char

I/DLine

H/Z-19KEY Normal Shifted
ERASE ESCJ ESCE
F1 ESCS ESC1A
F2 ESCT ESC1B
F3 ESCU ESC1C
F4 ESCV ESC1D
F5 ESCW ESC1E
BLUE ESCP ESC1F
RED ESCQ ESC1G
GRAY ESCR ESC1H
--- ESCOI ESC1I
ESCOJ ESC1J
--- ESCOK ESC1K
--- ESCOL ESCI1L
IC/DC ESC @/ ESCN
iL/DL ESCL ESCM

Page 0.8

Z-100

Up Arrow
Dn Arrow
Rt Arrow
L+ Arrow
HOME
BREAK

HELP

Escape Sequences for H/Z-19 and Z-100 Terminals

Sequence
ESC #
ESC/K
ESCOI
ESCOJ
ESC1A
ESC1B
ESC1C
ESC1D
ESC1E
ESC1F

ESC1G

H/Z-19KEY Normal Shifted
Up Arrow ESCA ESCA
Dn Arrow ESCB ESCB
Rt Arrow ESCC ESCC
L+ Arrow ESCD ESCD
HOME ESCH ESCH
ESC! ESC!

ESC ~ ESC ~

Function

Transmit page

Response: VT52 identify

Functionkey #9

Functionkey #10

Shift function key #1

Shift function key #2

Shift function key #3

Shift function key #4

Shift function key #5

Shift function key #6

Shift function key #7

Used By:
H/Z-19(h)/Z-100(z)

hz

hz

Page 0.9

Sequence
ESC1H
ESC1l
ESC=
ESC >
ESC?M
ESC?n
ESC?p
ESC7?q
ESC?r
ESC?s
ESC 7t
ESC?u
ESC?v
ESC?w
ESC ?x
ESC?y
ESC@
ESCA

ESCB

Function
Shift function key #8

Shift function key #9

Enter alternate keypad mode
Exit alternate keypad mode
“ENTER”

o W
“0"

“q

woy

“3” > Key Names
g
ag
“6"
w

“8!!

“9”)
Enter insert character mode
Cursorup

Cursor down

Used By:
H/Z-19(h)/Z-100(z)

z

hz

hz

hz

hz

hz

hz

hz

hz

hz

hz

hz

hz

hz

hz

hz

hz

hz

page O.10

Sequence

ESCC
ESCD

ESCE
ESCF

ESCG

ESCH
ESCI

ESCJ

ESCK

ESCL
ESCM
ESCN
ESCO
ESCP
ESCQ
ESCR
ESCS

ESCT

Function

Cursor right

Cursor left

Clear entire display

Enter graphic mode
Exitgraphic mode

Move cursor to home position
Reverse index (reverse scroll)

Erase from cursor position to end
of screen

Erase from cursor position to end
ofline

Perform aninsertline
Perform adeleteline
Perform a delete character
Exitinsert character mode
Function key #6 (BLUE)
Function key #7 (RED)
Function key #8 (WHITE)
Functionkey #1

Function key #2

Used By:
H/Z-19(h)/Z-100(h)

hz
hz

hz

hz

hz

hz

hz

hz

hz

hz

hz

hz

hz

hz

hz

hz

hz

hz

Page 0.11

sequence

ESCU
ESCV

ESCW
ESCY <In#> <col#>
ESCZ
ESC{
ESC\
ESC]
ESC *
ESC __
ESCiO
ESCiE
ESCj
ESCk
ESCI

ESC m <fore> <back>

ESCn

ESCo

Function

Function key #3

Function key #4

Function key #5

Cursor addressing

Identify as VT52 (ESC/K)
Enter hold screen mode
Exit hold screen mode
Transmit status line
Transmitcurrentline
Transmit character at cursor
Request terminal type
Response: for Z-100

Save current cursor position
Restore cursor position
Erase entire line

Set foreground and background
colors

Cursor position report

Erase from beginning of line to
cursor

Used By:
H/Z-19(h)/Z-100(z)

hz

hz

hz

hz

hz

hz

hz

hz

hz

hz

hz

hz

hz

Page 0.12

Sequence

ESCp
ESCq
ESCt

ESCu
ESCv

ESCw

ESCx1
ESCx2
ESCx3
ESCx4
ESCx5
ESCx6
ESCx7

ESCx8
ESCx9

ESCx;
ESCx <

ESCx?

Function

Enter reverse video mode
Exitreverse video mode
Enter keypad shifted mode

Exit keypad shifted mode

Enter wrap at end of line mode
Exitwrap atend of line mode
Enable 25th line

Disable keyboard click

Enter hold screen mode

Set “block” cursor

Disable cursor

Enter keypad shifted mode
Enter keypad alternate mode

Enable auto line feedon
carriage return

Enable auto carriage return on
line feed

Set “non-blinking” cursor
Disable keyboard auto repeat

Enable key expansion

Used By:
H/Z-19(h)/Z-100(z)

hz

hz

hz

hz

hz

hz

hz

hz

hz

hz

hz

hz

hz

hz

hz

Page O0.13

Used By:
Sequence Function H/Z-19(h)/Z-100(z)
ESCy 1 Disable 25th line hz
ESCy2 Enable keyboard click hz
ESCy3 Exit hold screen mode hz
ESCy4 Set “underline” cursor hz
ESCy5 Enable cursor hz
ESCy®6 Exit keypad shifted mode hz
ESCy7 Exit keypad alternate mode hz
ESCy8 Disable auto linefeed on hz
carriage return
ESCy9 Disable auto carriage returnon hz
line feed

ESCy; Set “blinking” cursor z
ESCy< Enable keyboard auto repeat z
ESCy? Disable key expansion z

ESCz Reset to power-up configuration hz

ESC{ Enable keyboard hz

ESCi Break key was pressed z

ESC} Disable keyboard hz

ESC’ HELP key z

Page 0.14

Page P.1

APPENDIX P

Notes on Writing Z-DOS Programs

How to Structure a Program so it Will Run Under Z-DOS
(MS-DOS)

There are two types of executable files in Z-DOS (MS-DOS). These are
.EXE files and .COM files. Below are the advantages and disadvantages of
each:

.COM

Advantages
® ltisatleast512bytes shorterthan .EXE file.
® Ittakesalittle less time to load than .EXE file.

Disadvantages
® Itmustbe less than 64K bytes long.
® [tmustbe positionindependent code.
® Itcan notbe produced by high level compiler.
® Itmustuse the 8080 segment model.

.EXE
Advantages
® [tcanbe up to 384K bytes long (you must also have enough phys-

ical memory).

® |tcanuse any segment model.

® It can have position dependent code (which is patched when the
program is loaded).

® [tcanuse subroutines produced by high level compilers.

Disadvantages
® ltislarger by atleast 512 bytes (header) than .COM files.
® [tcantake longertoload than .COMfiles.
® |tis hardertouse some OS functions.

Page P.2

For both .EXE and .COM files, a program header is contructed when the pro-
gram is loaded. The format of the program header is defined in the include
file DEFMS.ASM. The conditions that exist for both .COM and .EXE files at
program startup are as follows:

The disk transfer address (DTA) is set to 80H in the progrm header
(the default I/0 area).

The file control blocks (FCB'’s) at 5CH and 6CH in the program
header are formatted (i.e., converted to upper case and blanked
after from the first two parameters entered on the command line).

The unformatted parameter area at 81H in the program header
contains all the characters entered after the command name (in-
cluding leading and embedded delimiters), with location 80H set
to the number of characters.

The memory size (first paragraph number after the end of mem-
ory) is stored at location 2H in the program header.

The exit handler address, the CTRL-C handler address, and the
fatal error handler address are stored in locations 0AH, OEH, and
12H respectively inthe program header.

Page P.3

APPENDIX P

i g
P P
k] 7 4.) B
i IS £ 0

=
143

Z-DOS Programs

For .COM files, the registers on entry are:

AX, BX, CX, DX, BP, SI, DI are undefined

SP = 0FFFFH or constrained by end of memory
CS,DS,ES = Segment address of program header
IP=100H

A word of zeros is pushed on the stack

For .EXE files, the registers on entry are:

AX, BX, CX, DX, BP, SI, DI are undefined

Ifa STACK segment is used then
SS = Segment address of that segment
SP =size of stack segment
ELSE
SS =CS (seebelow)
SP = 0FFFFH or constrained by end of memory
DS, ES = Segment address of program header
CS:IP =Far address of label in “END” statement of the program

The following programs are short examples of source code for both types
of excutable files.

Page 2 of 3
595-2827
591-3931

Page P.4

APPENDIX P

es on Writing Z-DOS Programs

TITLE EXAM1 - Example .EXE program
PAGE 132

. XLIST
INCLUDE DEFASCII. ASM
INCLUDE DEFMS. ASM
.LIST

STKSEG SEGMENT STACK
DB 100H DUP(?)

STKSEG ENDS
PGMSEG SEGMENT

ASSUME CS: PGMSEG, SS: STKSEG, DS: DATASEG, ES: NOTHING

DB 'EXAM1 - (C) Copyright 1982 by Zenith Data Systems'
START:

MOV AX, DATASEG ; Set up DS

MOV DS, AX

MOV WORD PTR RTADDR+2,ES ; Save program header segment addr

MoV DX, OFFSET MESG ; Get message address
MOV AH,DOSF_OUTSTR ; Get print string function code

INT DOSI_FUNC ; Print string
JMP RTADDR ; Terminate program
PGMSEG ENDS

DATASEG SEGMENT

RTADDR DD 0 ; return addr (segment to be filled in)
MESG DB '"EXAM1', CC.CR,CCLF, '$'
DATASEG ENDS

END START

To create and run EXAM1.EXE, first create the above source code with
EDLIN. Then enter the following commands:

A:MASM EXAM1; RETURN
A:LINKEXAM1; RETURN
A: EXAM1 RETURN

Page P.5

TITLE
PAGE

. XLIST

EXAM2 - Example .COM Program
, 132

INCLUDE DEFASCII.ASM
INCLUDE DEFMS. ASM

.LIST

PGMSEG SEGMENT

ASSUME CS: PGMSEG, SS: PGMSEG, DS: PGMSEG, ES: NOTHING

ORG

START:
JMP
DB

Si:
MOV
MOV
INT
INT
MESG DB

PGMSEG ENDS
END

100H . Position after program header

SHORT S1 ; Skip over copyright
'EXAM2 - (C) Copyright 1982 by Zenith Data Systems'

DX, OFFSET MESG ; Get addr of messge

AH,DOSF _ OUTSTR ; Get function to output message
DOSI _ FUNC : Print message

DOSI _ TERM : Terminate program

'EXAM2',CC _ CR,CC _ LF,'$'

START

To create and run EXAM2.COM, first create the above source code with
EDLIN. Then enter the following commands:

A:MASM EXAM2; RETURN

A: LINK EXAM2; RETURN

A: EXE2BIN EXAM2.EXE.COM RETURN
A: ERASE EXAM2.EXE RETURN

A:EXAM2

RETURN

Page P.6

Page Q.1

APPENDIX Q

A Procedure to Change Disk Parameters

The purpose of this section is to show you how to change floppy disk
parameters. The technique will be illustrated by showing you how to
change the step rate for 8 inch floppy disks.

The location of the disk portion of the operating system is defined by
a table that contains the “configuration vectors” or “pointers” (addresses)
for the various system routines. You may locate this table and the disk
subsystem in the two assembly language source files, DEFDSK.ASM and
DEFZ207.ASM. These files are automatically included during the assem-
bly of the Z-DOS BIOS and contain information specific to the Z-207 disk
controller card. You may change the information in the table or disk sub-
system temporarily (in memory) or permanently (by modifying the system
disk).

Since the location (offset address of the table in the BIOS) may change
with later releases of different versions of the BIOS, a “pointer” has been
placed at a fixed location (address) as a permanent reference point. This
location contains the offset address of the table, regardless where it may
be located in this or any other release of the Z-DOS BIOS. The location
of the pointer will not be changed in future releases of Z-DOS.

You can find the location of the fixed pointer when you assemble the
file DEFMS.ASM. A portion of the assembled listing follows:

0061 BIOS.CTADDR LABEL WORD : Addr of configuration information
0063 ORG OFFSET BIOS_.CTADDR+2

0063 BIOS_SEG ENDS

The pointer’'s label is BIOS_CTADDR. As you can see, the location of
the pointer (the offset addrsss) is 61 hexadecimal (Hex). By examining
this location in the BIOS, you can find the location (address) of the Config-
uration Vector table.

Page 2 of 10
0S-63-4/595-2835
591-3955

Page Q.2

APPENDIX Q

You can also find the Configuration Vector table in the file DEFMS.ASM. A
representative portion of the assembled file follows:

; Configurationvector

y

=0000 CONFGDSK EQU 0 ; Addr of disk vector
=0002 CONFG_PRN EQU CONFGDKS+2 ; Addr of PRN configuration table
=0004 CONFGAUX EQU CONFGPRN+2 ; Addr of AUX configuration table

Since you want to change the disk configuration, you will need to look for
CONFG_DSK. It contains the address of the disk vector table. As you can
see, the offset address during assembly is 00H. The actual address will be
placed in this location during the “linking” of the various machine language
modules as part of the assembly of the BIOS. However, you do know (from
the information in the file) that the address you are looking for is the first one
found in the table. If you were looking for the address of the PRN configura-
tion table, it would be the second. The AUX would be the third, and so on.

You will find that the disk vector table contains the locations of the disk ta-
bles. Currently, the tables are arranged as follows:

5.25 inch floppy (drive A)
5.25 inch floppy (drive B)
8inch floppy (drive C)
8inch floppy (drive D)

A ON =

Page 30of 10
0S-63-4/595-2835
591-3955

Page Q.3

APPENDIX Q

The following is a partial listing of the assembled file DEFDSK.ASM. The
portion shown illustrates the format of a disk table. You may modify the fields

flagged with an asterisk (*).
= 0000 DSKSTA EQU 0 ; Status of last operation
= 0100 DSKST_ENERR EQU 0100H ; Invalid function
= 0200 DSKST.ORERR EQU 0200H ; Improper order of function
= 0300 DSKST_DNERR EQU 0300H ; Invalid disk number
= 0400 DSKST DTERR EQU 0400H ; Invalid disk type
= 0500 DSKSTNIERR EQU 0500H ; Function not implemented
= 0600 DSKST.NDERR EQU 0600H : No disk in drive
= 0002 DSKTYPE EQU DSKSTA+2 ; Disk type
= 0000 DSK_TZ207 EQU 0 ; 7-207 type disk
= 0003 DSKLTRK EQU DSK.TYPE+1 ; Last track
= 0004 DSKLOPT EQU DSKLTRK+1 ; Last operation
= 0001 DSK_OWR EQU O1H : Write was last op
= 0002 DSK_ORD EQU 02H ; Read was last op
= 0004 DSK_ORS EQU 04H : Reset was last op
= 0008 DSK 0SI EQU 08H ; Step in was last op
= 0010 DSK_OFT EQU 10H ; Format was last op
= 0020 DSK.ORT EQU 20H ; Read track was last op
= 0080 DSK_OUK EQU 80H ; Track is unknown
*= 0005 DSKFLAG EQU DSKLOPT+1 ; Flags
= 0001 DSK_FDS EQU OlH ; Disk is double sided
+= 0002 DSKFFS EQU 02H : Drive can be fast stepped
= 0004 DSK_FDP EQU 04H . Disk is 48 tpi and should be double stepped
+= 0008 DSK FWP EQU O08H . Disk is software write protected
= 0010 DSK_FDC EQU 10H . Force Disk has Changed next time
+= 0020 DSKFSL EQU 20H ; Skip head load on select
+= 0040 DSK_FRS EQU 40H . Restore fast, then slow
= 0006 DSKSEL EQU DSKFLAG+1 ; Command to select drive
#= 0007 DSKRS EQU DSKSEL+1 . Command to reset drive
*= (0008 DSKSPHI EQU DSKRS+1 : Command to step in
= 0009 DSKFMT EQU DSKSPHI+1 . Command to format (write) a track
= 000A DSKRD EQU DSKFMT+1 . Command to read a sector
= 000B DSKWR EQU DSKRD+1 ; Command to write a sector
Page 4 of 10
0S-63-4/595-2835

591-3955

Page Q.4

APPENDIX Q

*= 000C DSKSK EQU DSKWR+1 ; Command to seek to a track

= 000D DSKSERR EQU DSK SK+1 ; Number of "soft" errors

= 000F DSKMAXT EQU DSK SERR +2 : Maximum track number of drive
*= 0010 DSKNRETRY EQU DSKMAXT+1 ; Maximum retry count

= 0011 DSKSPT EQU DSKNRETRY+1 ; Sectors per track

= 0012 DSKBPS EQU DSKSPT+1 : Number of bytes per sector

= 0014 DSKBPWT EQU DSKBPS+2 : Number of bytes per write track operation
= 0016 DSKBPRT EQU DSKBPWT +2 . Number of bytes per read track operation
*= (018 DSKDELAY EQU DSKBPRT +2 . Counter value for short delay
*= (001A DSKLDELAY EQU DSKDELAY+2 ; Counter value for a long delay

= 001C DSKPORT EQU DSKLDELAY+2 ; Base Port number

= 001E DSKRDT EQU DSKPORT+2 ; Read track command

=001F DSK.IMGFLG EQU DSKRDT+1 . Imaginary drive flag

= 0080 DSKIF_ID EQU 80H : (0 - real drive; 1 - imaginary drive)
= 0040 DSKIF DV EQU 40H ¢ (0 - disk is not in drive; 1 - disk is in drive)
= 0020 DSKIF NM EQU 20H : (0 - can map imag to drive; 1 - can't)

Page 50f 10

0S-63-4/595-2835

591-3955

A
{

Page Q.5

APPENDIX Q

Changing Step Rates for the 8 Inch Disk Drive

The (step) rates for the step-, restore-, and seek-operations are embedded
in commands sent to the 1797 disk controller chip. These commands are
considered “type 1” commands.

The step rate for 8 inch disk drives is one half of the value given in the file,
DEFZ207.ASM. Also, two other characteristics (established by two flags if
the DSK_FLAG field) may need attention when you change the step rates:
DSK_FSL and DSK_FRS.

DSK_FSL either causes a delay which allows the disk head(s) to load (when
set) or selects no head delay (when not set). The head(s) in some disk drives
is (are) loaded whenever the drive door is shut and therefore need no delay
to allow the head to load when that drive is selected.

DSK_FRS (when set) affects the rate that the head will be restored to the
position over track zero. If a high step rate is used during the restore opera-
tion, the head may easily overshoot when it reaches track zero. To over-
come this problem, this flag (when set) will reduce the step rate as the head
approaches track zero. If the drives are set at slower step rates, the problem
does not exist; the flag (when not set) will not affect the restore operation.

The following procedure may be used to permanently change the step rate
of both 8 inch disk drives. The general procedure may be used to change
other factors as well.

Any time you want to change some factor in the BIOS, it is best to start with
a “clean” Z-DOS disk. To do so, you should first format and place the opera-
ting system on a “new” disk (the disk may have been previously used for
something else; the format procedure, in effect, creates the “new” disk). The
next step involves the actual “patching” of the BIOS. The third step is up
to you; we suggest that you thoroughly test the newly created BIOS to make
sure that it will perform as you want it to do. The final step is to place the
new BIOS on any other disks. This can be done by using the SYS command
of Z-DOS as explained elsewhere in this manual.

Page 6 of 10
0S-63-4/595-2835
591-3955

Page Q.6

APPENDIX Q

[] Createanew 5.25 inch system disk by typing:
FORMAT A: /S

and pressing the RETURN key. You will be prompted to place a blank disk
in drive A and to press the RETURN key when ready. Follow the prompts.
When the new disk has been formatted, replace itin drive A with your Z-DOS
disk.

[] StartDEBUG. Type:
DEBUG

and press the RETURN key. Now that DEBUG is in the system, you may
replace the Z-DOS disk in drive A with your the disk that you will modify.

Now you are ready to start modifying the BIOS. In order to do so, you will
first have to read a portion of the disk into memory where it can be modified.
Then, after you have modified that portion, you will write it back out to the
disk.

You can find the location of the starting data sector in the table “Z-DOS Disk
Structures” on Page H.1 of Appendix H. For double-sided, 5.25 inch disks,
the starting data sector is 10 (OAH).

Also, since the length of the BIOS can vary from release to release, you will
want to read enough of the disk to make sure that you have all of the BIOS
in memory. 32 (20H) 512-byte sectors should be sufficient (16K).

[] Loadtwenty sectorsinto memory. Type:
L 1000:0 0 A 20
and press the RETURN key. Here is what the command means:

L— Load command (DEBUG)

1000:0 — starting memory location to place the BIOS
0— hardware drive number (0 = A,1=B,2=C,3 = D)
A — starting sector number to be read (in hexadecimal)
20 — the number of sectors to be read (in hexadecimal)

Page 7 of 10
0S-63-4/595-2835
591-3955

Page Q.7

APPENDIX Q

When you pressed the RETURN key, the LED disk access indicator lit and
the disk was read. You may now examine and change any part of the BIOS.
Butfirst, you must locate the part you want to change.

[0 Examine location 61H to find the address of the configuration pointers.
Type:

D 1000:61 62
and press the RETURN key. Here is what the command means:

D — Dump command (DEBUG display command)
1000:61 62— address range to “dump” (display)

The computer will display something like this:
z9 g?

1000: 0061 TA 04

The least significant portion of the address is stored in address 61H. The
most significant is found in 62H. The address you want is therefore (in this
example) 047AH.

Now you want the location of the disk vector table. Its location is stored as
an address in the two bytes, §§an?i_ng at the address you just obtained
(047AH, inour example). & Z = <

-z,

O Type: s s3ET

&

D 1000:047A 047B

and press the RETUBN key. The computer will display something like this:
c7 2.9
1000: 047A DO 22
PR 12%
This is the beginning address of the disk vector table. You want the third ad-
dress; drive C is the third entry in the table. Since each address takes two
bytes, you will want to get the fourth and fifth digits.

U 2

Page 8 of 10
0S-63-4/595-2835
591-3955

Page Q.8

APPENDIX Q

O Type:
D 1000:22D4 22D5
and press the RETURN key. The computer will display something like this:

1000:22D4 56 23

Now you have the address of the table for the first 8 inch disk drive. To
change the step rate from 3 ms. to 15 ms., you will want to modify the
DSK_FRS flag. The flag is offset 5 bytes in the field (235BH). To change the
flag, use the DEBUG E (Enter) command.

O Type:
E 1000: 235B
and press the RETURN key. The computer will display something like this:
1000:235B 51.

You will note that the cursor remained in position after the period, rather than
going to the next line and displaying the DEBUG prompt. The computer is
waiting for your entry. But first examine the DSK FLAG section of
DEFZ207.ASM. You will see that there are seven flags which are added to-
gether to form DSK_FLAG. DSK_FRS represents 40H when set. To turn off
DSK_FRS, you will have to subtract 40H from the value in 235BH. That
leaves youwith 11H.

O Type:
11

and press the RETURN key. Next, you will need to modify the restore com-
mand (DSK_RS - offset 7 bytes: 235DH), the step command (DSK_SPHI -
offset 8 bytes: 235EH), and the seek command (DSK_SK - offset 12 bytes:
2362H).

Page 9 of 10
0S-63-4/595-2835
591-3955

Page Q.9

APPENDIX Q

[0 Use the Enter command and type in the appropriate amounts as fol-
lows:

E 1000: 235D
1000:235D 08.B
E 1000: 235E
1000:235E 58.5B
E 1000: 2362
1000:2362 1C.1F

When you have completed all of the previous steps, you will have com-
pleted the modification for drive C. The modification for drive D will be
done in a similar manner. That is, locate the disk table address in the
disk vector table (at location 22D6H and 22D7H in our example); and
then modify the restore flag, the restore command, the step command,
and the seek command. Finally, prepare to write the BIOS back to the
disk.

To write the BIOS to the disk, you will simply perform the reverse of the
process that you used to read the BIOS into memory.

O Type:
W 1000:0 0 A 20

and press the RETURN key. The only difference between this and the
read command is the W in place of the R; and the W is the DEBUG
command to write.

To use the new BIOS, reset the computer and boot the new disk. Other
portions of the BIOS may be similarly modified. The source files for your
version of BIOS are contained on the Z-DOS Distribution Disk Il. The
BIOS used for the examples shown was version 1.00.

Page 10 of 10
0S-63-4/595-2835
591-3955

Fevw | data
SYStemS ST. JOSEPH, MICHIGAN 49085

Dear Customer,

Thank you for purchasing Z-DQOS, an extremely flexible and powerful Disk
Operating System for the Z-100 Series of Desktop Computers. Since the origi-
nal release of Z-DOS, many customers have asked for additional information
on modifying the BIOS (Basic Input Output System) module of the operating
system, particularly with regard to adjusting the step rate for 8 inch disk drives.
We are therefore adding Appendix Q, Modifying the Z-DOS BIOS, which you
should add to the back of Volume II of Z-DOS. You will also need to make
a notation to the Table of Contents of both Volumes to reflect the additional
material.

Thank you,

Zenith Data Systems

Page 1 of 10
0S-63-4/595-2835
591-3955

Ll

HEATH data
systems Memory Checking

Modern personal computers are extremely reliable. Your Z-100 operates at
a speed of 5 million clock cycles per second and will typically operate for
several thousand hours between service calls. However, computers are
machines, and machines do, on occasion, develop problems. Among the
problems which may occur in all computers are memory failures.

Memory failures may be classified as either “hard” or “soft”. Soft memory
errors occur randomly at an average frequency of roughly once every
several thousand hours of operation and do not indicate the presence of a
hardware problem. Hard memory failures are due to defective components
within the computer, and will recur frequently until the defective component
is replaced.

Your Z-100 computer has special circuitry and additional memory to
automatically detect any memory failures (hard or soft) which do occur,
through a technique known as “parity checking”. When a “parity error”
occurs, a display similar to the one below will appear on the screen:

ERROR — MEMORY OR BUSS

F =XXXX IP=XXXX CS=XXXX DS =XXXX ES =XXXX SS =XXXX SP=XXXX
AX=XXXX BX =XXXX CX=XXXX DX =XXXX DI =XXXX SI=XXXX BP =XXXX

SYSTEM HALT

The purpose of providing the parity error message is to let you know that you
may have a problem which may not be readily apparent and which may
require the attention of service personnel. Parity checking is an advanced
feature found in only a few microcomputer systems. In systems without
parity checking, the memory error usually goes unnoticed for a period of
days or weeks until the amount of data destroyed becomes so large that it
can no longer be ignored.

When an error occurs, the system will display the parity error message
described above and halt. The system must then be reset and rebooted, with
the consequence that all work in the computer’s memory and any unclosed
files on the disk will be permanently lost. It is generally best not to use the
system any further until the memory test (supplied with your "Z-DOS
operating system) has been run (preferably from a write-protected disk!). If
the memory test does not turn up problems after several hours of operation,
you should resume normal operation. If subsequent memory failures occur,
you should copy down all of the data presented on the screen by the parity
error routine and retain it for use by service personnel. Also, record which
program and operating system you were using at the time. If multiple errors
occur within 30 days, a serviceman should be called, even if the memory test
does not indicate the presence of problems.

0S-53-2/595-2824

0S-63-4/595-2827
RQ1.202N

Page X.1

INDEX

& (ampersand), 12.9,12.19
<> (angle brackets), 10.14
assembler definition of, 10.13
*(asterisk), 3.7,12.9
EDLIN usage, 8.18
[1(brackets, square),
LINKusage, 11.17
register content, 10.14
() (DUP expression), 10.14
— (minus sign), 12.9,12.17
% (percent sign), 6.14
+ (plus sign), 6.36,11.12,12.9, 12.17
(pound sign), EDLIN usage, 8.6
? (question marks), 3.7
EDLIN usage, 8.6
. (record/structure field name), 10.14
:(segement override), 10.14
; (semicolon), 11.13,12.9,12.18,13.5
FILCOM usage, 9.8
.$$$ (temporary file work), 3.4

A

/A switch, 6.36, 6.59, 9.8
Abort, 12.9
Abortbatch job, 6.102
Absolute disk addresses, 7.4
Actionfield, 10.23,10.87
Add amodule, 12.2
=<address>,7.17
Ampersand, 12.9,12.19
Append, 12.9
Argument, 4.2
command, 4.2

Z-DOS Index

.ASM, 3.4
Asterisk (*),3.7,3.8,6.110,12.18
Attribute override operators, 10.57
Auto-Boot, 5.2
method of, 5.6
AUTOEXEC.BAT, 4.22,6.16
definition of, 4.22
description of, 6.16
Automatic execution batch file, 4.22
Autonomous controls, 1.9
AUX:,
configuration of, 6.22
device filenames, 3.5
Auxiliary device, 3.5

/B switch, 6.36, 6.70,9.9,9.13

Backup disk, definition of, 5.18

Bad Flag, 6.49

Bad Register, 6.49

.BAK, 3.4

.BAS, 3.4

BASIC, 1.5

.BAT,3.4,4.22,6.14
command files, 4.7

Batch Command, 6.14
Dummy Parameter, 6.15

Batch Files,
definition of, 4.22

Batch Mode, 4.22

Batch Processing, 6.14

Baud rate, 6.32

BAUXIO.ASM, description of, 6.10

Page X.2

BCHRIO.ASM, description of, 6.10
BCLOCK.ASM, description of, 6.10
BCONIO.ASM, description of, 6.10
BDOSTB.ASM, description of, 6.10
BDSKIO.ASM, description of, 6.10,6.11
BDSKLA.ASM, description of,6.10,6.11
BDSKTB.ASM, description of,6.11
BIN, 3.4,6.65
Binary Conversion, 6.65
BINIT.ASM, description of, 6.11
BMSDOS.ASM, description of, 6.11
Boot command, 5.4
Bootloader, 2.1,6.71

operation of, 2.4
Bootup, 2.3
Bootable, 2.3
Bootstrap, 2.2

procedure, 2.2, 4.21
BPRNIO.ASM, description of, 6.11
Breakpoint, 6.49

address, 7.17
Brief, definition of, XIV
Buffer, 1.10
BUS,5.14

Cc

/C switch, 6.70, 9.8

carriagereturn, 4.2

Check Point, definition of, XIV

CHKDSK, 6.4,6.19
description of, 6.7

Class, definition of, 11.3

COBOL, 1.5

Code label attributes, 10.55

.COM,

commands, 4.7

extension, 3.4
Combine Type, Common, 11.5
Combine Type, Private, 11.4
Combine Type, Public, 11.5
Combine types, 10.126, 11.4
Command entry format, 4.7
Command interpretation, 4.9
Command lines, 4.2

buffer, 4.8

editing, 4.8

input, 4.8
Command processor, 1.7
Command prompts, 11.16
Command types by Extension, 4.7
COMMAND.COM, 2.1-2.3, 4.21

description of, 6.7

overlaid, 2.7
Commands, 4.2
COMMENT, 10.90
Common, 11.5
Communication lines, 6.22
Compare,

Disk, 6.48

File,9.3

Files, 6.57
Complex operand, 10.25
CON:, 3.5
%CONCISE, 6.90
Conditional assembly, 10.1
Conditional directives, 10.90
CONFIGUR, 6.4,6.21,6.23

Configuration,
standard, 6.29
CONFIGUR.COM,
description of, 6.7
Controlflags, 10.50
Controller,5.15
card,5.14
COPY, 6.4,6.35
Copy
alicharacters, 4.15
aliremaining characters, 4.15
module, 12.2
onecharacter, 4.15
COPYFILE.DAT, 6.92
<CR>,
EDLIN usage, 8.6
FILCOM usage, 9.7
Createalibrary, 12.2
CREF, 6.4,6.39,10.160
CREF.EXE, description of, 6.7
.CRF,3.4,13.1
<crffile>,13.6
Cross reference listing file, 12.13
CS ASSUME, 10.40
CTRL-C,12.9
CTRL,

CTRL-<letter>, XIX
Cursor, 4.11
CXRegister,

DEBUG Value, 6.44

D
<d:>, XIX

D command, 7.11, 8.20
/D switch, 10.175

INDEX
Z-DOS Index

Daisy-wheel printer, 6.34
DANISH.CHR, description of, 6.7
.DAT, 3.4
Data references,

DSregister, 10.39
DATCOPY.DAT, 6.93

description of, 6.11
DATE, 6.42
Date Default, 6.43
DB, 10.91
DC3/DC1,6.33
DD, 10.91
<dd>, 6.42
DEBUG, 6.4,6.44,7.3

Single drive, 7.4

Syntax error, 7.5
DEBUG.COM, description of, 6.8
Declared class names, 11.6
DEF6821.ASM, description of, 6.11
DEF8253.ASM, description of, 6.11
DEF8259A.ASM, description of, 6.11
DEFASCII.ASM, description of, 6.12
Default extension, 3.3
Defaultboot device, 5.3
Default drive, 3.12

changing the, 3.13

prompt, 3.11
Default extensions, 9.7
Default

input radix, MASM, 10.17

output radix, MASM, 10.17
Default prompt, 4.11
DEFCHR.ASM, 6.12
DEFCONFG.ASM, description of, 6.12
DEFDSK.ASM, description of, 6.12
DEFEP2.ASM, description of, 6.12
DEFFMT.ASM, description of, 6.12

DEFINEBYTE, 10.95

DEFINE DOUBLEWORD, 10.95
DEFINE QUADWORD, 10.95
Define symbol, 13.13

DEFINE TENBYTES, 10.95
DEFINEWORD, 10.95

Defined bit, 10.68
DEFIPAGE.ASM, description of, 6.12
DEFMS.ASM, description of, 6.12
DEFMTR.ASM, description of, 6.12
DEFZ207.ASM, description of, 6.12
DEL*.*,3.8

DEL, 6.4,6.50

Delete amodule, 12.2
<delimiter>, 10.94
Destination operand, 10.24
Details, definition of, XIV
<dev:>, XIX
Device Independent|/O, 2.8,3.5
Dictionary-indexed library search method, 11.1
DIR, 6.4, 6.51
Direction flag, 10.50
Directive statementfields, 10.18
Directives, 10.1
Directory, 1.11,2.6
content, 6.45
Disk Drive, definition of, 3.11
Disks, Care of, 5.1
.DOC, 3.4
%DO0C, 6.90
DQ, 10.91
<drive>, DEBUG usage, 7.7
Drive designation, 2.9, 3.2
Drive Name Mapping, 6.94
Drive names, 2.9, 3.12
supported, 3.12

/DSALLOCATE Switch, 11.12,11.18
DSK.ASM, description of, 6.12
DSKCOMP, 6.4,6.53
DSKCOMP.COM, description of, 6.8
DSKCOPY, 6.5, 6.57
DSKCOPY.COM, description of, 6.8
DT, 10.91

Dummy parameter %0, 6.14

DW, 10.91

DWORD, 10.67

E command, 7.14,8.39
%ECHO, 6.90
Editkeys, 4.15
Editing function, 4.15
EDLIN, 6.5, 6.61
EDLIN.COM, description of, 6.8
ELSE, 10.135,10.136
END, 10.18,10.99
End macro, 10.142
ENDM, 10.142
End-of-file, 13.13
End-of-line, 13.13
End-of-line character, 8.1
ENDS, 10.18
ENGLISH.CHR, description of, 6.8
Enterinsert mode, 4.15
EQU, 10.100
Equal Sign (=), 10.102
ERASE, 6.5,6.50
Error,

BadFlag, 7.39

Bad Register, 7.39

BF,6.49

Page X.5

INDEX

BP,6.49,7.39
BR, 6.49,7.39
Cannot edit .BAK, 8.43
DEBUG Syntax, 6.45
DF,6.49
Directory, 6.19
Disk Full, 8.44
Disk Not Initialized, 6.21
Double Flag, 7.39
Entry Error, 8.44
File Allocation, 6.20
File Size, 6.21
Files Cross-linked, 6.21
Invalid Date, 6.43
Invalid Time, 6.114
Linetoolong, 8.44
No end-of-file mark, 8.44
No roomindirectory, 8.43
No Stack Statement, 11.20
Result, Disk Space Freed, 6.21
Too many Breakpoints, 7.39
CHKDSK, 6.19
Error message, 10.7
%ESC [<c>],6.90
EVEN, 10.103
Exceptions to random ordering, 10.18
.EXE,3.4,11.2
commands, 4.8
EXE2BIN, 6.5, 6.65
EXE2BIN.COM, description of, 6.8
Executive, 1.9,2.5
definition of, 1.10
Exitinsertmode, 4.15
Exit Macro, 10.147
EXITM, 10.140
Expression field, 10.24
<.ext>, XIX

Z~-DOS Index

ext, 3.2

<ext>,3.3

Extend, 12.9

extension, 3.2, 3.4
conventional uses, 3.4

External bit, 10.68

External references, 11.17

External symbol, 11.17

Extract, 12.9

EXTRN, 10.104

EXTRN directive, 10.30

F

F command, 7.16

FAT,2.1,2.7

<field>,10.53

FILCOM, 6.5,9.3

FILCOM.COM, description of, 6.8

File
Allocation Table, 2.1,2.7
compare, 6.67,9.3
concatenation, 6.65
management, 1.7
manager, 2.1,2.5
manager, definition of, 1.10

residentcommands, 4.1,4.4,6.4
specification, 3.2
<filename>, XIX
Filename, 3.2
Files,2.9
Files, definition of, 3.1
<filespec>, XIX, 3.2
@<filespec>,11.15
Flag
Register, 10.49

Page X.6

INDEX

Z-DOS Index

F<number>, XIX

FOR, 3.4

FORMAT, 6.5, 6.71
FORMAT.COM, description of, 6.8
FORTRAN, 1.5

Fourth assembler prompt, 13.3
FRENCH.CHR, description of, 6.8
Function,command, 4.2

G

Gcommand, 7.17

General registers, 10.49
GERMAN.CHR, description of, 6.8
Global, 3.6

Group, 11.6

GROUP, 10.106

GROUP, definition of, 11.3
<group name>, 10.60

H

Hcommand, 7.19
Handshake protocol, 6.32
Hardware, definition of, 1.8
.HEX, 3.4

Hex Arithmetic, 6.46
Hexadecimal Dump, 7.11
<hh>,6.113

Hidden files,6.112

HIGH, 10.63

/HIGH, 11.12,11.19

Icommand, 7.20, 8.28
IF,10.135

IF1,10.135

IF2,10.135

IFB,10.135

IFDEF, 10.135
IFDIF,10.135

IFE, 10.135

IFIDN, 10.135

IFNB, 10.135

IFNDEF, 10.135

llegal character, 3.1
Imaginary drives, 6.94
INCLUDE, 10.109
Indefinite Repeat, 10.155
Indefinite Repeat Character, 10.157

Initialization, 2.3

Initialize FAT’s, 6.71

Initializes the directory, 6.71

Input, 1.4

Instruction statement fields, 10.19
INT,3.4

Integrity of directory structure, 6.19
Intel, 10.1

Intel 8080 standard, 10.1

Intel codemacros, 10.7

Interactive processing mode, 4.23
Interline commands, 8.5
Interrupt-enable, 10.50

Intraline commands, 8.5

I/O management, 1.7

I/0 manager, 1.10,2.1,2.5

Page X.7

INDEX

10.8YS,2.3-25,2.7
description of, 6.9
duringiinitialization, 2.3

IRP,10.146

IRPC, 10.146

ITALIAN.CHR, description of, 6.9

K

Keyboard, 3.5

L

Lcommand, 7.21, 8.24
LABEL, 10.111
attributes, 10.31
definition of, 10.28-10.29
directive, 10.29
.LALL, 10.162
Language, definition of, 1.5
Leapyears, 6.43,6.114
Legal characters, 3.1
infilenames, 3.3
Legal date, 6.43
Legal drive names, 3.10
LENGTH, 10.70

LIB,3.4,6.5,6.80,11.8,12.8

LIB.EXE, description of, 6.9
LIB command
characters, 12.17
prompts, 12.15
scanner, 12.1
<lib-list>,11.14
Library index, 12.3
<library>,12.10

Z-DOS Index

Library file, 12.15
Line editor, 6.61
<line>, EDLIN usage, 8.6
/LINENUMBERS Switch, 11.12,11.19
Line printer, 3.5
LINK, 6.5,6.83,11.2
LINK.EXE, description of, 6.9
.LIST,10.162
<list>, 6.45, 6.46

DEBUG usage, 7.7
Listfile,11.17,12.16
<listfile>,11.14
<listing>, 13.6

Listing directives, 10.90
Loading offiles, 2.7
LOCAL, 10.148
Logged-in, 3.10

Logical drive names, 6.94
Logical names, 6.96
Long-term storage, 1.9
LOW, 10.63
LST,3.4,3.5,11.2

Mcommand, 7.23
/M switch, 6.71
Macrocall, 10.1,10.4,10.138
Macro definition, 10.1, 10.4, 10.138
Macro directives, 10.87
MACRO-80, 10.1

directives, 10.5
MACRO-86

assembler, 6.98
MAKE, 6.5, 6.88
MAKE.COM, description of, 6.9

Page X.8

INDEX

Z-DOS Index

Manualboot, 5.2
MAP, 3.4,6.5,6.94
MAP.COM, description of, 6.9
/MAP switch, 11.12,11.19
MASK, 10.75
MASM, 6.6, 6.98
MASM.EXE, description of, 6.9
Memory
directives, 10.87
management, 1.7,2.7
manager, definition of, 1.10
MEMTST.COM, description of, 6.13
<mm>,6.42,6.113
minus sign, 12.17

/<n> switch, 6.70,9.9
N command, 7.23,7.37
/N switch, 6.71
NAME, 10.113
<name>:, 10.29
Name

definition of, 10.28

field, 10.19

length, 10.20
%NEXT <filename>, 6.91
%NOECHO, 6.90
Non-default, 3.10
Non-defaultdrive, 3.13
%NOSYS, 6.90
NUL: 35,128
Null device, 3.5

o

Ocommand, 7.27
.0BJ,3.4,12.10
Objectcode, 10.2,11.1
object modules, 11.1
<object-list>,11.14
Offset, 10.40, 10.66
Offset value, 10.64
Offsets from segmentbase, 10.11
Operand, attribute values, 10.64
Operand types, 10.44
Operating system,

definition of, 1.7
<operations>,12.10
Operators, record specific, 10.72
ORG, 10.114
%0UT, 10.162
Output, 1.4

P

/P switch, 6.52

PAD character, 6.31
PAGE, 10.162

Page length/line length, 13.7
Page mode, 6.52
Paragraph, 11.3
Parallel device, 6.31
<parameters>, XIX
Parity, 6.31,6.33
Parity flag, 10.50
PASCAL, 1.5

Page X.9

INDEX

PAUSE, 6.6, 6.15,6.102
/PAUSE switch, 11.12,11.19
Peripheral, 2.4,6.28
Peripheral devices, 2.8
Physical devices, 6.23
Physical drive, 6.95
Plus sign(+),6.36,11.12,11.16,12.17
Pointer (PTR), 10.57
Pointing finger, 5.4
Port number, 6.32
pound sign (#), 13.1
Precedence, operator and operand, 10.26
Primary name, 3.2
Printer configuration, 6.22
Private, 11.4
PRN, 3.4,3.5,6.22
PROC,10.116
PROC directive, 10.30
Processing, 1.4
Processing modes, 4.21
Programs

application, 1.5

typesof, 1.5

utility, 1.6

Protocol, 6.22

Prototype commands, 6.15
PUBLIC,10.118

Public, 11.5

PURGE, 10.150

Q
Qcommand, 7.28, 8.40

Question mark (?), 3.6-3.8,6.110
QWORD, 10.67

Z-DOS Index

Rcommand, 7.29, 8.35
.RADIX, 10.120
RAM,1.4,1.10
Random access memory, 1.4,1.10
<range>, 6.45-6.48
RDCPM, 6.106
RDCPM.COM, description of, 6.13
Read CP/M, 6.107
Real drives, 6.94
RECORD, 10.122
<record>, DEBUG usage, 7.7
Record fieldname, 10.73
RECORD specific operators, 10.55
.REF,3.4,13.1
Reference symbol, 13.13
Relative

addresses, 10.11

offset, 10.11,11.6
Relocatable, 11.1
Relocatable code, 10.2
Relocatable load module, 11.2
REM, 6.6,6.15,6.109
Remark, 6.109
REN, 6.6,6.110
RENAME, 6.6,6.110
Rename File,6.110
REPEAT, 10.152
Repeatdirectives, 10.152
Replace a module, 12.2
Replaceable parameters, 6.14
Reserved sectors, 2.8
Response file

definitionof, 11.15

LINK, 11.10

Page X.10

Z-DOS Index

Residentdebugger, 7.4
Runfile, 11.2
<runfile>,11.14

S

/S switch, 6.70, 6.75,9.9
Scommand, 7.32, 8.32
SALL, 10.162

SEG, 10.64,10.65

Segment, 10.65,10.117
definition of, 11.3
override, 10.16, 10.58
Override (:) Colon, 10.56
registers, 10.49
<segment-name>, 10.60
<segment-register>, 10.60
semicolon(;),11.13,12.18,13.5
Serial device, 6.32
Shift-count, 10.73
SHORT, 10.61
signflag, 10.50
SIZE, 10.71
Skipover, 4.15
Software development, 6.44,7.3
Source code, 10.1
Source file, definition of, 10.18
Source operand, 10.24
SPANISH.CHR, descritpion of, 6.9
Special characters
as delimiters, 10.16
as operators, 10.16
Special libraries, 12.1
Special macro operators, 10.148
<ss>,6.113

Stack pointer, 11.5
/STACK:<number> Switch, 11.12,11.20
Status report, directory, 6.20
Stop bits, 6.33
Storage, 1.4
<string>
DEBUG usage, 7.9
EDLIN usage, 8.7
STRUC, 10.131
SUBTTL, 10.166
Supported drive names, 3.11
SWEDISH.CHR, descritpion of, 6.9
Switch SW-101,5.3
Switching defaultdrives, 3.13
Symbolic names, 13.1
Syntax error, 6.45
$YS,6.6,6.112
SYS.COM, descriptionof, 6.10
SYSCOPY.DAT, 6.93
SYSCOPY.DAT, description of,6.10
%SYSTEM, 6.91
System, 2.3
CRT, 6.30
Prompt, 3.12,4.1
Memory, definition of, 2.2
Resident, 6.4
Resident, commands, 4.1,4.2,4.7
Resources, 2.4,2.8

T

Tcommand, 7.33

Table of commands, 6.4
TBYTE, 10.67
Template, 4.8,4.17
.TFCOND, 10.162

page X.11

THIS, 10.62

TIME, 6.6,6.113

Time default,6.113

TITLE, 10.162

Title defined, 13.13
.TMP,3.4

Trap flag, 10.50

Two-pass assembler, 10.9
.TYPE, 10.68

TYPE, 6.6,6.115,10.67
%TYPE <message>, 6.91

U

Ucommand, 7.35
Unary minus, 10.78

v

N switch, 6.59
/<value>, 6.46-6.48
<value>, DEBUG usage, 7.8
Value returning operators, 10.55
<variable>, 10.53
Variables, definition of, 10.28, 10.32
%VERBOSE, 6.91
Virtual
linker,11.2
memory, 11.7
memory file, 11.8
VM.TMP File, 11.9
Void the currentinput, 4.15

w

Wcommand, 7.37

/W switch, 6.52

%WAIT [<message>], 6.92

WIDTH, 10.76

Wildcard
characters, 3.6
filenames, 3.6

WORD, 10.70

Word length, 6.34

X

/X switch, 10.175
XALL, 10.162
.XCREF,10.162
XLIST, 10.162

<yy>,6.42

Y 4

Z-100rear panel, 6.29

Z2-207,5.14

Z-207 controller, 6.95

Z-DOS.SYS, 2.1-2.5,6.112
description of, 6.10
during initialization, 2.3

Zeroflag, 10.50

