<|lli

IBM VisualAge TeamConnection

User’s Guide

Version 2.0

SC34-4499-02

<|lli

IBM VisualAge TeamConnection

User’s Guide

Version 2.0

SC34-4499-02

Third Edition (January 1998)

Note
FBefore using this document, read the general information under tNatices” on page xi.

This edition applies to Version 2.0 of the licensed program IBM TeamConnection and to all subsequent releases and
modifications until otherwise indicated in new editions. Make sure you are using the correct edition for the level of the
product.

Order publications by phone or fax. The IBM Software Manufacturing Company takes publication orders between
8:30 a.m. and 7:00 p.m. eastern standard time (EST). The phone number is (800) 879-2755. The fax number is
(800) 284-4721.

You can also order publications through your IBM representative or the IBM branch office serving your locality.
Publications are not stocked at the address below.

A form for comments appears at the back of this publication. If the form has been removed, address your comments
to:

IBM Corporation

Attn: Information Development

Department T99B/Building 062

P.O. Box 12195

Research Triangle Park, NC, USA 27709-2195

You can fax comments to (919) 254-0206.
If you have comments about the product, address them to:

IBM Corporation

Attn: Department THO/Building 062

P.O. Box 12195

Research Triangle Park, NC, USA 27709-2195

You can fax comments to (919) 254-4914.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1992, 1995, 1996, 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Figures iX
Notices Xi
Trademarks Xiil
About this book XV
How this book is orgamzed XV
Conventions . XV
Tell us what you think . Xvi
Part 1. Introducing TeamConnection 1
Chapter 1. An introduction to TeamConnection 3
TeamConnection definitions . . 4
TeamConnection’s client/server arch|tecture . 4
TeamConnection database . 5
Interfaces 5
Families . 6
Users and host I|sts 6
Parts . 6
Components 7
Releases. 7
Work areas . 8
Drivers 9
Defects and features 9
Processes . 9
Build 11
Packaging 11
Roles people play 11
Part 2. Developing a product using TeamConnection 13
Chapter 2. Getting familiar with the TeamConnection client interfaces 15
Using the GUI . 15
Starting the GUI . 15
Stopping the GUI. . 16
Performing tasks with the GUI 16
Using the Settings notebook 17
Online help information 18
Using the command line interface 19
Using the web client 20
Chapter 3. The basics of using TeamConnection 23
Laying the groundwork. 23
Authority to perform tasks . 24
Finding objects within TeamConnection 25
Finding parts 25
Using work areas . 26
Naming your work areas . 26
Creating parts . 27
Naming your parts . 27

© Copyright IBM Corp. 1992, 1995, 1996, 1997

iv

User's Guide

Preparing to build your parts
Working with parts .
Working in serial or concurrent development mode
Working with common parts.
Getting parts from TeamConnection .
Checking parts in to TeamConnection . .
Finding different versions of TeamConnection objects
Versioning releases .
Versioning work areas .
Versioning drivers
Versioning parts .
Working with defects and features
Testing and verifying part changes

Chapter 4. The states of TeamConnection objects
Defects and features

The states of work areas .

The states of drivers

Verification and test records.

Chapter 5. Working with no component or release processes

Working in serial development .
Accepting a defect .

Creating a work area .

Checking out a part.

Searching for a part.

Checking in a part .

Verifying and testing part updates
Freezing the work area .
Refreshing the work area.
Building the application
Integrating the work area.
Closing a defect .

Working in concurrent development
Refreshing the work area.
Integrating the work area.
Reconciling differences

Chapter 6. Working with component and release processes
Moving through design, size, and review .
Changing defect ownership .
Accepting a defect .
Approving the fix .
Checking out a part.
Verifying the changes .
Freezing the work area
Building the application
Accepting fix records .
Integrating changed parts |nto a release .
Adding a driver member .
Reconciling the differences .
Refreshing the driver
Building the driver
Restricting the driver
Integrating the parts.
Completing the driver .

28
28
28
29
30
31
31
32
32
33
34
34
35

37
37
40
42
44

47
47
48
49
50
51
53
54
58
59
60
61
62
63
63
64
65

69
70
70
71
72
73
74
75
76
77
78
78
79
81
82
83
84
85

Testing the built applicaton 85

Using a configured process . 86
Retrieving a past version ofapart 87
Part 3. Using TeamConnection to build applications ek
Chapter 7. Basic build concepts e K
The physical structure of the build function 93
The build object model. e 1)
Parent-child relationships in a build tree . &)
Working with a build tree. 98
Putting the pieces together .9
Chapter 8. Starting and stopping the servers e Kok
Setting up the mail facility101
Starting the servers. . . e Ko X X
Starting servers from the Famlly Adm|n|strator GUI R K0 X §
Starting build servers using teamcbld102
Caching and the build directories.103
An MVS build server . . . e 072}
Starting a build agent for an MVS bund server.105
Creating build startup files .107
Startup file for build servers.107
Startup file for buildagents108
Stopping the servers .lo08
Abuidserver .108
An MVS build server .109
Chapter 9. Working with build scripts and builders . I I
Creating a builder1
Writing a build script . . e 15
Passing parameters to a bund scnpt e I)
Writing a simple build script. e 1
Writing an executable file for a build scnpt T
Testing a build script . . e e e18
Modifying the contents of a bund scrlpt e e S
Putting a buildertowork .19
Removing a builder from a part 210
Working with VisualAge C++ and Templates . 210
Chapter 10. Working with MVS build scripts and builders . 2
Creating a builder for MVS builds.121
Writing an MVS build seript .125
File name conversions formMmvs125
Passing parameters to an MVS build script126
TeamConnection syntax for MVS build scripts . 2 4
Supported JCL syntax N 22
Example of a build script for a C comp|le A 21
Example of a build script for a COBOL compile131
Example of a build script foralink132
Chapter 11. Working with parsers135
Creatingawparser .. .13
Putting a parsertowork .137
Removing a parser fomapart138
Writing a parser command file139

Contents V

Chapter 12. Building an application: an example . 141
Starting the build processors and build agents . . 142
Creating builders and parsers . . 143
Creating the build tree for the apphcatlon . 143
Starting the build on the client . . 147
Determining the build scope. . 149
Adding the job to the job queue . 151
Picking up the work orders . . 151
Putting the build processors to work. . 151
Putting the build scripts to work . . 151
Finishing the job and reporting the results to the user . . 152
Monitoring the progress of a build . 152
Running a build in spite of errors . . . 153
Building all parts, regardless of build tlmes . 153
Finding out which parts will be built . . 154
Canceling a build. . 154
More sample build trees . . 155
Defining multiple outputs from a smgle bwld event . 155
Synchronizing the build of unrelated parts . 156
Part 4. Using TeamConnection to package products .157
Chapter 13. Using TeamConnection to package a product . 159
Setting up your build tree for packaging . 160
Setting up a build tree for the gather tool . . 160
Setting up a build tree for the NVBridge tool. . 162
Setting up a build tree for other distribution tools . . 163
Chapter 14. Using the Gather tool . . . 165
Using the teamcpak command for the Gather tooI. . 166
Command line flags. . 166
Examples of the teamcpak gather command . 167
Writing a package file for the Gather tool . . 168
Syntax rules for a Gather package file . . 168
Chapter 15. Using the NVBridge tool . 173
Using the teamcpak command for NVBridge. . 174
Command line flags. . . 175
Examples of the teamcpak nvbndge command. . 176
Writing a package file for NVBridge . . 176
Syntax rules for an NVBridge package file . 177
Keywords for an NVBridge package file . 177
Problem determination for NVBridge. . 185
NVBridge utilities . . 186
FHPSTAT . . 187
FHPOBDEL. . 187
FHPOBMON . 187
FHPOBDIF . . 188
FHPISCAT . . 189
FHPICAT. . . 189
FHPUCAT . . 190
FHPMCAT . . 191
FHPVERIF . . 191
FHPRQPUR . 192
FHPRQMON . 192
FHPTRVER. . 193

Vi

User's Guide

FHPTRPUR

Chapter 16. Using the Tivoli/Courier packaging tool
Using the teamcpak command with Tivoli/Courier .
Command line flags.
Example of the teamcpak softdlst command
Writing a package file for Tivoli/Courier.
Syntax rules for a Tivoli/Courier package file
Keywords for a Tivoli/Courier package file
Problem determination for the Tivoli/Courier tool
Sample package file

Appendix A. Environment Variables
Setting environment variables .

Appendix B. Importing makefile information into TeamConnection
Creating a rules file .

Appendix C. TeamConnection Merge

Appendix D. Enabling a Workframe project for TeamConnection
Creating a TeamConnection-enabled Workframe project
Setting up your project options.
Using your TeamConnection Workframe prolect
Project actions.
Part actions. .
Using your project: a S|mple scenario

Appendix E. Enabling and Using the ENVY/Manager-TeamConnection
Bridge . .
Overview of the ENVY/Manager TeamConnchon Brldge .
Scope of this documentation
Description of theENVY/Manager- TeamConnectlon Brldge
Preparing to use the ENVY/Manager-TeamConnection Bridge .
Setting up the bridge environment
Installing and activating the ENVY/Manager- TeamConnecuon Brldge
Using the ENVY/Manager-TeamConnection Bridge
Setting default properties .
Exporting ENVY components to TeamConnectlon
Importing ENVY components from TeamConnection .

Using the ENVY/Manager-TeamConnection Bridge: a simple scenario for

VisualAge Generator developers .

Scenario assumptions .

Exporting ENVY components to TeamConnecuon
Object mapping in TeamConnection .

Build generation .

Making a change to a member

Appendix F. Source Code Control User’'s Guide

Differences between other source code control providers and TeamConnectlon

Projects vs Families.

Installing the TeamConnectlon source code control DLL
Connecting TeamConnection to Visual Basic 4.0 .

Removing the TeamConnection Source Code Control DLL
Using TeamConnection as your source code control provider

Before you start .

Contents

. 194

. 195
. 195
. 196
. 196
. 197
. 197
. 197
. 200
. 200

. 203
. 207

. 209
. 210

. 213

. 215
. 215
. 215
. 216
. 216
. 216
. 217

. 219
. 219
. 219
. 220
. 221
. 221
. 222
. 224
. 224
. 227
. 229

. 230
. 230
. 230
. 231
. 232
. 233

. 235
235

. 235
. 236
. 236
. 236
. 236
. 237

Vii

viii

User's Guide

Opening a project .
Full features of TeamConnectlon .

Appendix G. Supported keywords
Appendix H. Authority and notification for TeamConnection actions

Appendix I. Sample REXX execs, build scripts, and parsers
Sample REXX execs

Sample build scripts

Sample parsers .

Sample package files .

Appendix J. Program specifications for TeamConnection version 2.0
Customer support

Bibliography

IBM VisualAge TeamConnect|on Ilbrary
Tool Builder's Development Kit.
TeamConnection Technical reports
ObjectStore .

IBM Exchange I|brary

Related publications

Glossary

Index .

. 237
. 238

. 241

. 243

. 259
. 259
. 262
. 263
. 263

. 265

. 267

. 269
. 269
. 269
. 270
. 270
. 271
. 271

. 273

. 281

Figures

1. A sample TeamConnection client/server network 5
2. Sample of a component hierarchy. 7
3. Parts, releases, and components 8
4, Taskswindow ... 16
5. Components window 24
6. Accept Defects window 48
7. Create Work Areas window 49
8. Check Out Partswindow 50
9. PartFilterwindow B
10. Edit Task List window . b2
11. Check In Parts window. b3
12. Build Parts window . bb
13. Extract Parts window . b6
14. CheckQutParts .. b7
15. Check In Parts window. b8
16. Freeze Work Areas window h9
17. Refresh Work Areas window. 60
18. Build Parts window . . . o)
19. Integrate Work Areas wmdow e 4
20. Verify Defects window . 63
21. Refresh Work Areas window. 64
22. Integrate Work Areas window 65
23. Reconcile Collision Record window 66
24. Modify Defect Owner window 71
25. Accept Defects window . . . P 4
26. Accept Approval Records Wlndow Y <3
27. Check Out Parts window 74
28. Check In Parts window. 715
29. Freeze Work Areaswindow 716
30. Build Parts window . . . C e T
31. Complete Fix Records Wlndow N £
32. Add Driver Members window 719
33. Fix Work Areas window 80
34. Activate Fix Records window 80
35. Refresh Work Areas window. 81
36. Refresh Drivers window 8
37. Build Parts window . 8
38. Restrict Drivers window 8
39. Commit Drivers window 8
40. Complete Drivers window. 85
41. Accept Test Records window . . . e 86
42. The physical structure of TeamConnectlon T 7
43. Sample build object model for msgcatexe 97
44. The build tree for the hello application 98
45. Two versions of a buildtree 99
46. Create Builder window .12
47. Matching environmentvalues14
48. Modify Part Properties window119
49. Modify Part Properties window120
50. Create Builder window .122
51. Matching environmentvalues124
52. A JCL fragment for an MVS compile.130
53. A JCL fragment converted to a build script131

© Copyright IBM Corp. 1992, 1995, 1996, 1997 iX

X

User's Guide

54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.

Create Parser window .

Modify Part Properties window .

Modify Part Properties window .

Sample build tree.
Sample build object model for msgcat.exe
Create Parts window

Create Parts window .

Modify Part Properties window .

Connect Parts window .

The build tree display .

Build Parts window . .

Build tree showing build times .

The build tree for robot.dll.

The build tree for robot.app .

Part of the build tree for robot.app

Adding the gather step to the build tree.
Adding the NVBridge step to the build tree

. 136
. 138
. 139
. 141
. 142
. 144
. 145
. 146
. 146
. 147
. 147
. 150
. 155
. 156
. 160
. 162
. 163

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Subject to IBM’s valid
intellectual property or other legally protectable rights, any functionally equivalent
product, program, or service may be used instead of the IBM product, program, or
service. The evaluation and verification of operation in conjunction with other
products, except those expressly designated by IBM, are the responsibility of the
user.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the IBM Director of Licensing,
IBM Corporation, 500 Columbus Avenue, Thornwood, NY, USA 10594.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact the Site Counsel, IBM Corporation, P.O.
Box 12195, 3039 Cornwallis Road, Research Triangle Park, NC 27709-2195, USA.
Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available
for it are provided by IBM under terms of the IBM Customer Agreement.

This document is not intended for production use and is furnished as is without any
warranty of any kind, and all warranties are hereby disclaimed including the
warranties of merchantability and fitness for a particular purpose.

IBM may change this publication, the product described herein, or both. These
changes will be incorporated in new editions of the publication.

This publication contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

© Copyright IBM Corp. 1992, 1995, 1996, 1997 Xi

Xii Users Guide

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

AlX MVS/XA

Common User Access NetView

CUA Operating System/2
C/370 0s/2

ENVY* TeamConnection
IBM VisualAge

MVS XGA

MVS/ESA

* ENVY is a registered trademark if Object Technology International, Inc.

The following terms are trademarks of other companies:

ObjectStore
ObjectStore Design, Inc.

UNIX X/Open Company Limited

Microsoft, Windows, and the Windows 95 logo are trademarks or registered
trademarks of Microsoft Corporation.

© Copyright IBM Corp. 1992, 1995, 1996, 1997 Xiii

XV Users Guide

About this book

This book is part of the documentation library supporting the IBM TeamConnection
licensed programs. It is a guide for client users.

For additional information when performing TeamConnection tasks, refer to the
Commands Reference when entering commands or online help when using the
graphical user interface (GUI).

Getting Started with the TeamConnection Clients contains basic information for the
client user.

This book is available in PDF format. Because production time for printed manuals
is longer than production time for PDF files, the PDF files may contain more
up-to-date information. The PDF files are located on the installation CD in directory
path softpubs\enu (softpubs/en_us in UNIX). To view these files, you need a PDF
reader such as Acrobat.

How this book is organized

tPart 1 Introducing TeamCannection” on page 1, gives all users an overview of

the concepts of TeamConnection and introduces the terminology that is used
throughout this book.

tPart 2_Developing a product using TeamConnection” on page 13, describes the
different interfaces and basic TeamConnection tasks. It uses scenarios to
explain how to do many tasks.

This part is for everyone using TeamConnection to do daily work. The
information is meant for both the person who uses the command line interface
and the person who uses the GUI, as instructions for both are provided.

[Part 3 Using TeamConnection ta build applications” on page 91, tells how to

use the TeamConnection build function. For information in installing and
administering the build function, refer to the Administrator’s Guide

[Part 4 Using TeamConnection to package praducts” on page 157, tells how

TeamConnection helps you automate the packaging and distribution of your
application.

, contains various pieces of information that you can refer to as you plan for and
use TeamConnection.

Information on customer service, a glossary, and a bibliography are included at the
back of this book.

Conventions

This book uses the following highlighting conventions:

» talics are used to indicate the first occurrence of a word or phrase that is defined
in the glossary. They are also used for information that you must replace.

* Bold is used to indicate items on the GUI.
* Monospace font is used to indicate exactly how you type the information.

» File names follow Intel conventions: mydinmyfile.txt. AIX and HP-UX users
should render this file name mydir/myfile.txt.

© Copyright IBM Corp. 1992, 1995, 1996, 1997 XV

Tips or platform specific information is marked in this book as follows:

Shortcut techniques and other tips

IBM VisualAge TeamConnection for OS/2

31

IBM VisualAge TeamConnection for Windows 3.1

IBM VisualAge TeamConnection for Windows/NT

93

IBM VisualAge TeamConnection for Windows 95

IBM VisualAge TeamConnection for AIX

A

IBM VisualAge TeamConnection for HP-UX

IBM VisualAge TeamConnection for Solaris

Tell us what you think

In the back of this book is a comment form. Please take a few moments to tell us
what you think about this book. The only way for us to know if you are satisfied with
our books or if we can improve their quality is through feedback from customers like

you.

XVi Users Guide

Part 1. Introducing TeamConnection

Chapter 1. An introduction to TeamConnection
TeamConnection definitions . Coe
TeamConnection’s client/server architecture .
TeamConnection database .
Interfaces
Families . .
Users and host lists.
Parts .
Components
Releases.
Work areas .
Drivers .o
Defects and features
Processes .
Build
Packaging
Roles people play

©COOwOoO~N~NOoOOOoOOOO U~ bW

el
[g

This section presents an overview of the TeamConnection product. The information
in this section should be read and understood by everyone who is going to work
with TeamConnection.

Additional conceptual information is provided in Parts 3, 4, and 5.

© Copyright IBM Corp. 1992, 1995, 1996, 1997 1

2 User's Guide

Chapter 1. An introduction to TeamConnection

TeamConnection provides an environment and tools to make software development
run smoothly, whether your development team is small or large. Using
TeamConnection, you can communicate with and share data among team members
to keep up with the many tasks in the development life cycle, from planning through
maintenance.

What does TeamConnection do for you? It takes care of the following:

» Configuration management. the process of identifying, organizing, managing, and
controlling software modules as they change over time. This includes controlling
access to your software modules and providing natification to team members as
software modules change.

* Release management. the logical organization of objects that are related to an
application. The release provides a logical view of objects that must be built,
tested, and distributed together. Releases are versioned, built, and packaged.

» Version control: the tracking of relationships among the versions of the various
parts that make up an application. Version control enables you to build your
product using stable levels of code, even if the code is constantly changing. It
provides control over which changes are available to everyone and, optionally,
allows more than one developer at a time to update a part.

* Change control: the controlling of changes to parts that are stored in
TeamConnection. TeamConnection keeps track of any part changes you make
and the reasons you make them. Your development team can build releases with
accuracy and efficiency, even as the parts evolve. The product ensures that the
change process is followed and that the changes are authorized. After changes
are made, it allows you to integrate the changes and build the application.
TeamConnection tracks all changes to the parts across multiple products and
environments.

The change control process is configurable. Your team can decide how strict the
change control should be, from loose to very tight. You can also adjust the level
of control as you move through a development cycle.

* Build support. the function that enables you to define the structure of your
application and then to create it within TeamConnection from your input parts.
Independent steps in a build can run in parallel on different servers, thus
reducing your build time. You can build applications for platforms in addition to
the one TeamConnection runs on—currently, you can use TeamConnection to
build applications on AIX, HP-UX, OS/2, Windows NT, Windows 95, Solaris, and
MVS.

» Packaging support. the preparation of your application for electronic distribution
to other users.

TeamConnection provides an open information model for sharing data between a
set of integrated tools using TeamConnection. This object-based information model
enables an extensible architecture, thus ensuring continued support for new
versions of existing tools, as well as new tools that are brought into the repository
environment. This support includes the previously mentioned standard services
across all objects stored in the information model. TeamConnection’s information
model and tool builder’s functions are provided separately in the Tool Builder’s
Development Kit. See the bibliography at the back of this book for more information.

© Copyright IBM Corp. 1992, 1995, 1996, 1997 3

IBM Exchange for OS/2, which is a feature of TeamConnection, provides the
functions necessary to migrate existing model information into TeamConnection. For
more information about IBM Exchange, refer to the IBM Exchange User’s Guide

This chapter defines the basic terms and concepts you need to make the most of
TeamConnection. Read this chapter first; then decide which information you need
next:

Topic and description

Page

Developing products using TeamConnection:

Getting familiar with the interfaces
The basics of using TeamConnection
More about defects and features
Following TeamConnection processes

fid

Using TeamConnection to build applications:

Build concepts

Installing build agents and processors
Working with build scripts and builders
Working with parsers

Building an application

Packaging applications:

Using the packaging function
Using the Gather utility
Using the NVBridge utility

TeamConnection definitions

The following definitions are in logical order rather than alphabetical. provides

additional information about these terms.

TeamConnection’s client/server architecture

4 Users Guide

Eigure 1 on page 3is an example of a network of TeamConnection clients and
servers.

0S/2

ObjectStore
database

ObjectStore
database

Family server

Family server

for testfam for robot
0Ss/2 0Ss/2

Build
Client agent

oS/ 0Ss/2 0s/2 MVS

Build
. Build Build
Client processor agent processor

Figure 1. A sample TeamConnection client/server network

TeamConnection family servers control all data within the TeamConnection
environment. Data stored in a family server’'s database includes:

» Text objects, such as source code and product documentation

* Binary objects, such as compiled code

* Modeled objects that are stored in the information model by tools such as
VisualAge Generator

» Other TeamConnection objects that are metadata about the other objects

Build agents and build processors work together to perform product builds. We
sometimes refer to the combination of a build agent and its connected build
processor as a build server.

A TeamConnection client gives team members access to the development
information and parts stored on the database server.

TeamConnection database

Interfaces

TeamConnection is built on Object Design, Inc.’s ObjectStore database. The
TeamConnection server communicates with the ObjectStore database through an
ObjectStore server.

TeamConnection provides the following interfaces that you can use to access data:

» A graphical user interface based on Common User Access (CUA).

* A command line interface that lets you type TeamConnection commands from a
prompt or from within TeamConnection

* A web client, that you access through your web browser.

You can use any interface to do your TeamConnection work, or you can switch
among them. This book usually gives instructions for using both interfaces.

Chapter 1. An introduction to TeamConnection

5

Families

For more information, see ['Chapter 2. Getting familiar with the TeamConnection

A family represents a complete and self-contained collection of TeamConnection
users and development data. Data within a family is completely isolated from data
in all other families. One family cannot share data with another.

Users and host lists

Parts

6

User's Guide

Users are given access to the TeamConnection development data in a specific
family through their user IDs. Each family has at least one superuser, who has
privileged access to the family. The superuser gives other users the authority to
perform some set of actions on particular data. Depending on the authority granted
to a user, that user might in turn be able to grant some equal or lesser level of
authority to other users. However, the ability to grant authority for some actions is
reserved to the superuser. There are no actions which the superuser cannot
perform.

For host-based authentication, each user ID is associated with a host list, which is a
list of client machine addresses from which the user can access TeamConnection
when using that ID.

A single user can access TeamConnection from multiple systems or logins.
Likewise, a single system login can act on behalf of multiple users. The set of
authorized logins for a TeamConnection user ID makes up the user’s host list.

It is also possible to authenticate users through the use of passwords, either in
place of host lists, or as an alternative form of authentication.

TeamConnection parts are objects that users and tools store in TeamConnection.
They include text objects, binary objects, and modeled objects. These parts can be
stored by the user or the tool, or they can be generated from other parts, such as
when a linker generates an executable file. Parts can also be groupings of other
TeamConnection objects for building and distribution, or simply for convenient
reference. Common part actions include the following:

Create
To store a part from your workstation on the server; from that time on,
TeamConnection keeps track of all changes made to the part. Or, to create
a part to use as a place holder to store the output of a build.

Check out
To get a copy of a part so that you can make changes to it.

Check in
To put the changed part back into TeamConnection.

Extract
To get a copy of the part without making changes to the current version in
TeamConnection.

Edit To change a part from within TeamConnection using a specified editor.

Components

Releases

Build To construct an output part from parts that you have defined to
TeamConnection as input to the output part.

These are simplified definitions _of part actions; there is more about the actions you

can Eerform against parts in L -

The current version of each part is stored in the TeamConnection database, along
with previous versions of each part. You can return to previous versions if you need
to.

Within each family, development data is organized into groups called components.
The component hierarchy of each family includes a single top component, called
root, and descendants of that root. Each child component has at least one parent
component; a child can have multiple parents.

The following figure depicts a component hierarchy.

parent

descendant

Figure 2. Sample of a component hierarchy

TeamConnection uses components to organize development data, control access to
the data, and notify users when certain actions occur. Descendant components
inherit access and notification information from ancestor components. Information
about the components is stored in the database, including:

* The component’s position in its family hierarchy.

* The user who owns the component. The component owner is responsible for
managing data related to it, including defects or features.

* The users who have access to the component and the level of access each user
has. This information makes up the component’s access list.

* The users who are to be notified about changes to the component. This set of
users is called the notification list.

* The process by which the component handles defects and features.

An application is likely to contain parts from more than one component. Because
you probably want to use some of the same parts in more than one application, or
in more than one version of an application, TeamConnection also groups parts into
releases. A release is a logical organization of all parts that are related to an
application; that is, all parts that must be built, tested, and distributed together. Each

Chapter 1. An introduction to TeamConnection 7

Work areas

8

User's Guide

time a release is changed, a new version of the release is created. Each version of
the release points to the correct version of each part in the release.

Each part in TeamConnection is managed by at least one component and contained
in at least one release. One release can contain parts from many components; a
component can span several releases. @ shows the relationships between
parts, the releases that contain them, and the components that manage them.

Release 1

Component A Component B

Component C
D0 (BOON A

LDD O 0

Parts

Release 2

Figure 3. Parts, releases, and components

Each time a new development cycle begins, you can define a separate release.
Each subsequent release of an application can share many of the same parts as its
predecessor. Thus maintenance of an older release can progress at the same time
as development of a newer one. Each release follows a process by which defects
and features are handled.

A release contains the latest "official” version of each of its parts. As users check
parts out of the releases, update them, and then check them back in,
TeamConnection keeps track of all of these changes, even when more than one
user updates the same part at the same time. To make this possible,
TeamConnection uses something called a work area.

A work area is a logical temporary work space that enables you to isolate your work
on the parts in a release from the official versions of the parts. You can check parts
out to a work area, update them, and build them without affecting the official version
of the parts in the release. After you are certain that your changes work, you
integrate the work area with the release (or commit the driver that the work area is
a member of, if you are using the driver subprocess). The integration makes the
parts from your work area the new official parts in the release.

You can do the following with work areas:
* Check out parts from a release
* Update any or all of the checked-out parts

* Get the latest copies of the parts in the release, including any changes integrated
by other users

* Get the latest copies of the parts in another work area

* Freeze the work area, making a snapshot of the parts as they exist at a
particular instant in case you need to return to it later

Drivers

» Build the parts in the work area
* Move all parts back into the release by integrating the work area

For more information, see LlUsing work areas” on page 24,

A driver is a collector for work areas. You create drivers associated with specific
releases so that you can exercise greater control over which work areas are
integrated into the release and commit the changes from multiple work areas
simultaneously.

When a work area is added to a driver, it is called a driver member. A single work
area can be a member of more than one driver. By making a work area part of a
driver, you associate the parts changed in relation to that work area with the
specified driver. These parts must be members of the release associated with the
driver.

Drivers enable you to place the following controls over work area integrations:
» Define and monitor prerequisite and corequisite work areas to ensure that
mutually dependent changes are integrated in proper order.

» Monitor and resolve conflicting changes to the same part (if you use concurrent
development).

» Restrict access to driver members so that they can be changed only by users
with proper authority.

Defects and features

Processes

A defect is a record of a problem to be fixed. A feature is a record of a request for a
functional addition or enhancement. Both are associated with a work area, and both
follow the processes defined for the component and release that are associated
with the work area. TeamConnection tracks both objects through their life cycles as
developers change and commit parts.

You can use defects and features to record problems and design changes for things
other than the products you are developing under TeamConnection control. For
example, you can use defects to record information about personnel problems,
hardware problems, or process problems. You can use features to record proposals
for process improvements and hardware design changes.

For more information, see L\orking with defects and features” on page 34.

An application changes over time as developers add features or correct defects.
TeamConnection controls these changes according to the processes you choose for
your application’s components and releases. A process enforces a specific level of
control to part changes and ensures that actions occur in a specified order.

Two separate types of processes are defined: component processes, which can be
different for each component within a family, and release processes, which apply to

Chapter 1. An introduction to TeamConnection 9

10

User's Guide

all activities associated with a given release. Component or release processes are
built from a number of lower-level processes, or subprocesses, that are included
with the TeamConnection product.

A defect or feature written against a component moves through successive states
during its life cycle. The TeamConnection actions that you can perform against it
depend on its current state. The component processes define these actions. You
can require users to do some, all, or none of the following for tracking defects and
features:

dsrFeature
Design, size, and review changes to be made for features

verifyFeature
Verify that the features have been implemented correctly

dsrDefect
Design, size, and review fixes to be made for defects

verifyDefect
Verify that the fixes work

At the release level you can require some, all, or none of the following
subprocesses:

track This subprocess is TeamConnection’s way of relating all part changes to a
specific defect or feature and a specific release. Each work area gathers all
the parts modified for the specified defect or feature in one release and
records the status of the defect or feature. The work area moves through
successive states during its life cycle. The TeamConnection actions that you
can perform against a work area depend on its current state.

You must use the track subprocess if you want to use any of the other
release subprocesses.

approval
This subprocess ensures that a designated approver agrees with the
decision to incorporate changes into a particular release and electronically
signs a record. As soon as approval is given, the changes can be made.

fix This subprocess ensures that as users check in parts associated with a
work area, an action is taken to indicate that they have completed their
portion. When everyone is done, the owner of the fix record (usually the
component owner) can change the fix record to complete. The parts are
then ready for integration.

driver A driver is a collection of all the work areas that are to be integrated with
each other and with the unchanged parts in the release at a particular time.
The driver subprocess allows you to include these changes incrementally
so that their impact can be evaluated and verified before additional changes
are incorporated. Each work area that is included in a driver is called a
driver member.

test The test subprocess guarantees that testing occurs prior to verifying that
the fix is correct within the release.

TeamConnection is shipped with several predefined processes. If these do not
apply to your organization, you can configure your own processes by defining
different combinations of subprocesses.

See [Chapter 4. The states of TeamConnection objects” on page 37 for an

explanation of TeamConnection states.

Build

The TeamConnection build function automates the process of building individual
parts or entire applications, both in the work group LAN environment and on an
enterprise server. This function enables you to reliably and repeatedly build the
same output from the same inputs. You can also build different outputs from the
same inputs for different environments.

You start a build against an output part that has an associated builder. A builder is
an object that describes how to translate input parts to get the desired output, such
as a linker or compiler. An input part might have an associated parser, which
determines the dependencies for the input parts in a build.

The build function does the following:

» Tracks build times of inputs and outputs so that it builds only those parts that are
out of date themselves or that have out of date dependants. You can also force a
build regardless of the build times.

* Enables you to spread the build over multiple machines running at the same time
or into multiple processes running on a single machine, such as on MVS.

For more information, see Part 3_Using TeamCaonnection to huild applications” an

Packaging

Packaging is any of the steps necessary to distribute software and data onto the
machines where they are to be used. TeamConnection includes two tools that you
can use to automate the electronic distribution of TeamConnection-managed
software and data:

Gather
An automated data mover for server or file transfer-based distribution

NVBridge
A bridge utility that automates the installation and distribution of software or
data using IBM NetView Distribution Manager/2 as the distribution vehicle

NVBridge
A tool that supports automated distribution between a single NetView DM/2
CC server and its LAN-connected CC clients. It also supports remote
distribution to APPC-connected NetView DM/2 servers and mainstream
servers.

For more information, see LEaLtA_usng_'Eea.mCannecuan_m_pac_kage_pmduds_ad

Roles people play

Because TeamConnection is extremely flexible, no two projects are likely to use it in
the same way, and the jobs that people perform likewise vary. Still, TeamConnection
tasks can be grouped into the following general categories:

Chapter 1. An introduction to TeamConnection 11

System administrator
Has superuser access to the family server and database administration
access to the database management system. This administrator is
responsible for the following:

* Installing and maintaining the server

* Maintaining and backing up the database used by TeamConnection
Family administrator

Has superuser access to the family server and database administration

access to the database management system. This administrator is
responsible for the following:

* Planning and configuring TeamConnection for one or more families
* Managing user access to one or more families
* Maintaining one or more families
Build administrator
This administrator is responsible for the following:
* Setting up and maintaining build servers
* Planning for builds
» Creating builders and parsers
» Starting and stopping build agents and processors
» Defining pools
« Monitoring build performance
* Creating driver members
» Committing and completing drivers
* Extracting releases
* Packaging and distributing applications
End user
End users, such as project leaders, programmers, and technical writers,

use one or more TeamConnection families to control and maintain
application development data.

12 user's Guide

Part 2. Developing a product using TeamConnection

Chapter 2. Getting familiar with the TeamConnection client interfaces

Using the GUI .
Starting the GUI .
Stopping the GUI. .
Performing tasks with the GUI
Using the Settings notebook
Online help information
Using the command line interface
Using the web client

Chapter 3. The basics of using TeamConnection
Laying the groundwork.
Authority to perform tasks)
Finding objects within TeamConnection
Finding parts
Using work areas .
Naming your work areas .
Creating parts .
Naming your parts .
Preparing to build your parts
Working with parts .
Working in serial or concurrent development mode
Working with common parts.
Getting parts from TeamConnection .
Checking parts in to TeamConnection .
Finding different versions of TeamConnection objects
Versioning releases .
Versioning work areas .
Versioning drivers
Versioning parts .
Working with defects and features
Testing and verifying part changes

Chapter 4. The states of TeamConnection objects
Defects and features

The states of work areas .

The states of drivers

Verification and test records.

Chapter 5. Working with no component or release processes
Working in serial development .
Accepting a defect .
Creating a work area .
Checking out a part .
Searching for a part.
Checking in a part .
Verifying and testing part updates
Extracting a part .
Checking out the part one more trme
Checking the part back in
Freezing the work area
Refreshing the work area.
Building the application

© Copyright IBM Corp. 1992, 1995, 1996, 1997

15
15
15
16
16
17
18
19
20

23
23
24
25
25
26
26
27
27
28
28
28
29
30
31
31
32
32
33
34
34
35

37
37
40
42
44

47
47
48
49
50
51
53
54
55
56
57
58
59
60

13

14

User's Guide

Integrating the work area.
Closing a defect .

Working in concurrent development
Refreshing the work area.
Integrating the work area.
Reconciling differences

Chapter 6. Working with component and release processes

Moving through design, size, and review .
Changing defect ownership .
Accepting a defect .
Approving the fix .
Checking out a part.
Verifying the changes .
Freezing the work area
Building the application
Accepting fix records .
Integrating changed parts |nto a release .
Adding a driver member .
Reconciling the differences .
Returning the work area to the fIX state
Reactivating the fix record
Refreshing the work area.
Refreshing the driver
Building the driver
Restricting the driver
Integrating the parts.
Completing the driver .
Testing the built application .
Using a configured process .
Retrieving a past version of a part

This section is for anyone who uses the TeamConnection client to do daily work.

61
62
63
63
64
65

69
70
70
71
72
73
74
75
76
77
78
78
79
79
80
81
81
82
83
84
85
85
86
87

The information is meant for both the person who uses the command line interface

and the person who uses the GUI; instructions for both are provided.
All the tasks in this part are done from a client machine.

Before reading this section, you should be familiar with the TeamConnection

terminology and concepts presented in FChapter 1. An introduction td
TeamConnection” on page 3.

Chapter 2. Getting familiar with the TeamConnection client
interfaces

TeamConnection provides several interfaces that you can use to access data:

» A graphical user interface based on the Common User Access (CUA)
architecture

* A command line interface that lets you type TeamConnection commands from a
prompt or from within TeamConnection

If you are using Windows 3.1, you must use the entry field at the bottom of the
TeamConnection Tasks window just above the user and family names, or use the
TeamConnection Command window to enter TeamConnection commands.

* A web client, that you access through your web browser.

You can use any of the interfaces to do all of your TeamConnection work, or you
can switch back and forth between the them. You might find that some tasks are
easier to do from the GUI or through the web, while others are easier to do from
the command line.

The examples throughout tRart 2_Developing a product using TeamCaonnection” an

give instructions for both GUI and command line interface usage.

This chapter helps you to begin using the TeamConnection client interfaces. It
describes the following:

» Using the GUI

Starting and stopping the GUI

Getting around in the GUI

Using the Settings notebook

Using the online help that is provided with TeamConnection

* Using the command line interface

» Using the web client

Before you can use TeamConnection, someone in your organization with superuser
authority, such as your family administrator, must create for you a unique user 1D
and a host list entry for the workstation where you installed the client.

Using the GUI

TeamConnection provides a GUI that you can use to do all of your TeamConnection
work. To use the GUI efficiently, set your default values in your Settings notebook to
suit your working environment, and then become familiar with the Tasks window
and how you can save time by adding your most common tasks to it.

Starting the GUI

You can start the TeamConnection client GUI in one of the following ways:

» Select the TeamConnection Client icon from the TeamConnection Groupfolder
on the desktop.

* Type teamcgui from a prompt in the directory where TeamConnection was
installed.

© Copyright IBM Corp. 1992, 1995, 1996, 1997 15

If you are using AIX or HP-UX, type teamcgui from a prompt in your home
directory.

The Tasks window appears.

TeamConnection - Tasks ﬂg
File Edit View Objects Actions Windows Help

iew defects needing work

-El View features needing work

E View all defects

-EI View all features

v
@ View components you have access to

View components you own

v

>
jlashley teamci 0 of b selected

Figure 4. Tasks window

Initially, a set of default tasks appears in your Tasks window. As you become more
familiar with TeamConnection and see what tasks you do most often, you can
change, delete from, and add new tasks to this list. To learn how to do this, select
How do | from the Help pull-down menu, and then select Update tasks on the
Tasks window.

From the Tasks window, you can either select actions from the menu bar or select a
task.

Stopping the GUI

To stop the TeamConnection client GUI, do one of the following:
* Select Close from the System menu in the Tasks window.
» Select Exit from the File pull-down menu of a TeamConnection window.

Performing tasks with the GUI

16

User's Guide

There are several ways you can perform TeamConnection tasks with the GUI. You

can:

* Select an action from the Actions pull-down menu and then select the object you
want to work with. For example, if you want to view a specific defect, select
Defects » View from the Actions pull-down menu; then type the name of the
defect in the View Defects window.

This method is useful when you know the exact names of the objects you want
to work with.

» Select the type of object you want to work with, such as Defects, from the
Objects pull-down menu. A Filter window appears in which you can specify
search criteria. You then get a list of objects that match the search criteria.
Online help provides information about using the Filter window.

This method is useful when you do not know the exact name of the object you
want to work with, or you want to view a list of objects.

After you have a list of objects, and if you are going to use this list at other times,
you can keep the window open. Leave the window in the background as you do
your other work, or minimize it. This way, you can quickly retrieve the list when
you want to perform another action.

¢ Select a task from the Tasks window.

This method provides a fast path within the GUI. When you select a task,
TeamConnection performs the underlying query or command and then displays
the requested information.

» Select an object from an object window (such as the Parts, Defects, or Features
window) and then select an action to perform on the selected part from the
Selected menu. You can also display a pop-up menu listing valid actions for a
specific object by placing the mouse pointer over the object and pressing mouse
button 2.

Using the Settings notebook

The TeamConnection GUI provides a Settings notebook in which you can set
default values for your working environment. To open the Settings notebook, select
Settings from the Windows pull-down menu. You can set the following values; for
more information about them, refer to the online help. The notebook has five pages.

On the Environment + Family The environment

page: « Release vgrlables you specify on
this page are relevant for
the GUI only, not the
command line.

* Component

* Work area

* Become user

e UserID

e Top

* Relative directory
» Working directory

On the Setup page: * NLS path

* Log file

* Case

* Print command

* Compare command
» Edit command

Chapter 2. Getting familiar with the TeamConnection client interfaces 17

On the GUI page: * Verbose commands

» Auto refresh

* Multiple object windows

* Show query line

» Sort pre-defined list values

» Use small icons in icon views (not
available in Windows clients)

» Use small icons in tree views (not
available in Windows clients)

» Font for object windows (not
available in Windows clients)

= Font for output windows (not
available in Windows clients)

* Required field label color
* Modified field label color

On the Extract page: + Destination directory
* Read-only
* Expand keywords

On the Pool page: *« Pool

Online help information

18

User's Guide

Online help information is available from anywhere in the TeamConnection GUI.
Use the online help when you need more information about a topic or task.

TeamConnection offers two types of help:

* General help

This is help for a specific window. General help provides an overview of the task
and describes the objects on the window, such as menu-bar items, icons, fields,
and push buttons. Do one of the following to access general help:

— Select Help from a menu bar.
— Select the Help push button.
— Press F1.

 How do |

This is where you find step-by-step instructions for doing a specific task. How
you do a task depends on the component or release process that is being
followed, and this help information takes that into consideration. To access this
help, select How do | from the Help pull-down menu. Double-click on one of the
task items.

At the bottom of each Help window is a Diagram push button. Select this push
button to view a graphical process diagram. Step your way through the diagram to
better understand the processes that TeamConnection components and releases
can follow. The processes that your components and releases follow depend on

how the processes are configured for your organization. The defined processes
determine the actions that must occur before a defect or feature can move toward
completion.

Using the command line interface

To use the command line interface effectively, you must be familiar with the actions
that you can perform using TeamConnection commands. A complete description of
each command, including examples for each, is available in the Commands
Reference

To view the syntax of a TeamConnection command online, type the following at a
prompt:
teamc commandName

Where commandName is the name of the TeamConnection command.

The Quick Commands Reference is a booklet that lists the syntax of each
TeamConnection command.

You can also become familiar with the commands by looking at the contents of the
log file where TeamConnection stores the commands that are issued as you use
the GUI. This file is specified in the Log file field on the Setup page of the Settings
notebook. The default name is teamc.log; it is stored in the directory where the
client is installed, unless you specify a different location in the Settings notebook.

You can type TeamConnection commands from a prompt within any directory; the
TeamConnection GUI does not need to be started. Or you can type a command on
the command line in the Tasks window.

Before you start to use the command line interface, you might want to set the most
used environment variables, such as TC_FAMILY or TC_COMPONENT. You are not
required to set these environment variables, but if you do not, you will need to
specify them in the command when required.

You set environment variables differently for different platforms: AlX and HP-UX
users set environment variables in the .profile (sh, ksh environment), .dtprofile (cde
environment), or .cshrc (csh environment). OS/2 and Windows 3.1 users set
environment variables in the config.sys file or from a command line prompt. Some
environment variables are set in your config.sys file during installation.

Windows 95 and Windows NT users set environment variables in the Windows
Control Panel.

You can override the value you set for an environment variable by using the
corresponding flag in the command. For example, you have the TC_FAMILY
environment variable set to robot, but you need to extract a file from another family
named octo, so you issue the following command:

teamc part -extract hello.c -family octo -release 9501

LAppendix A_Environment Variables” on page 203 provides a complete list of the

TeamConnection environment variables.

Chapter 2. Getting familiar with the TeamConnection client interfaces 19

Using the web client

20

User's Guide

The TeamConnection Web Client provides family server connectivity and great deal
of the functionality provided by a standard TeamConnection client without the
overhead required by a standard client installation. Using a web browser, anyone in
the organization can access server data (provided the server is configured
appropriately) by addressing a machine and port number. Although file input/output
functions are not currently available, most other familiar TeamConnection functions
are available through the Web client.

To begin using the TeamConnection web client you must point your web browser to
the correct URL. The syntax of the URL is: http://host name of the server:port
number of your family. For example, if your server host name is bldprocl and your
port number is 7890, the URL would look like: http://bldproc1:7890

Your organization might require that you log in to the TeamConnection family server
before you can access TeamConnection objects. If you are accessing
TeamConnection through the host, you will not be able to go through a proxy unless
you are:

* Logging in using a password.
* Using a smart proxy.

Using the web client is much like using the TeamConnection GUI. The following are
some differences you might find:

» For the BuilderView filter the following are available in the TeamConnection GUI
but not in the TeamConnection web client:

— Source File
— TIME-OUT
— setupOptions
» A filter for Corequisites does not exist in the TeamConnection GUI.

» For the DefectModify action, orginLogin is available for use with the
TeamConnection web client (but not the TeamConnection GUI).

» For the DriverCheck action, Dependencies is available in the TeamConnection
GUI but not in the TeamConnection web client.

» For the FeatureModify action, the following are available with the
TeamConnection web client (but not the TeamConnection GUI):

— newName
— orginLogin.
» For the DriverMemberView action, the following are available with the
TeamConnection web client (but not the TeamConnection GUI):
— state
defectName
defectAbstract
committedVersion.

» For the ChangeView action, the following are available with the TeamConnection
web client (but not the TeamConnection GUI):

— ChangeView
— workAreaState.

* For the PartBuild action, the following are available with the TeamConnection
web client (but not the TeamConnection GUI):

— cancel
— partType.
The PartChildInfoView action does not exist in the TeamConnection GUI.

For the PartDelete action, force is available for use with the TeamConnection
web client (but not the TeamConnection GUI).

For the PartDisconnect action, parentType is available for use with the
TeamConnection web client (but not the TeamConnection GUI.)

For the PartModify action, fileType is available for use with the TeamConnection
web client (but not the TeamConnection GUI).

For the PartUnlock action, Source Directory is available in the TeamConnection
GUI but not in the TeamConnection web client.

For the PartViewContents, Expand Keywords is available in the TeamConnection
GUI but not in the TeamConnection web client.

For the UserView Filter action, the following are available with the
TeamConnection web client (but not the TeamConnection GUI):

— pswStatus
— pswModifyTime
— pswCreateTime.

Chapter 2. Getting familiar with the TeamConnection client interfaces 21

22 Users Guide

Chapter 3. The basics of using TeamConnection

All users of TeamConnection perform a number of basic tasks, such as checking
parts out of TeamConnection and then back in, and testing and verifying part
changes. Before you start doing these tasks, you need to understand the basic
concepts behind them; that is what this chapter explains.

This chapter assumes that you have read 'Chapter 1. An introduction td
TeamConnection” on page 3 and are familiar with the different objects, such as

components and releases. The other chapters in this part of the book define in
more detail how you perform the TeamConnection tasks.

Laying the groundwork

Someone has already created your family’s component structure, and those
components manage your parts and control access to the data. Your
TeamConnection family also contains releases. A release identifies a version of all
the parts that comprise an application at a given point in time. When you create a
release, you specify the component that will manage it. One component manages a
release, but many components can manage the individual parts associated with that
release.

A single part can be associated with more than one release, but it is managed by
one component. When you create a part, you specify the release that you want to
associate with the part and the component that you want to manage it. At any time,
you can link the created part to other releases so that the part can be shared, or
you can change its managing component.

Before you start working with parts, you need to be familiar with your family’s
component structure. This will help you when trying to locate parts within
TeamConnection and when writing defects and features. You can do the following to
display your family’s component structure from the GUI:

1. Select Components » Components from the Objects pull-down menu on the
Tasks window. The Component Filter window appears.

2. Type the name of the component that is at the top of your component hierarchy
in the Component field, and select OK. Initially this component is called root.
The Components window appears, listing the component.

3. Verify that the component is displayed in tree view (a plus sign (+) appears
before the component name). If not, select Tree from the View pull-down menu.

4. Select Expand fully from the Selected pull-down menu.

© Copyright IBM Corp. 1992, 1995, 1996, 1997 23

Il TeamConnection - Components ﬂg
File Selected Edit Yiew 0Objects Windows Help

- comp3_u

- readySize
- acceptSize
- rejectSize

—i compl
subcompi

1=1
jlashley teamci 1 of 12 selected

root Top level component.

E

Figure 5. Components window

From a command prompt, you can issue the following command to view the
component structure.

teamc report -view -raw bCompView -where "name='root'"

Authority to perform tasks

24

User's Guide

As a TeamConnection user, you are automatically given the authority to perform
some basic tasks. You can:

* Open defects and features

* Add notes to existing defects and features

* Modify the information for your user ID

» Display information about any user ID

» Search for information within TeamConnection to create reports

You receive authority to perform additional actions when you become the owner of
a TeamConnection object, such as a component or a part, or when authority is
explicitly given to you by the component owners.

If you attempt an action that you do not have authority to do, TeamConnection tells
you so. When this happens, you can ask the component owner, the family
administrator, or a user with superuser authority to grant you the necessary
authority.

Note: You can issue queries to generate reports of data from tables and views
using the — view action flag. If you do not specify selection criteria, such as
the fields and the search conditions you want to use, the report query selects
all entries for the table or view indicated that the user has authority to
access. This command does not show any objects in components that you
are not authorized to access

”

lists the types of authority you need in order to perform various TeamConnection

actions.

Finding objects within TeamConnection

Finding parts

All TeamConnection objects are stored on a server in a database. To find one or
more of these objects within a family, do one of the following:

* Use the report command with the -view action flag from a command line or a
command line within TeamConnection.

Command usage is explained in the Commands Reference
* Use a Filter window in the GUI.
Online helps explain how to use the Filter windows.

For now, you need to understand that the database is case-sensitive. You need to
refer to and search for objects in the correct case. For example, if a component is
stored in the database as hand, you would not find it if you typed Hand or HAND. This
is why it is important that your organization sets a haming convention, and that
everyone follows that decision when creating objects. If you do not know what
naming convention has been established for your organization, talk to your family
administrator.

Note: It is recommended that you use lowercase as much as possible.

There are three Filter windows that you can use to find parts within
TeamConnection:

Parts

Use when you want to limit your search to a particular context of a work
area or driver in a release, or a particular version of a release. This is
generally the view users will use most often.

If you specify only a release, TeamConnection lists the committed parts for
that release. However, if you want a list of all parts in a specified work area
and release, TeamConnection displays all the parts visible to the work area.
This includes parts that are committed to the release as well as changed
parts that are visible only to the work area.

BuildView

PartFull

Use when you want to search for information related to building your
application, such as viewing a build tree, or when you want to do build
actions.

Use when you want to search for parts across releases, components, or
work areas. For example, you want a list of all the optics.c parts. Unlike the
Parts Filter, you can specify one or more release or work area names.

You can also use this filter to display only parts that have been changed in
a work area. For example, you check out robot.c to work area 310:1, and
that is the only part that you have changed. If you use the PartFull Filter to
query for all the parts in work area 310:1, only one record is returned.

You cannot use this filter to search for build information.

Chapter 3. The basics of using TeamConnection 25

Refer to the online help, in particular How do I, for more information on how to use
the Filter windows. Select How do | from the Help pull-down menu to access the
information.

Using work areas

A work area is a logical temporary work space that enables you to isolate your work
on the parts in a release from the official versions of the parts. You can check parts
out to a work area, update them, and build them without affecting the official version
of the parts in the release. You must create a work area before you can create,
check out, or check in parts. If your component’s process includes a design, size,
review subprocess for defects or features and the release follows a tracking
subprocess, a work area is automatically created when sizing records exist and the
associated defect or feature is accepted. TeamConnection associates these work
areas with the appropriate defect or feature.

The parts in a work area do not become available in the release until the work area
is integrated. Also, if your release follows a driver subprocess, parts that have been
changed do not become available in the release until the associated driver is
committed. However, users who have the authority to access the work area can
view and work with the parts in it.

You can save intermediate versions of the parts in your work area by freezing your
work area. Every time you freeze a work area, TeamConnection saves a revision
level of the work area. When you freeze work area 123:1, for example, a version
called 123:2 is created. This version contains information about each part in the
work area and its current version at the time the work area was frozen. It may
contain version 1 of part optics.c, for example. If you freeze the work area again
later, a new version called 123:3 is created with information about the versions of
the parts in the work area when it was frozen. This version may contain version 2 of
part optics.c. Each of these work area versions is saved in the database and you
can retrieve the versions of the parts they contain before you integrate the work
area into the release. Therefore, you should freeze a work area whenever there is a
possibility that you will want to return to that version of the work area. For example,
you might be adding a major feature to the code, and you want to be able to return
to something that works in case the application no longer builds. When you
integrate a work area or commit a driver, the work area is frozen automatically.

Naming your work areas

26

User's Guide

When TeamConnection automatically creates a work area, the work area is given
the same name as the defect or feature it was created for plus the initial version
number, :1. When you create a work area, you can also give it the same name as
the defect or feature, or you could give it any other name. Where possible, we
recommend that you name it after a defect or feature, or relate the name to the
change that is being made.

Here are some things you should know before you name a work area:
* Work area names must be unique within the context of a release.

» After you create a work area, you cannot delete it. You can, however, cancel the
work area in the following situations:

— No part changes were made.
— You undo the changes you made.

» With the proper authority, other users in your organization will be able to access
your work area and make changes to the parts. This means that you need to
make it easy for them to locate the work area. Following your local haming
conventions will help.

» After the work area is integrated with the release, you cannot reuse the work
area. If the defect is still in the working state, you can create another work area
with a different name after the initial work area is integrated with the release.

Creating parts

A TeamConnection part is controlled by the TeamConnection server. A
TeamConnection part is uniquely identified by the path name of the part, the part
type, and the name of the release in which it is contained. You must specify both
the release name and the path name whenever you perform a TeamConnection
action on a part. Multiple releases can share the same part.

When you create a part, you do one of the following:

» Take an existing text or binary file that is on your workstation and place it into
TeamConnection.

* Create an empty part that has no content. Empty parts are used as place holders
until an application is built. For example, you can create a place holder for an

executable part that will be created by a build. See ECreating the huild tree fof
the application” on page 143 for an example of creating a place holder.

After you put a part under TeamConnection control, the official copy of the part
resides in the database. The copy on your workstation is changed to read-only
mode. You can then change the part by checking it out to your workstation or
editing it within the GUI.

Use the online help facility if you need assistance when creating parts.

Naming your parts

If your organization has a naming convention, be sure to follow it when naming your
parts. When the naming convention is not followed, everybody in your organization
can have trouble locating parts. Part names created on the server are
case-sensitive; they must be retrieved using the same case in which they were
created.

When you name TeamConnection parts, you can specify only the base name, such
as hand.c, or you can specify the directory path in addition to the base name, such
as robot\hand\hand.c. Specifying the path name as part of the name lets you have
several identical base name parts included in the same release—for example,
robot\hand\msg.h and robot\optics\msg.h.

You can also have identical part names within the context of a release as long as
their part types are different, such as TCPart and vgdata.

Note: It is recommended that you use lowercase letters to name your parts.

Chapter 3. The basics of using TeamConnection 27

Preparing to build your parts

If you are going to use the TeamConnection build function, you must provide certain
information about each part that participates in a build. You can provide this
information when you create the parts or wait until later. You can also change the
information at any time.

To associate a part with a build, you must specify the following information:
* The parent part that you want to associate the part with.
* The type of relationship the part has to the parent, such as:

Input The part will be used as input to building its parent. An example of an

input part is a C language source file, x.c, which is compiled to create its
parent, x.obj.

Output
The part will be a generated output from the same build that creates its
parent part. In other words, both the parent part and this child part are
outputs when the parent part is built.

Dependent

The part will be needed for the build operation of its parent to complete,
but it will not be passed directly to the builder. An example of this is an
include file.

If you do not provide this information when you create the part, you can provide it
later using the connect function.

You can also specify the builder or parser that a part will use, as well as any build
parameters.

[Part 3 Using TeamConnection to build applications” on page 91| explains the build
function in more detail.

Working with parts

After the parts are created in TeamConnection, you will be working with these
parts—getting them to your workstation so you can change them and then getting
them back in to TeamConnchon This section gives a brief overview of these tasks.

more detail about these and other TeamConnection tasks.

Working in serial or concurrent development mode

28

User's Guide

A release is set up for either serial development or concurrent development mode.
Once the development mode is set you can change from serial mode to concurrent
mode, but not from concurrent mode to serial mode. it. In serial development, a part
is locked when a user checks it out, and no one else can update the part as long
as it is checked out. In concurrent development, more than one user can
simultaneously have the same part checked out.

When two users have the same part checked out in concurrent development, both
can change it. The first user integrates the work area, which contains the changed

part, with the release. When the second user does the same, TeamConnection
recognizes that the parts differ and notifies the user. It is up to this user to resolve
the differences, using the TeamConnection merge program or some other merge
program.

Before getting parts from TeamConnection, you might want to find out if the
development mode for the release is concurrent or serial. To determine the mode,
view the information about the specific release. To do this, select View from the
Selected pull-down menu on the Releases window.

Working with common parts

A common part is a part with identical content that is shared by two or more
releases or two or more work areas. For example, when an identical part is needed
in two separate releases, you can link the part from one release to the other (if you
have the proper authority). Both releases would then have a link to the current
version of that part.

When a common part is checked out of a release, TeamConnection locks the
current version of the part in all releases if one of them uses serial development.
When putting the part back into the release, one of the following actions reflects the
change in all releases in which the part is common:

* You integrate the work area when the driver subprocess is not followed, or
* You commit the driver when the driver subprocess is followed.

You can break the common link if you make changes to a common part and you do
not want these changes reflected in other releases or work areas that link to the
part. You can break the common link when you check out, check in, rename, delete,
re-create, connect, or disconnect parts. When a part is common to more than two
releases, you can maintain the common link with some of the releases while
breaking the link with other releases. When a link is broken, the parts still share the
same name, but the information contained in the parts is different.

Parts can also be linked between two or more work areas in the same or different
releases, making the parts common to those work areas. For example, a user
working in one work area can link to the latest version of a part in another work
area of the same release (the part has yet to be integrated with the release). The
part is then common to the two work areas within the same release. If you want to
maintain the common link to all work areas, you must specify the names of the
common work areas when you check in, rename, delete, or re-create the parts. As
with common parts in releases, you can break the common link.

You can also link all the parts within a release to another release. This function is
especially helpful when development begins on a new release of a product, and you
want the parts in the new release to initially be the same as the parts in the current
release. As development of the two releases continues, the common link between
the parts can be broken to separate development of the new release from
maintenance of the current release.

For more information about how to link parts, refer to the Commands Reference
and online help.

Chapter 3. The basics of using TeamConnection 29

Getting parts from TeamConnection

30

User's Guide

Checking out a part implies that you intend to modify it; extracting a part merely
gives you a copy of the part. Normally, when you extract a part, you do not plan to
change the current version in TeamConnection.

You must have the necessary authority to a component before you can check out or
extract parts from that component. You need PartExtract authority to extract a part
from TeamConnection; you need PartCheckOut authority to check a part out. See
i i ' ificati i ions” for

a listing of all the TeamConnection actions and their authority requirements.

Parts are checked out to work areas. The work area is where you store updated
parts and do builds without affecting the version of the parts in the release. When a
part is checked out of the release to the specified work area, TeamConnection locks
the part in the release if you are working in serial development. If you are working
in concurrent development, the part is never locked. TeamConnectionalso puts a
copy of the part on your workstation. It is here where you update the part. If a
read-only copy of the part exists on your workstation, the first character of its file
extension changes as follows: It becomes $ for OS/2 and Windows platforms. It
becomes a . for AIX and HP-UX platforms. This copy is a backup copy. If a backup
copy already exists, it is deleted. When you are finished updating the part, you
check it back in to the work area. A work area is optional when extracting a part.

When you extract a part, TeamConnection copies the part to your workstation, and
the part is not locked. In other words, other users can still check out the same
version of the part and make changes to it, even in serial development mode. By
default, TeamConnection sets the extracted part to read-only access. This is done
to keep you from inadvertently changing the part on your workstation when the part
in TeamConnection is not locked. You can, however, change this in the Settings
window or when you are extracting the part. When you do this, be aware that
someone else can change the official part in TeamConnection, making your
workstation copy back level.

Where TeamConnection places a checked-out or extracted part on your workstation
depends on the following:
* Your workstation’s current working directory

* Whether you use the -relative flag on the command line or the Destination
directory field on the GUI

* Whether the TC_TOP environment variable is set

For more information about how these interact, refer to the part command examples
in the Commands Reference

When you want to make changes to a part, you can do one of the following:

» Check out one or more parts and edit the parts on your workstation. When you
finish making changes to the parts, you check them back in.

» Edit a part from within the TeamConnection GUI using a specified editor. When
you exit the editor, the Check In Parts window appears and you can check the
part back in to TeamConnection.

In either case, if you are working in concurrent development and someone else
changed a part while you had it checked out, you are asked to resolve the
differences when you try to integrate your work area.

Checking parts in to TeamConnection

After you have verified the accuracy of your part changes, you are ready to check
them in to TeamConnection. Any parts that you have checked out, you have the
authority to check back in.

As mentioned earlier, you check parts out to a work area so you can work on them.
Therefore, when you check in a part, you must specify the work area where that
part is checked out. In other words, you check the part back in to the same work
area. When the part is checked in, the copy on your workstation is flagged
read-only.

At this time, the changed part is visible in only the named work area; it is not visible
at the release or to any other work area. This lets you test your changes by building
the version of the code that is in your work area.

When you are satisfied with your changes, you can integrate the parts into the
release by integrating your work area. This action makes the work area visible to all
the users in the release.

If you are working in concurrent development mode, TeamConnection generates a
collision record when a changed part conflicts with a previously committed part. For
example, both you and Keith have hand.c checked out. Keith makes changes to the
part and then integrates the work area that contains that part. (Depending on the
process being followed, Keith might have to commit the work area rather than
integrate it.) Later, after making changes to hand.c, you attempt to integrate the
work area that contains the part. Because the part was already integrated by Keith,
you are notified of a collision and asked to refresh your work area. After the refresh,
you can view the collision record and decide how you want to resolve the conflicts.

[Recanciling differences” on page 65 explains in more detail how this works.

Finding different versions of TeamConnection objects

TeamConnection version control maintains different versions of the following
objects:

* Releases

* Work areas (and driver members)
* Drivers

e Parts

When you want to find and retrieve previous versions of these objects, it is helpful
to know how TeamConnection creates and deletes previous versions of each object.

Some basics of TeamConnection versioning will help you understand how
TeamConnection identifies unique versions of objects:

* When you first create an object, the initial version name is the object name
suffixed with :1. When you create a new work area called myWorkArea, for
example, its version is myWorkArea:1. Subsequent versions are identified in
numerical order: myWorkArea:2, myWorkArea:3, myWorkArea:4, and so on.
Versions of releases and drivers are identified similarly: myRelease:1,
myRelease:2, myRelease:3; myDriver:1, myDriver:2, myDriver:3; and so on.

* Unique versions of parts are identified by association with a specific version of a
release, work area, or driver. Your TeamConnection family may have three

Chapter 3. The basics of using TeamConnection 31

different versions of a part called myPart, for example: one associated with
release myRelease:2, one associated with work area myWorkArea:1, and one
associated with work area myWorkArea:2.

Versioning releases

TeamConnection creates new versions of releases whenever you do the following:

Create a release

This is the initial version of a release and contains no parts. When you create
myRelease, for example, its version name is myRelease:1 and it contains no
parts.

Commit a work area to the release

Committing a work area to a new release creates a new version of the release
and adds the parts in the work area to the release. When you commit work area
myWorkArea:1, for example, to myRelease:1, TeamConnection creates a version
of myRelease called myRelease:2. It also associates the parts in myWorkArea:1
with myRelease:2.

Commit a driver to a release

Because drivers are simply collections of work areas, committing a driver to a
release has the same effect as committing a work area: TeamConnection creates

a new version of the release. When you commit myDriver:2 to myRelease:2, for
example, TeamConnection creates a version of myRelease called myRelease:3.

TeamConnection deletes versions of releases whenever you prune the release.
Refer to the Administrator’s Guide for an explanation of pruning.

Versioning work areas

TeamConnection creates new versions of work areas whenever you do the
following:

32 User's Guide

Create a work area

This is the initial version of a work area. When you create myWorkArea, for
example, its version name is myWorkArea:1.

Refresh a work area

Refreshing a work area updates it with any new versions of parts that have been
integrated with the release. When a workarea is refreshed, two versions of the
workarea are created. One of the contents before the refresh and one with the
contents after the refresh.

Freeze a work area

Freezing a work area is like taking a snapshot of the work area. It preserves the
parts as they are at a given point in time. If you create work area myWorkArea:1,
add three new parts to it—called partl, part2, and part3—and then freeze it, your
family contains a work area called myWorkArea:2, with partl, part2, and part3.
The version name of each of these parts is myWorkArea:1. If you then alter part2
and freeze the work area again, your family contains the following:

— myWorkArea:1, with nothing in it
— myWorkArea:2 contains partl, part2, and part3 at version myWorkArea:1

— myWorkArea:3 contains partl and part3 at version myWorkArea:1, and part2
at version myWorkArea:2

Commit a work area

Committing a work area adds the parts in the latest version of the work area to
the release. It also does the following:

— Creates a new version of the release

— Creates new versions of the parts in the release

— Deletes any intermediate versions of the work area

Using the previous example, if you commit myWorkArea:3 to myRelease:1, the

following happens:

— TeamConnection creates a new version of myRelease called myRelease:2.

— TeamConnection creates new versions of the parts in myRelease:2.

— TeamConnection deletes myWorkArea:1, myWorkArea:2, and myWorkArea:3.
TeamConnection deletes versions of work areas whenever you commit them to a

release. Once a work area has been committed, you can no longer use it for
making part changes and you cannot create a new work area with the same name.

Deleting work area versions is controlled by the autopruning option of the release
associated with the work area. By default, TeamConnection always deletes work
area versions on commit, but you can change this option. Refer to the
Administrator’s Guide for an explanation of autopruning.

Versioning drivers

TeamConnection creates new versions of drivers whenever you do the following:
* Create a driver

When you create a new driver, TeamConnection makes two versions of it:
myDriver:1, for example and myDriver:2.

* Add a work area (driver member) to a driver

If you add myWorkArea:1 to myDriver:2, for example, TeamConnection creates a
new version of myDriver called myDriver:3.

* Freeze a driver

Freezing a driver is like taking a snapshot of the driver. It preserves the parts as
they are when the driver is frozen. If you freeze myDriver:3, for example,
TeamConnection creates a new version called myDriver:4.

¢ Refresh a driver

Refreshing a driver updates the driver with all changes that have been made in
all of its driver members. Refreshing a driver actually creates two new versions of
the driver, as follows:

1. Freezes the driver (so that TeamConnection can have a point to roll back to if
an error occurs during the refresh operation).

2. Updates the driver with any changes from the driver members
3. Freezes the driver again, thus preserving a copy of the updated driver.
If the current version of myDriver is myDriver:2, for example, and the parts in its

driver members have been changed, then TeamConnection does the following
when it refreshes the driver:

1. Freezes myDriver, creating myDriver:3.

2. Updates myDriver with changes from its driver members.

3. Freezes myDriver again, creating myDriver:4.

The result of refreshing myDriver (version myDriver:2) is two new versions:

myDriver:3, containing a snapshot of the driver before the refresh, and
myDriver:4, containing a snapshot of the driver after the refresh.

Chapter 3. The basics of using TeamConnection 33

Versioning parts

TeamConnection deletes versions of drivers whenever you remove driver members
or commit a driver to a release.

* If you have a driver version myDriver:4 with driver members myWorkArea,
yourWorkArea, and ourWorkArea, and you remove myWorkArea, then
TeamConnection deletes driver versions myDriver:2, myDriver:3, and myDriver:4
and creates a new driver version called myDriver:5 containing members
yourWorkArea and ourWorkArea. As a result, the family contains two versions of
the driver, myDriver:1 and myDriver:5.

* When you commit a driver to a release, all intermediate versions of the driver
(resulting from driver member add, driver freeze, driver refresh, or driver member
remove operations) are deleted.

TeamConnection versions parts in association with other TeamConnection objects,
such as work areas. If, for example, you create partl in myWorkArea:1, the current
version of partl is myWorkArea:1. If partl is in release myRelease:2 and work area
myWorkArea:2, then you can view the version of the part for either the release or
the work area. The version label for partl in myRelease:2 is myRelease:2 and in
myWorkArea:2 is myWorkArea:2

TeamConnection deletes part versions whenever it deletes versions of the object
that the part is associated with. In addition to versioning in association with other
TeamConnection objects, TeamConnection maintains versions of build output parts
(parts that are created as the result of a build, such as an .exe file or a .hlp file).
When you create a release, you can set the maximum number of versions of build
output parts to maintain. If you set this maximum to 10, for example, then
TeamConnection saves only 10 versions of build output parts and discards the
oldest version each time a new version is created.

Working with defects and features

34

User's Guide

Defects are used to report problem information; features are used to record
information about proposed design changes. After a defect or feature is opened,
TeamConnection tracks the progress of the defect or feature through various states.
To what degree defects and features are tracked depends on the processes
followed by the release and component to which they are assigned. The following
describes actions that your defined processes might require:

Analyzing defects and features
The owner is responsible for analyzing a defect or feature after it is opened.
The owner can then return it if it is not valid or feasible, reassign it to
another user or component, or accept it for resolution.

Designing the resolution
After a defect or feature has been accepted, the actual resolution needs to
be designed so that an informed evaluation can be made. This resolution
needs to be designed by users who are familiar with the product or area
affected by the defect or feature.

Identifying the required resources
Sizing records are created by the owner to identify the components and
releases that might be affected by the defect or feature. Each owner of a
component that is referenced in a sizing record needs to evaluate the
impact of the defect or feature on the parts managed by the component. If

the defect or feature requires changes to parts, the sizing record is
accepted and sizing information is added.

When sizing records exist and the associated defect or feature is accepted,
TeamConnection automatically creates a work area.

Reviewing the design and resource estimates
After the resolution has been designed and the resources have been
identified, the proposal needs to be reviewed. If the review indicates that
work should continue on the defect or feature, it is accepted.

Resolving defects and implementing features
Resolving one defect or implementing one feature in one release can
involve one or more users changing many parts. To change a part, a user
must check out the part, make the changes required to resolve the problem
or implement the design change, and check the part back in. If the release
follows a tracking process, all defects or features must be associated with a
work area. Parts that are checked out refer to the work areas that are
monitoring the defect or feature.

Resolving a defect or implementing a feature also involves integrating the
changed parts with changes made for other defects and features in that
release. All changed parts are eventually integrated with the unchanged
parts within the release.

Verifying the resolution of the defect or feature
The originator uses a verification record to acknowledge that the defect or
feature was satisfactorily resolved or not. Accepting a verification record
formally closes the defect or feature. Rejecting a verification returns the
defect or feature to working state.

[Chapter 4 The states of TeamConnection ohjects” on page 37 explains in more

detail the various states that different TeamConnection objects can go through
depending on the process that is being followed. A diagram in this chapter shows
the flow of these states. You might want to study this information before you start to
work with defects and features.

Testing and verifying part changes

You can use TeamConnection’s build function to build your program. Before you
check in updated parts, you will probably want to verify the accuracy of your
changes.

The scenarios in EChapter 5. Warking with no component or release processes” od

‘ and L i i u

include information about testing and verifying part changes. m
i i ications” provides detailed information

about the build function.

Chapter 3. The basics of using TeamConnection 35

36 User's Guide

Chapter 4. The states of TeamConnection objects

The actions that you can perform on certain TeamConnection objects are controlled
by two factors:

* The process followed by the component and by the release
* The current state of the object

Certain TeamConnection objects can follow certain states through their life cycle. An
instance of an object might not go through all the possible states for that object—it
moves through the states that are defined in the process followed by the
component and by the release. The following table briefly lists the component and
release subprocesses. For more information on component and release
subprocesses, refer to the Administrator’s Guide

Component subprocesses

dsrDefect
Design, size, and review fixes to be made for defects

verifyDefect
Verify that defect fixes work

dsrFeature
Design, size, and review changes to be made for features

verifyFeature
Verify that feature changes work

Release subprocesses

track Relate all part changes to a specific defect or feature and a specific release

approval
Require all changes to be approved before incorporating them into a
release

fix Use fix records to ensure that all required changes are made

driver Use drivers to integrate changes into a release

test Require all changes to be tested before they are integrated into the release

This chapter explains the possible states of certain TeamConnection objects and
how objects are moved from one state to the next. It also explains how component
and release subprocesses affect the flow of states. For a diagram showing the flow
of states, refer to the poster Staying on Track with TeamConnection Processes.

Defects and features

Use defects to report problem information; use features to record information about
proposed design changes. After you open defect or feature, TeamConnection tracks
the progress of the defect or feature through various states. Defects and features
are tracked according to the processes followed by the release and component that
they are assigned to. The possible states for defects and features are:

Open state
When you open a defect or feature, it is in the open state and you are
considered the originator.

© Copyright IBM Corp. 1992, 1995, 1996, 1997 37

You assign the defect or feature to a component. The owner of this
component becomes the feature or defect owner and is responsible for
managing its resolution. The component you open a defect or feature
against should be one that manages the parts affected by the enhancement
or problem. Use the component descriptions and the structure of your
family’s hierarchy to find the most appropriate component. If you open a
defect or feature in an inappropriate component, the component owner can
reassign it.

While the defect or feature owner is responsible for implementation, the
originator is responsible for verifying that the defect or feature is resolved
correctly.

Returned state
A defect or feature owner can return a defect or feature to its originator. You
can return a feature or defect from the open, design, size, or review state if
you decide that the defect or feature is not feasible or not valid. You can
return a defect or feature back to the working state only if it has no
associated work areas. If there are associated work areas, you must cancel
or undo them before you can return the defect or feature. When you return
a defect or feature, add your reason for returning it so that the originator
and any other users can evaluate why you believe it is not feasible or not
valid.

Canceled state

A feature or defect in the open or returned state can be canceled only by its
originator or by a superuser. A canceled defect or feature remains inactive
unless it is reopened by the originator.

Design state
If the component to which a defect or feature is assigned includes the
dsrDefect or dsrFeature subprocess, you move defects or features in the
open or returned state to the design state.

In this state, the proposed change is designed, and a description of the
design change is entered. The owner must describe the design change
before the defect or feature can move to the next state.

If the release includes the fix subprocess, fix records are automatically
created when a defect or feature is designed.

Size state
Defects or features move to this state after the owner enters design
information.

In this state, users can create a sizing record for each release that contains
parts affected by the enhancement or problem. A sizing record identifies the
work that is required for and the resources affected by the defect or feature.
The owner of the component that is referenced in the sizing record is the
owner of the sizing record. The owner is responsible for entering
information about the amount of work that is required to implement the
feature or resolve the problem.

The sizing record owner can reject the sizing record if it does not affect the
specified component. After all sizing records are either accepted or rejected,
the defect or feature moves to the review state or returns to the design
state if more design information is needed.

Review state
Defects or features move to this state after they have been sized. In this

38 User's Guide

state, the design text and sizing records are reviewed to determine the
feasibility of the proposal. The owner can do one of the following:

* Accept the defect or feature if all design and sizing records are
acceptable. This moves the defect or feature to the working state.

* Return the defect or feature to the originator if all design and sizing
records are not acceptable. If necessary, the originator can reopen a
defect or feature.

* Move the defect or feature back to the design state if design
modifications are needed.

Working state
Defects or features move to this state when the owner accepts the defect or
feature when it is in the:

* Review state, if the component includes the dsrDefect or dsrFeature
subprocess

* Open state, if the component does not include the dsrDefect or
dsrFeature subprocess

When you accept a defect or feature, you accept the responsibility of
resolving it. A defect or feature might require changes in more than one
release.

What happens after a defect or feature is accepted varies according to the
subprocesses in effect:

Component subprocesses

dsrDefect or dsrFeature
TeamConnection creates a work area in the approve state for each
release identified in the accepted sizing records for the defect or
feature.

verifyDefect or verifyFeature
TeamConnection creates verification records in the notReady state.

Release subprocesses

fix TeamConnection creates fix records in the notReady state based on
the sizing records.

approval
TeamConnection creates approval records for each user on the
release’s approver list.

If the component does not include the dsrDefect or dsrFeature subprocess,
then you must manually create a work area before you can check out or
create parts to address the defect or feature.

Verify state
Defects and features go through the verify state only if their component
includes the verifyDefect or verifyFeature subprocess. Defects and features
are automatically moved to this state when one of the following happens:

» All work areas (there can be multiple work areas for the defect or
feature) for the release are integrated, if a release is specified when the
defect or feature is created

When a defect or feature is accepted, TeamConnection creates a
verification record. This record lets the originator:

Chapter 4. The states of TeamConnection objects 39

» Accept the fix if the resolution was satisfactory
* Reject the fix if not satisfied with the resolution
» Abstain if unable to assess the resolution

Once all verification records have been accepted or abstained, the defect or
feature moves to the closed state. If a verification record is rejected, the
defect or feature returns to the working state. The defect or feature cannot
be closed until the verification records are accepted.

A defect or feature can have more than one verification record. For
example, if defect 123 is returned because it is a duplicate of defect 122, a
second verification record is created for defect 122. The originator of defect
123 is the owner of the second verification record for defect 122. If the
originator is the same for both defects, only one verification record is
created.

Note: For a discussion of verification records and test records, see

Closed state
The closed state is the final state of a defect or feature.

If the defect is associated with multiple work areas, the defect will remain in
the working state until all of the work areas are integrated.

If the component includes the verifyDefect or verifyFeature subprocess, the
defect or feature automatically moves to the closed state after all
verification records are in the accept or abstain state and all work areas are
in the complete state. If a verification record is rejected, the defect or
feature moves back to the working state. Otherwise, the defect or feature
moves directly from the working state to the closed state when the first
work area moves to the complete state.

You cannot re-open a defect or feature that is in the closed state. If the
defect or feature was not resolved correctly, you must open a new defect or
feature to address the necessary changes.

The states of work areas

40

User's Guide

A work area is a storage area where you can work on the parts in a release without
affecting the "official” versions of those parts. A work area can be associated with a
specific defect or feature, but it does not have to be.

Approve state
When a work area is created, it goes to this state if the release includes the
approval subprocess. TeamConnection creates an approval record for each
user on the release’s approver list. Each approver indicates their evaluation
of the changes in their approval record:

* Accept that work should continue

* Abstain if unable to assess if work should continue

* Reject if work should not continue

When all approval records are marked as abstain or accept, the work area
goes automatically to the fix state. If any approval record is marked as

reject, the state of the work area remains at approve. You can change
rejected approval records to accept or abstain.

Fix state
If the release does not include the approval subprocess, work areas for the
release begin in the fix state.

While the work area is in this state, parts are checked out to the work area,
changes are made to these parts, and builds are done to verify the
accuracy of the changes.

If the release includes the fix subprocess, any fix records created for a
defect or feature move to the active state when a part change is associated
with the work area for the defect or feature. A fix record monitors the part
changes within a single component. Fix records provide a mechanism for
reviewing all part changes that apply to components before integrating
those changes with changes made for other defects and features.

How fix records are handled varies according to the subprocesses in effect:

Component subprocesses

dsrDefect or dsrFeature
TeamConnection creates fix records for features or defects when
existing sizing records are accepted.

Release subprocesses

fix If a fix record does not already exist for the component,
TeamConnection creates one when a part managed by that
component is checked in to the database.

If neither of these subprocesses are in place and a defect or feature owner
needs to create a work area manually, he or she can create fix records at
the same time. Existing fix records go to the active state when a part is
checked in to the work area.

Fix records provide a way of ensuring that all necessary part changes
within the specified component have been made and are reviewed or
inspected. The fix record owner is responsible for this review. When the fix
record owner is satisfied that the part changes made within that component
are complete and ready for integration with other parts in the release, the
owner marks the fix record as complete. When all existing fix records for a
work area are complete, the work area automatically moves to the integrate
state.

Integrate state
Work areas can be moved to the integrate state as follows. If the release
includes the fix and driver subprocesses, the work area automatically
moves to the integrate state when all fix records are complete. If all fix
records are not complete, you can force a work area to the integrate state,
provided that no part changes are associated with the work area. If the
release does not include the fix and driver subprocesses, you must move
the work area to the integrate state manually.

While a work area is in integrate state, you must add it to an existing driver
as a driver member if the release includes the driver subprocess. All work
areas in the integrate state do not have to be added to the same driver.
The work area stays in the integrate state until the driver in which it is a
member is committed.

You can move work areas from the integrate to the following states,
according the subprocesses in effect:

Chapter 4. The states of TeamConnection objects 41

Release subprocesses

driver A work area moves to the commit state when the driver it is a
member of is committed, or to the restrict state when the driver is
restricted. You can also force a work area to the commit state,
provided that no part changes are associated with the work area.

test A work area moves to the test state so that test records can be
approved or rejected.

If the release does not include these subprocesses, you can manually
complete a work area in the integrate state.

Restrict state
Work areas can be moved to the restrict state only when the release
includes the driver subprocess. The work area moves automatically to the
restrict state when the driver to which it belongs is restricted. If a work area
in this state is removed from the driver, it returns to the integrate state.
Otherwise, the work area remains in the restrict state until the driver to
which it belongs is committed.

Commit state
Work areas can be moved to the commit state only when the release
includes the driver subprocess. The work area moves automatically to the
commit state when the driver to which it belongs is committed. At this point,
all parts that were changed in this release to resolve the feature or defect
are committed. The work area remains in the commit state until the driver to
which it belongs is completed.

Test state
Work areas can be moved to the test state only when the release includes
the test subprocess. When the associated driver moves to the complete
state or when a work area is committed without a driver, the work area
moves to the test state. The driver is then ready for formal testing in the
specified environments. Test records for the work area are created in the
ready state when the work area moves to the test state. The work area
stays in the test state until all test records are accepted, rejected, or
abstained.

Complete state
The complete state is the final state of a work area; the work area can no
longer be used. If the test subprocess is not included in the release
process, the work area moves directly to this state when the associated
driver is completed or when the work area is explicitly integrated.

When a work area is completed, the feature or defect associated with that
work area automatically moves to the verify or complete state. The defect
does not leave the working state until the work area for that release is
completed.

The states of drivers

Drivers monitor and implement the integration of part changes within a release.
Those part changes are included in a driver by adding the work areas containing
the changed parts to the driver as driver members.

42 User's Guide

Working state
The working state is the initial state of a driver. While the driver is in this
state, it is not associated with any work areas and, therefore, contains no
part changes.

If the release includes the driver subprocess, drivers can be explicitly
created at any time.

Integrate state
Each driver automatically moves to the integrate state when the first work
area is added to it as a driver member. If all work areas are removed from
the driver, the driver automatically returns to the working state.

Work areas can be added to drivers as driver members when the driver is
in the working, integrate, or restrict state and the work area is in the fix
state. Adding driver members to a driver in restrict state requires proper
authority.

You can extract the driver when it is in the integrate state; however, only
those parts that were changed in reference to driver members are
extracted. This is referred to as extracting a delta part tree.

Restrict state
Before a driver is committed, you can move it to the restrict state. While a
driver is in this state, work areas in the integrate state can be created for or
deleted from the driver by only a superuser or an individual with the special
authority of memberCreateR or memberDeleteR. This allows a build
administrator to have better control over what is being built. The build
administrator can delete driver members that are causing build errors or
add driver members to fix build errors. You can then commit an error-free
driver.

When a driver moves to the restrict state, all work areas that are included
as driver members also move to the restrict state.

Commit state
Committing a driver commits all work areas included as driver members
and all parts that were changed in reference to those work areas.
TeamConnection commits only a successfully built driver. Committing a
driver changes it to the commit state. You can, however, manually commit
the driver. You can also commit an unsuccessful driver by using the force
option.

When a driver moves to the commit state, all work areas that are included
as driver members also move to the commit state. When a work area is in
the commit state, all part changes associated with the work area become
the "official” versions of the parts in the release and are visible to all users
of the release.

A committed driver can be extracted as a full part tree as well as a delta
part tree. A full part tree is the part structure of all the parts within the
release.

Complete state
The complete state is the final state of a driver. In this state, the driver is
ready for formal testing in the specified environments.

If the release includes the test subprocess, the work areas that are included
as driver members move to the test state. Any existing test records for the

Chapter 4. The states of TeamConnection objects 43

work area move to the ready state when the work area moves to the test
state. The work area stays in the test state until all test records are
accepted, rejected, or abstained.

Test records are used to record the outcome of environment tests for
changes implemented in a driver. This record lets the owner:

» Accept the record if the test was satisfactory
* Reject the record if not satisfied with the test results
» Abstain if unable to assess the results

Once all test records have been accepted or abstained, the states of other
objects change as follows:

Work areas
Go to complete state

Defects and features
Go to verify state if the component includes the verifyDefect or
verifyFeature subprocess; otherwise they go to the closed state.

Verification records
Go to ready state and are sent to the defect or feature originators

If the test subprocess is not configured, then work areas move to the
complete state and any defects or features move to the verify state.

If the component includes a verifyFeature or verifyDefect subprocess,
verification records move to the ready state and notification is sent to the
originators of any defects or features that were addressed in the completed
driver.

The commit and complete states of drivers differ as follows:

* When a driver is committed, all work areas are committed, but no
changes occur in the states of defects or features associated with the
work areas.

* When a driver is completed, then the states of other associated objects
(such as test records, work areas, verification records, defects. and
features) change according to the other subprocesses in effect:

test Work areas go to the test state and test records are created in
the ready state for each environment in the release’s
environment list.

verify Verification records go to the ready state.
If the release includes neither of these subprocesses, then the work area

goes to the complete state and all features and defects associated with
the work area are closed.

Verification and test records

44

User's Guide

If you use both the verify component subprocess (verifyDefect or verifyFeature) and
the test release subprocess, then TeamConnection creates both verification records
for features or defects and test records for each environment defined in the
release’s environment list. These records serve different purposes:

» \Verification records provide a means of accepting or rejecting the product
changes made in response to defects or features and are thus specific in nature.

» Test records provide a means of accepting or rejecting the results of a build and

are more global in nature.

These records are handled by different people and enable you to monitor your
development progress in different ways. The sequence of creating and handling
verification and test records is as follows:

1.

Verification records are created in the notReady state when a defect or feature
is accepted. This indicates that someone on the development team has begun
implementing the changes warranted by the defect or feature, but the changes
are not yet ready to be verified. A work area is also created for the part
changes.

When a driver is committed all part changes associated with the driver members
are integrated into the release.

To create test records, the driver is completed. This action creates one test
record for each environment on the release’s environment list. The testers on
your development team use the test records to accept or reject the results of
their tests on the part changes.

After all test records have been accepted or abstained, the verification records
are moved to the ready state. This indicates that the part changes have been

tested in the context of the build and each individual defect or feature is ready
to be accepted or rejected by the person who opened it.

The defect or feature originator accepts or abstains the verification record to
close the defect or feature. The originator can also reject the verification record
to move the defect or feature back to working state.

Chapter 4. The states of TeamConnection objects 45

46 User's Guide

Chapter 5. Working with no component or release processes

To illustrate how to work with objects in a release that does not follow a tracking
process, this chapter follows an example of a programming team that is developing
the control systems for a robot. They are working in a family called robot.

Instructions for performing the task are given for both the graphical user interface
(GUI) and the command line interface (Command).

This chapter illustrates two scenarios: working in serial development and working in
concurrent development. Working in serial development means that after you check
out a part, TeamConnection locks the part so that it cannot be updated by anyone
else. Compare this to concurrent development, in which more than one person can
simultaneously update the same part.

The following table directs you to the scenario you need:

For this scenario, Go to this
page.

Working in serial development 7%

Working in concurrent development %]

Working in serial development

Alex is one of the programmers working on the robot application within a release
called robot_control. The release does not follow a tracking process, and the
release supports serial development. Even though the release does not follow a
tracking process, defects are opened when problems are found.

This example assumes that the parts that Alex will work with have already been
created in the release, and the build tree has been established. The build tree
shows the hierarchy of objects that take part in the build of an application. It
identifies parts as inputs, outputs, and dependencies of a build. For more

information about build trees, see \Warking with a huild tree” on page 98 or

This example also assumes that the family named robot has been defined in the
TC_FAMILY environment variable. Because Alex accesses information in several
releases, he has not defined the release named robot_control. Therefore, he must
explicitly identify the release when performing TeamConnection actions, but not the
family.

A fellow team member, Carol, has discovered that the robot’s aperture is not
working correctly. To address this problem, she opens a defect. To fix the problem,
Alex needs to make some modifications to the parts in this release. This fix will
require the tasks noted in the following table:

For information about this task, Go to this
page.
Accepting the defect 8

© Copyright IBM Corp. 1992, 1995, 1996, 1997 47

For information about this task,

G

D to this

o
D
Q
®

Creating a work area

Checking out a part

Searching for a part

Checking in a part

Verifying and testing part updates

Freezing the work area

Refreshing the work area

Building the application

Integrating the work area

Closing the defect

Accepting a defect

b4 Accept Defects

IR AR AN NSNS

Alex is notified via electronic mail that defect 310 has been opened against the
robot component. After some research, he agrees that there is a problem with the
aperture of the robot’s on-board camera, so he accepts the defect. Alex does one of

the following:
Gul

From the GUI, he:

1. Selects Defects » Accept from the Actions pull-down menu on the Tasks

window. The Accept Defects window appears.

2. Types 310 in the Defects field and selects program_defect from the Answer

list.
3. Selects OK.

O

Defects [310

Answer [new function

plans_change Plans or schedules need to
program_defect The problem was due to a p

New function will be added |~

redesign Current function needs to b
remove_code Obsolete code needs to be r|v|

L 3]
Remarks [~]
v
[<] _
ox

Figure 6. Accept Defects window

48 User's Guide

Command

From a command line, he issues the following command:

teamc defect -accept 310 -answer program_defect
Result

The defect goes to the working state.

Creating a work area

Because the component is not following a design, size, and review process, Alex
needs to manually create a work area in which to modify and build his parts. (If the
component follows a design, size, and review process, a work area is automatically
created when the defect moves to the working state, provided that sizing records
have been accepted for the defect.)

Before Alex checks out any parts, he creates a work area that will contain the latest
view of the parts in the release by doing one of the following:

GUI

From the GUI, he:

1. Selects Work areas » Create from the Actions pull-down menu on the Tasks
window.

2. Types 310 in the Work areas field and robot_control in the Releases field and
selects OK..

Note: 310 is the name of the defect that was opened for the problem, so this is
how Alex wants to identify the work area.

M Create Work Areas 0
Work areas |31B |
Defects/Features | |
Releases |r0b0t_control |‘=’|
Target | |
Owner alexm [¢]
| 0K | | Apply | |Cancel| | Import | | Help |

Figure 7. Create Work Areas window

Command

From a command line, he issues the following command:
teamc workarea -create -name 310 -release robot control

Result
TeamConnection creates a work area named 310 associated with release

robot_control. The following parts are currently available in the latest view of
release robot_control:

Chapter 5. Working with no component or release processes 49

brain.c leg.c

brain.obj leg.obj
brain.exe foot.c
arm.c foot.obj
arm.obj optics.c
hand.c optics.obj
hand.obj

These parts are also visible in the work area 310 because the work area is
associated with the release upon creation, and it contains the latest view of the
entire release.

Checking out a part

Alex wants to update a subroutine within optics.c, which controls the aperture of the
robot’s on-board camera. He checks the part out to start the modifications. Because
Alex knows the exact name of the part, he does one of the following:

Gul
nt.ide

From the GUI, he:

1. Selects Parts » Check out from the Actions pull-down menu on the Tasks
window.

2. Types the following:
e optics.c in the Path names field
* robot_control in the Release field
* 310 in the Work area field

3. Selects OK.
M Check Out Parts 0
Path names |0ptics.c |
Release |r0b0t_control |\='|
Work area |310 |\='|

Destination directory |

[1Break common link to parts locked elsewhere

= %;{;;;632 _____

Figure 8. Check Out Parts window

Command

From a command line, he issues the following command:
teamc part -checkout optics.c -release robot_control -workarea 310

Result

A copy of the part optics.c is checked out from TeamConnection and placed in the
directory specified on the Environment page of the Settings notebook of Alex’s

50 user's Guide

Searching for a

TeamConnection client. The part, optics.c, is locked. No other user can update the

part until Alex integrates his work area with the release.

part

Because Alex knows exactly what part he wants to check out, he specifies the
name of the part. If he does not know the name, Alex can use the Parts Filter
window or the report command to search for the name. He can do one of the

following:

cul

From the GUI, he:

1. Selects Parts » Parts from the Objects pull-down menu on the Tasks window.

He does not select the PartFull choice because he wants to limit his search to
a particular release and work area. He uses PartFull when he wants to search

for parts across releases, components, or work areas.
2. Types the following in the Parts Filter window:

* robot_control in the Release field

e 310 in the Work area field

* % in the Base names field and selects like
3. Selects Save to Task List .

Release |r0b0t_c0ntrol | .
Work area |310 |
Version | |
Path names lin EN | [No sort[¢]
Base names |like EIRE3 | [Ho Sort x|
Components lin EN | Mo sort[¢]
Current versions ‘in “=’| | | |N0 Sort |‘="
Committed versions [in EN | [No sort x| B
History Query Release | Work Area | Version
Show all Parts [~]
:
(<] B |
Query | |
| 0K I |Applg| |Qlear| |Save to Task List...l |§enerate 0uerg| |Cancel| | Help |

Figure 9. Part Filter window

Alex does this because he realizes that he is going to use this query many
times, so he wants to add the query to the Tasks window.

4. Adds the necessary information to the Edit Task List window, and selects
Add/Change .

5. Closes the Edit Task List window. The Tasks window appears.

Chapter 5. Working with no component or release processes

51

M Edit Task List O

Current tasks:

mew)

View defects needing work
View features needing work
View all defects

View all features >
[<] [>]
Description |Find my robot files| ‘
Task |baseName like "%’

Release |r0b0t7c0ntrol ‘

(%) Work area |310

s

) Version | H
[Query Part Change History ~
PartFull
Releases
Sizing Records ~
[<] [>]
[Command
Order B
2
3
4
5 v
[< | [3]
| Add/Change I Dalais |Cancel| | Help |

Figure 10. Edit Task List window

6. Double-clicks on the task entry he just created. The Parts window appears.
Hereafter, to display the list of parts in his work area, he merely double-clicks on
the task entry.

7. Places the mouse pointer over the part name optics.c and presses mouse
button 2 to display the pop-up menu.

8. Selects Check out . The Check Out Parts window appears with the required
fields pre-filled. If Alex provided directory information on the Environment page
of the Settings notebook, the Destination directory field is pre-filled also.

9. Selects OK to check out the part.
Command

From a command line, he issues the following command:

teamc report -view partView -where "baseName Tike '%.c -release robot control

-workArea 310

This command returns a list of all the parts that match the query. After Alex
determines which part he wants to check out, he issues the following command:

teamc part -checkout optics.c -release robot_control -workarea 310

Result

52 Users Guide

A copy of the part optics.c is checked out from TeamConnection and placed in the
appropriate directory. The part optics.c is locked. No other user can update the part
until Alex integrates the work area with the release.

Checking in a part

Alex edits the part, making the modifications he thinks necessary. Now, he wants to
test the modifications. First, he checks the changed part back into his work area.

cul

From the GUI, he:

1. Selects Parts » Check in from the Actions pull-down menu on the Tasks
window.

2. Types the following in the Check In Parts window, and then selects OK:
e optics.c in the Path names field
* robot_control in the Release field
e 310 in the Work area field

4 Check In Parts g
Path names |0ptics.c |
Release |r0b0t_control |\='|
Work areas [310] |¢]

Source directory |

Common releases |]

[>]

Remarks

v
[<] B_|
File type {JText (JBinary (JHone (e HNo change
Source (®)Same [Copy from
Souran fe | | Salact
[CIBreak common link] Retain lock

Figure 11. Check In Parts window

Note: Alex follows these steps because he knows the exact name of the part that
he is checking in. If he does not know the name, or if he is checking in many
parts, he can instead do one of the following to display a list of parts:

* Select the entry on his Tasks window that displays the list of parts.
* Re-open the Parts window if it was previously minimized.
e Add an entry to his Tasks window that lists all of his checked-out parts.

He then selects the parts that he wants to check in.
Command

Chapter 5. Working with no component or release processes 53

From a command line, he issues the following command:

teamc part -checkin optics.c -release robot_control -workarea 310
Result

At this point, it is important to note that the part is checked in to work area 310 and
is visible in work area 310 only. The change to optics.c is not visible at the release
level or to any other work area. Only the 310 work area contains the change, which
is why Alex must specify the work area on the check-out command. Because
changes to parts are isolated within work areas, the check-out command must
specify which work area to use so that the correct copy of the part is retrieved.

Thus, work area 310 contains the following parts:

brain.c leg.c

brain.obj leg.obj

brain.exe foot.c

arm.c foot.obj

arm.obj optics.c (modification 1)
hand.c optics.obj

hand.obj

Work area 310 continues to contain the unchanged parts from the requested
release view, but now the work area is overlaid with changes local to the work
area—optics.c in this case. Alex has his own copy of the application that he can
modify without impacting other developers. Alex has checked in optics.c; however,
the modified part remains locked until the work area is integrated with the release.

Verifying and testing part updates

54

User's Guide

Alex now requests a build of brain.exe, the high-level program for the robot control
application.

cul

From the GUI, he:

1. Selects Parts » Build from the Actions pull-down menu. The Build Parts window
appears.

2. Types the following, and then selects OK to start the build:
* brain.exe in the Path name field
* robot_control in the Release field
* 310 in the Work area field
* normal in the Pool field

The Pool field tells TeamConnection which set of build agents will handle this
build. Alex got the name of the pool from his build administrator.

Alex could have selected brain.exe from a list of parts on the Parts window, and
then selected Build from the Selected pull-down menu. This action would have
placed some information in the fields, such as the path name and release
name.

4 Build Parts

Path name |brain.exe

Type |

Release |r0b0t_control

Work area |310

Pool |n0rmal

|!|

Build mode (@) Normal (J)Forced () Unconditional () Report

Parameters |

Detail file |

0K import

Figure 12. Build Parts window

Command

From a command line, he issues the following command:
teamc part -build brain.exe -release robot_control -workarea 310 -pool normal

Result

TeamConnection determines the parts that are needed for the build from the set of
all the part versions that are currently visible from work area 310. The following part
versions are selected for build:

brain.c leg.c

brain.obj leg.obj

brain.exe foot.c

arm.c foot.obj

arm.obj optics.c (modification 1)
hand.c optics.obj

hand.obj

After the build is complete, TeamConnection stores the resulting outputs of the build
in the work area 310. After the build, the work area contains these parts:

brain.c leg.c

brain.obj leg.obj

brain.exe (contains modification 1) foot.c

arm.c foot.obj

arm.obj optics.c (modification 1)
hand.c optics.obj (modification 1)
hand.obj

”

Note: For a detailed build example, see [Chapter 12_BRuilding an application: ad
bxample” an page 141

Extracting a part

Next, Alex tests his modifications in the robot prototype in his office. He extracts the
executable part from the work area 310.

]

From the GUI, he:

Chapter 5. Working with no component or release processes 55

1. Selects Parts » Extract from the Actions pull-down menu on the Tasks window.
2. Types the following in the Extract Parts window, and then selects OK:

* brain.exe in the Path names field

e robot_control in the Release field

* 310 in the Work area field

Alex does this because he wants to extract the .exe part that is in his work
area. If he leaves the Work area field blank, he gets the latest committed
version of the .exe part from the release.

M Extract Parts O
Path names \brain.exe \
Release |robot_control H
® Work area 310 :
@ Version | | ‘
@ Driver | | ‘

Destination directory ‘

¥ Read-only
¥ Expand keywords

(o] (ol

Figure 13. Extract Parts window

56 user's Guide

Command

From a command line, he issues the following command:
teamc part -extract brain.exe -release robot_control -workarea 310

Result

This action places a copy of the part brain.exe in the current directory.
Checking out the part one more time

Alex then downloads brain.exe to his robot, runs his test, and determines that the
modification did not work: the robot slams into the wall. However, Alex thinks he
knows what the problem is, so he needs optics.c for further modifications. First, he
checks out the part.

cul

From the GUI, he:
1. Does one of the following to display the Check Out Parts window:

» Selects Parts » Check out from the Actions pull-down menu on the Tasks
window.

» Selects the entry on his Tasks window that displays the list of parts, and then
selects the part.

* Re-opens the Parts window if it was minimized, and then selects the part.

2. When the Check Out Parts window appears, he types the necessary information
and selects OK.

M Check Out Paris O]
Path names |0ptics.c |
Release |r0b0t_contr0| |\=f|
Work area 310 ||

Destination directory |

[1Break common link to parts locked elsewhere

QK §§{§§>{>§2 _____

Figure 14. Check Out Parts

Command

From a command line, he issues the following command:
teamc part -checkout optics.c -release robot_control -workarea 310

Result

A copy of the previously modified optics.c from work area 310 is checked out and
placed in the current directory.

Checking the part back in
Alex makes his modification and checks the part in.
cul

From the GUI, he:
1. Does one of the following to display the Check In Parts window:

» Selects Parts » Check in from the Actions pull-down menu on the Tasks
window.

» Selects the entry on his Tasks window that displays all the parts he has
checked out, and then selects the part.

* Re-opens the Parts window if it was minimized, and then selects the part.

2. When the Check In Parts window appears, he types the necessary information
and selects OK.

Chapter 5. Working with no component or release processes 57

vd Check In Parts

Path names |0ptics.c |
Release |r0b0t_control |\='|
Work areas |310| |\='|

Source directory |

Common releases |

4

Remarks [~]
v
[<] B_|
File type {JText (JBinary (JHone (e)Ho change
Source ®) Same () Copy from

Souron file |

| Sefect..

[IBreak common link

] Retain lock

Figure 15. Check In Parts window

Command

From a command line, he issues the following command:
teamc part -checkin optics.c -release robot_control -workarea 310

Result

Now the work area contains the following parts:

brain.c leg.c

brain.obj leg.obj

brain.exe (contains modification 1) foot.c

arm.c foot.obj

arm.obj optics.c (modification 2)
hand.c optics.obj (modification 1)
hand.obj

Because Alex did not specify that he wanted to save a copy of the work area by
freezing it, optics.c (modification 1) was overwritten.

Freezing the work area

58 user's Guide

Alex builds the application again, extracts the executable part, and runs his test.
This time, everything works, and the robot successfully finds its way to the snack
machine down the hall without hitting anything. Alex is very pleased, but he notices
an unrelated problem in the robot’s autofocus system. Before Alex begins repairing
the autofocus subroutine, he wants to save a copy of the application as it exists
now in his work area. So, Alex does one of the following to freeze the work area:

]

From the GUI, he:
1. Displays the Freeze Work Areas window in one of the following ways:

» Selects Work areas » Freeze on the Actions pull-down menu from the Tasks
window.

¢ Selects 310 from the list of work areas on the Work Areas window, then
selects Freeze from the Selected pull-down menu.

2. Types 310 in the Work areas field and robot_control in the Releases field if
the data is not already in the fields.

3. Selects OK.

Freeze Work Areas
Work areas |310 |

Releases |r0b0t_control| |\='|

| 0K | |Cancel| |Imp0rt| | Help |

Figure 16. Freeze Work Areas window
Command

From a command line, he issues the following command:
teamc workarea -freeze 310 -release robot_control

Result

The freeze command saves the work area 310. Thus, TeamConnection takes a
snapshot of the work area, with all its parts and their visible versions, and saves it.
Alex can come back to this stage of development in the work area if he wants.
Note, however, that a freeze action does not make the changes visible to the other
people working in the release, nor does it unlock the parts.

Refreshing the work area

Alex finally finishes his work on the robot’s optical systems after making three
additional attempts at modifying optics.c and rebuilding the application. Alex
modified and rebuilt the application a total of five times in the work area. Now, he
wants to share his work with the rest of the team. His work area currently contains
the following parts:

brain.c leg.c

brain.obj leg.obj

brain.exe (contains modification 5) foot.c

arm.c foot.obj

arm.obj optics.c (modification 5)
hand.c optics.obj (modification 5)
hand.obj

While Alex worked in his work area, other members of the team were working on
their own modifications. Some of these modifications have been integrated with the
release, so the copy of the release that Alex has is probably stale. If he were to
integrate his changes at this time with the release, he might cause the application
to break.

Alex first refreshes his work area with parts from the release by doing one of the
following:

Chapter 5. Working with no component or release processes 59

k4 Refresh Work Areas

cul

From the GUI, he:

1. Selects Work areas » Refresh from the Actions pull-down menu on the Tasks
window.

Types 310 in the Work areas field and robot_control in the Releases field.
Alex wants to refresh from the release, so he does not specify a source.
Selects OK.

O]

Work areas |310

Releases

|r0b0t_contr0| |

¥

Source |

| 0K | |Cancel|

|Imp0rt| | Help |

Figure 17. Refresh Work Areas window

Command

From a command line, he issues the following command:
teamc workarea -refresh 310 -release robot_control

Result

This action updates work area 310 with any changes from the release, and it also
freezes work area 310, if it is not already frozen. Now Alex’s work area contains the
following versions of parts:

brain.c (Jenny's modification) leg.c

brain.obj (from Alex's build after refresh) leg.obj

brain.exe (contains modification 5) foot.c

arm.c foot.obj

arm.obj optics.c (modification 5)
hand.c (Joy's and Ken's modification) optics.obj (modification 5)

hand.obj (from Alex's build after refresh)

None of the objects that Alex modified and none of the objects built as a result of
Alex’s modifications is overwritten by the refresh.

Building the application

60

User's Guide

Alex again builds the application brain.exe within his work area to determine
whether his changes integrate with Jenny’s, Joy’s, and Ken’s modifications.

cul

Alex has a Parts window open with a list of all the parts that exist in work area 310.
He highlights the part brain.exe, and then does the following:

1. Selects Build from the Selected pull-down menu.

2. Types normal in the Pool field. The other required fields have the correct
information.

3. Selects OK to start the build.

¥ Build Parts O]

Path name |brain.exe |

Type | |

Release |r0b0t_contr0|

¥
Work area [310 7|
[¥]

Pool |n0rmal

Build mode () Hormal (J Forced (JUnconditional () Report

Parameters | |

Detail file | |

&

Figure 18. Build Parts window

Command

From a command line, he issues the following command:
teamc part -build brain.exe -release robot_control -workarea 310 -pool normal

Result

Fortunately, nothing breaks, so Alex is ready to integrate his changes with the

release.

Integrating the work area

To integrate his changes with the release, Alex must integrate the work area he has
been using with the release. This will make the work area visible to all the users in

the release. He does one of the following:

cul

From the GUI, he:

1. Selects Work areas » Integrate from the Actions pull-down menu on the Tasks

window. The Integrate Work Areas window appears.
2. Types 310 in the Work areas field and robot_control in the Releases field.

3. Selects OK.

Chapter 5. Working with no component or release processes

61

4 Integrate Work Areas g

Work areas |310

Releases |r0b0t_control |\='|

[Ilgnore build status

| 0K | |Cancel|

|Imp0rt| | Help |

Figure 19. Integrate Work Areas window

Command

From a command line, he issues the following command:
teamc workarea -integrate 310 -release robot_control

Result

TeamConnection first determines that Alex’s changes were built against the latest
version of the release. Then TeamConnection makes Alex’s changes visible at the
release level so that the other team members can see and use them. The following
part versions are now visible from the release:

brain.c (Jenny's modification)
brain.obj (from Jenny's build)
brain.exe (from Alex's build)
arm.c

arm.obj

hand.c (Joy's modification, Ken's modification)
hand.obj (from Ken's build)
leg.c

leg.obj

foot.c

foot.obj

optics.c (Alex's modification 5)
optics.obj (from Alex's build)

TeamConnection also makes a copy of the release before integrating Alex’s
changes. If something doesn’t work, the users or the administrator can go back to
the release prior to Alex’s integration. The part, optics.c, is now unlocked in the
release. The work area is now in the complete state and can no longer be used.

Closing a defect

62 Users Guide

Now that Alex is finished making changes to fix the problem reported in defect 310,
he is ready to close the defect. He does one of the following:

GUI

From the GUI, he:

1. Selects Defects » Verify from the Actions pull-down menu on the Tasks window.
The Verify Defects window appears.

2. Types 310 in the Defects field.
3. Selects OK.

4 Verify Defects O
Defects (310 |

Remarks [~]
v
[<] B_|

&

Figure 20. Verify Defects window

Command

From a command line, he issues the following command:
teamc defect -verify 310 -release robot_control

Result

Because the component does not include the verifyDefect subprocess in its
process, the defect moves directly to the closed state.

Working in concurrent development

The previous section discussed working in a serial development environment. While
Alex had optics.c in his work area, no one else on the team could check out the
part. TeamConnection allows you to hold the part until you are sure that it integrates
with the rest of the application. Therefore, the lock is not released until the work
area as a whole is integrated with the release.

The scenario changes slightly for concurrent development. In this case, several
users can work on the same part at the same time. These users must reconcile
their changes as they integrate their work areas with the release.

The following tasks are required:

For information about this task, Go to this
page.
Refreshing the work area B3
Integrating the work area E4
Resolving differences |

Refreshing the work area

If Alex and Jenny are working on optics.c at the same time, they must resolve their
part differences at some point, because both want to make their changes visible to
the release. If Alex and Jenny were not required to do this before committing their
work areas, the last developer to commit would always overlay the other’s changes.
For this scenario, assume that Jenny finishes her changes first. The first thing she
does is refresh her work area.

GUI

Chapter 5. Working with no component or release processes 63

From the GUI, she:

1. Selects Work areas » Refresh from the Actions pull-down menu on the Tasks
window.
2. Types 415 in the Work areas field.
3. Types robot_control in the Releases field. Jenny wants to refresh from the
release, so she does not specify a source.
4. Selects OK.
M Refresh Work Areas O]
Work areas [415] |
Releases |r0b0t_control |¥
Source | |
| 0K | |Cancel| |Imp0rt| | Help |

Figure 21. Refresh Work Areas window

Command

From a command line, she issues the following command:
teamc workarea -refresh 415 -release robot_control

Result

This command refreshes her work area with the latest view of the release. Her work
area now contains the following part versions:

brain.c (Jenny's modification 3)

brain.obj (Jenny's modification 3)

brain.exe (has Jenny's brain.c modification 3 and optics.c modification 4)
arm.c

arm.obj

hand.c (Joy's modification, Ken's modification)
hand.obj (Joy's modification, Ken's modification)
leg.c

leg.obj

foot.c

foot.obj

optics.c (Jenny's modification 4)

optics.obj (Jenny's modification 4)

Integrating the work area

64

User's Guide

The refresh shows Jenny only the parts integrated with the release. She does not
see Alex’s work because he has not integrated his work area yet. Jenny rebuilds
the application, tests it, and decides she is ready to integrate her changes. She
does one of the following:

cul

From the GUI, she:

1. Selects Work areas = Integrate from the Actions pull-down menu on the Tasks
window. The Integrate Work Areas window appears.

2. Types 415 in the Work areas field and robot_control in the Releases field.

3. Selects OK.
4 Integrate Work Areas g
Work areas|415 |
Releases |r0b0t_control |¥
[1lgnore build status
| 0K | |Cancel| |Imp0n| | Help |

Figure 22. Integrate Work Areas window

Command

From a command line, she issues the following command:
teamc workarea -integrate 415 -release robot_control

Result

Because Jenny is up-to-date with the latest view of the release, her changes are
integrated after TeamConnection preserves a copy of the previous version of the
release.

Reconciling differences

Later, Alex is ready to integrate his modifications. Alex issues a refresh command,
as Jenny did (see page B3 for instructions).

This time, Alex receives a message that collision records were generated, because
both he and Jenny have updated the same parts. At this time he does not know
which parts collided. TeamConnection refreshes work area 310 with the exception
of the part optics.c, which had the collision. Alex’s work area shows the following
parts:

brain.c (Jenny's modification 3)

brain.obj (Jenny's modification 3)

brain.exe (Contains Alex's modification 5)

arm.c

arm.obj

hand.c (Joy's modification, Ken's modification)

hand.obj (Joy's modification, Ken's modification)

leg.c

leg.obj

foot.c

foot.obj

optics.c (Alex's modification 5)

optics.obj (Alex's modification 5)

Alex can use either the GUI or the command line to reconcile the differences. Four
steps are required from the command line:

1. Check out the latest uncommitted version.

2. Extract the latest committed version.

3. Run the merge program against the two parts.

4. Check in the resultant part.

Chapter 5. Working with no component or release processes 65

However, on the GUI the reconcile action automatically does the preceding steps
for you, which can save you a considerable amount of work if several parts require
reconciliation.

GUI

From the GUI, he:
1. Selects Parts » Collision Records from the Objects pull-down menu. The

Collision Record Filter window appears.

Types 310 in the Work areas field and selects OK. The Collision Records
window appears with optics.c listed as the part having the collision.

Highlights the optics.c entry and selects Reconcile from the pop-up menu. The
Reconcile Collision Record window appears with the required information
pre-filled.

Alex does not have to reconcile every part for which a collision record is
created. He can choose either his copy or the copy at the release rather than
combining the two. For example, if Alex wants to use his copy of optics.c
without merging with the copy at the release level, he selects the reject action
(of course, he would not do that without first talking with Jenny). If he wants to
use the copy of optics.c at the release level without merging any of his changes
into the copy at the release level, he selects the accept action.

Because Alex wants to combine the two sets of changes, he selects Merge to
start the TeamConnection merge program, or any merge program of his choice.
Alex merges the changes and then exits from the merge program.

The online help provides information on how to use the merge program.
Selects OK from the Reconcile Collision Record window. TeamConnection
checks the resultant part back in.

24 Reconcile Collision Record g

Path name |0ptics.c |

Type | |

Release |r0b0t_control

Work area |310

Alternate version |0ptics.c |

Merge with alternate version
’7Merge command |TCMERGE | |Merge... |

o W et -

Figure 23. Reconcile Collision Record window

Command

66

User's Guide

From a command line, he does the following steps:
* Issues a report command to determine which parts are in conflict:
teamc report -view collisionView -workarea 310

This report tells him that optics.c is the part that collided and gives the alternate
version ID of the part that caused the collision. Alex makes note of the alternate
version ID, robot_control:2, because he needs to specify that in a later step.

» Extracts a copy of optics.c from the release:
teamc part -extract optics.c -release robot_control -relative d:\temp

By not specifying a work area on the part -extract command, Alex ensures that
he receives the last committed copy of the part at the release. Also, Alex
specifies a relative path for the part extract. By specifying the relative directory,
he prevents TeamConnection from placing the part in his default directory, where
he normally works on checked-out parts. For more information about the -relative
flag, refer to the Commands Reference

* Checks out his copy of optics.c from his work area:
teamc part -checkout optics.c -release robot control -workarea 310

Because he did not specify a relative path, this part is checked out to his working
directory d:\robot.

» Uses the merge program to reconcile the two copies of optics.c:
tcmerge d:\temp\optics.c d:\robot\optics.c -out d:\robot\optics.c

If Alex decides not to merge the two parts, but instead wants to use his copy of
optics.c, he uses the collision -reject command. Or, if he wants to use the copy of
optics.c at the release level, he uses the collision -accept command.

* Checks the resultant copy of optics.c into his work area and builds it against the
rest of the system.

» After he is satisfied with the reconciled changes, he lets TeamConnection know
that the previously discovered conflict is reconciled. Alex does this by completing
the collision record that TeamConnection created when Alex attempted to
integrate his copy of optics.c. He does the following:

teamc collision -reconcile -path optics.c -release robot_control
-workarea 310 -altversion robot_control:2

Result

Alex is now ready to make his changes visible to the release. He can use either the
GUI or the command line to integrate the work area.

The integrate is permitted because a completed collision record exists for the
conflict between the two versions of optics.c. However, if Ken or Joy had integrated
a new version of optics.c while Alex was busy resolving the last collision, Alex’s
integrate would fail. He would have to repeat the collision resolution process.

Chapter 5. Working with no component or release processes 67

68 Users Guide

Chapter 6. Working with component and release processes

The previous chapter described how to work with parts when the release does not
follow a tracking process. This chapter describes how to work with parts when a
tracking process is followed.

When tracking is part of the process, users must associate any changes to their
parts with the defects or features active for the release. This association is made
through a work area. The work area is the object that ties a defect or feature with a
specific release. When checking out a part, the user must specify the work area
with which the modification is associated. For any release and defect or feature
pair, there can be multiple work area objects.

Aside from their association with a defect or feature, the work areas for a
full-tracking process environment are identical to those defined for working in a
no-tracking process environment. Work areas maintain a separate view for the user
working on the modifications associated with a defect or feature without affecting
the release. This view can be integrated with the release at some point. A work
area is implicitly created when a defect or feature is accepted if the managing
component follows a design, size, and review process for defects and features and
if a sizing record is created. The work area that TeamConnection creates is based
on the sizing record and has the same name as the defect or feature. If sizing
records were not created, you must explicitly create the work area.

As an example of how this all works, suppose that the robot project from the
previous chapter is entering system test. The administrator decides to turn on a
full-tracking process for the release, such as track full. This process includes the
track, approval, fix, driver, and test subprocesses. The release follows concurrent
development, and the component follows a design, size, and review process for
both defects and features.

On a weekly basis the project leader, Carol, creates a driver. A driver monitors and
implements the integration of part changes within a release. These part changes
are included in a driver by adding the work areas referenced by the changed parts
to the driver as driver members.

One of the testers for the robot project discovers that the autofocus mechanism in
the robot’s eye fails when the robot is placed in front of striped wallpaper. The
tester must open a defect against the component optics, which is owned by Carol.
Carol verifies that the problem does exist, accepts the defect, and assigns it to Alex.
This fix will require the tasks noted in the following table:

For information about this task, Go to this

Changing the defect owner

Accepting the defect

Approving the fix

Checking out a part

Verifying the changes

B & & K| E|E

Freezing the work area

© Copyright IBM Corp. 1992, 1995, 1996, 1997 69

For information about this task, Go to this

o
D
Q
®

Building the application

Accepting fix records

Adding a driver member

Returning the work area to the fix state

Reactivating the fix record

Refreshing the work area

Refreshing the driver

Building the driver

Restricting the driver

Integrating the parts

Completing the driver

B & & & g e e e e S &

Testing the built application

Moving through

design, size, and review

Because the defect was created against a component that follows the design, size,
and review process for defects, Carol must move the defect through this process
before the defect can be accepted and parts can be checked out. As the names
imply, the process requires that the following be done:

» Design what needs to be done in order to resolve the problem. She must enter
design text before the defect can move to the size state.

» Size the amount of work that is required to resolve the problem. At this time,
Carol creates a sizing record and specifies robot_control as the release that
contains the parts that require changing. If parts in other releases require
changing because of the defect, a sizing record is created for each release. A

sizing record assures that a work area is created when the defect is accepted. It
identifies the work that is required for and the resources affected by the defect or
feature. The owner of the component that is referenced in the sizing record is the
owner of the sizing record. The owner is responsible for entering information
about the amount of work that is required to implement the feature or resolve the
problem.

Review all design text and sizing records and determine if work should continue

on the defect.

Changing defect ownership

70

User's Guide

Because Carol is the component owner, she is currently defined as the owner of
defect 456. But the problem is in Alex’s code, so she wants him to own the defect.
To reassign ownership, she does one of the following:

cul

From the GUI, she:

1. Selects Defects » Modify » Owner from the Actions pull-down menu on the
Tasks window. The Modify Defect Owner window appears.

2. Types 456 in the Defects field and types Alex’s user ID, alexm, in the New

owner field.

3. Selects OK.
M Modify Defect Owner 0
Defects |456 |
Hew owner |alexm |‘=’|
Remarks [~]
v
[<] [>

Figure 24. Modify Defect Owner window

Command

From a command line, she issues the following command:

teamc defect -assign 456 -owner alexm
Results

Alex is now the owner of defect 456. He is responsible for fixing the problem and
moving the defect through its various states.

Accepting a defect

When you accept a defect or feature, you accept the responsibility of resolving it. A
defect or feature might require changes in more than one release. If the component
includes the design, size, and review process, these releases were identified during
the size state, and TeamConnection created a work area for each identified release.
If the component does not include the design, size, and review process, you will
need to create a work area manually.

When the first work area moves to the complete state, the defect or feature
automatically moves to the verify state or closed state.

Alex, now the owner of the defect, accepts the defect by doing one of the following:
Gul

From the GUI, he:

1. Selects Defects » Accept from the Actions pull-down menu on the Tasks
window. The Accept Defects window appears.

2. Types 456 in the Defects field and selects program_defect from the Answer
list.

3. Selects OK.

Chapter 6. Working with component and release processes 71

L4 Accept Defects

Defects |456]

Answer |nlans_change Plans or schedules need to [~
redesign Current function needs to b
remove_code Obsolete code needs to be r
remove_support Nonsupported functions need

o

!

LI [s

Remarks

o
<]

Figure 25. Accept Defects window

Command

From a command line, he issues the following command:
teamc defect -accept 456 -answer program defect

Results

Defect 456 moves to working state, and TeamConnection creates a work area
called 456. The work area is associated with the release specified on the sizing
record, which in this example is robot_control. When the work area is created, a fix
record is also created based on the sizing record. Because the approval
subprocess is included in the release’s process, the work area is created in the
approve state and the fix record is created in the notReady state.

Just as with a work area that is explicitly created, the defect work area contains a
view of the current versions visible to the release. In this case, the contents of the
work area are:

brain.c leg.c
brain.obj leg.obj
brain.exe foot.c
arm.c foot.obj
arm.obj optics.c
hand.c optics.obj
hand.obj

Approving the fix

72

User's Guide

Because the full-tracking process includes the approval subprocess, each person
identified on the approval list must approve the proposed changes before Alex can
begin work on the defect.

Linda and Sam are both listed as approvers. They have been notified by
TeamConnection that they have approval records. After reviewing the defect, they
do one of the following to indicate their approval:

GUI

From the GUI, they:
1. Select Records » Approval records = Accept from the Actions pull-down

menu.
2. Type 456 in the Work areas field and robot_control in the Release field.
3. Select OK.

.4 Accept Approval Records O

Work areas |45l3

|
Releases |r0b0t_c0ntrol |~='
|

Approver |linda

| 0K | |Cancel| | Import | | Help

Figure 26. Accept Approval Records window
Command

From a command line, they both issue the following command for the approval
record that they have:

teamc approval -accept -workarea 456 -release robot_control
Results

After both Linda and Sam accept the approval records, TeamConnection moves the
work area to the fix state.

Checking out a part

Now that the approval records have been accepted, Alex can check out the
necessary parts. He decides that modifications are again required to the part
optics.c. So, that is the part he checks out.

Alex must specify the work area on the check-out command so that the part is
obtained from the defect's work area. He does one of the following:

GUI

From the GUI, he:

1. Selects Parts » Check out from the Actions pull-down menu on the Tasks
window.

2. Types the following:

e optics.c in the Path names field

* robot_control in the Release field

e 456 in the Work area field

* d:\robot\src in the Destination directory field
3. Selects OK.

Chapter 6. Working with component and release processes /3

M Check Out Parts O]

Path names |0ptics.c |
Release |r0b0t_control |\='|
Work area |45Ei |\='|

Destination directory |d:\r0b0t\src|

[1Break common link to parts locked elsewhere

L import

Figure 27. Check Out Parts window

Command

From a command line, he issues the following command:

teamc part -checkout optics.c -release robot_control -workarea 456
-relative d:\robot\src

Results

A copy of the part optics.c is checked out from TeamConnection and placed in the
directory d:\robot\src. If the directory name is not specified in the command,
TeamConnection uses the directory specified in the TC_RELATIVE environment
variable. Because the release is following concurrent development mode, other
users can also check out and change this part while Alex has it checked out.

Verifying the changes

Alex makes his modifications and wants to test his corrections. First, he must check
the part into the work area. He does one of the following:

cul

From the GUI, he:

1. Selects Parts » Check in from the Actions pull-down menu on the Tasks
window.

2. Types the following in the Check In Parts window, and then selects OK:
e optics.c in the Path names field
e robot_control in the Release field
* 456 in the Work areas field

d:\robot\src in the Source directory field

74 Users Guide

24 Check In Parts

Path names
Release

Work areas

Common releases

Remarks

File type
Source

Souron file

optics.c |

robot_control |
|

456

s

114

Source directory |d:\r0b0t\src |

{JText (JBinary () Hone [(e)No change
®) Same () Copy from

[<] [>]

| Selest.

[CIBreak common link

[IRetain lock

L mport

Figure 28. Check In Parts window

Note: Alex follows these steps because he knows the exact name of the part that
he is checking in. If he does not know the name, or if he is checking in many
parts, he can instead do one of the following to display a list of parts:

» Select the entry on his Tasks window that displays the list of parts.

* Re-open the Parts window if it was previously minimized.

* Add an entry to his Tasks window that lists all of his checked-out parts.

He then selects the parts that he wants to check in.
Command

From a command line, he issues the following command:
teamc part -checkin optics.c -release robot_control -workarea 456

Results

Now the work area contains the following part versions:

brain.c leg.c

brain.obj leg.obj

brain.exe foot.c

arm.c foot.obj

arm.obj optics.c (Alex's modification 1)
hand.c optics.obj

hand.obj

Freezing the work area

Alex now wants to save, or freeze, the working system. He does one of the

following:

cul

Chapter 6. Working with component and release processes

75

From the GUI, he:
1. Displays the Freeze Work Areas window in one of the following ways:

» Selects Work areas » Freeze from the Actions pull-down menu on the Tasks
window.

* Selects Work areas from the Objects pull-down menu on the Tasks window.
Types the appropriate search information on the Work Area Filter window to
get a list of work areas. Selects 456 from the list of work areas on the Work
Areas window, and then selects Freeze from the Selected pull-down menu.
This method is useful when you are going to be working with several work
areas or you are unsure of the work area name.

2. Types 456 in the Work areas field and robot_control in the Releases field if
the information is not already there.

3. Selects OK.

Freeze Work Areas O]
Work areas |455 |

Releases |r0b0t_control |\='|

Figure 29. Freeze Work Areas window

| | Cancel | mport | Help |

Command

From a command line, he issues the following command:
teamc workarea -freeze 456 -release robot_control

Results

The freeze command saves the work area 456. Thus, TeamConnection takes a

snapshot of the work area, with all its parts and their visible versions, and saves it.
Note, however, that a freeze action does not make the changes visible to the other
people working in the release. This does not occur until the work area is integrated.

Building the application

76

User's Guide

Alex now builds the application to verify that the changes he has made have fixed
the problem. He does one of the following:

cul
From the GUI:

Alex has a Parts window open with a list of all the parts that exist in work area 456.
He highlights the part brain.exe and then does the following:

1. Selects Build from the Selected pull-down menu.

2. Types normal in the Pool field. The other required fields are pre-filled with the
correct information.

3. Selects OK to start the build.

¥ Build Parts]

Path name |brain.exe |

Type | |
Release |r0b0t_c0ntrol |\='|
Work area |456 |
Pool [normal |

Build mode (&) Hormal () Forced (J)Unconditional () Report

Parameters | |

Detail file | |

ot

Figure 30. Build Parts window

Command

From a command line, he issues the following command:
teamc part -build brain.exe -release robot_control -workarea 456 -pool normal

Results

Alex builds the application and tests the results. The modification seems to solve
the problem.

Note: For a detailed build example, see ['Chapter 12 Building an application: an
example” on page 141

”

Accepting fix records

Alex is satisfied that the changes are complete and the part is ready to be
integrated with other parts in the release. He does one of the following:

cul

From the GUI, he:

1. Selects Records » Fix records » Complete from the Actions pull-down menu
on the Tasks window.

2. Types the following in the Complete Fix Records window, and then selects OK:
e 456 in the Work areas field
* robot_control in the Releases field
e optics in the Component field

Chapter 6. Working with component and release processes /7

.4 Complete Fix Records O

Work areas |45I3

|
Releases |r0b0t_control |\='
|

Component |0ptics

| 0K I |Cancel| | Import | | Help

Figure 31. Complete Fix Records window

Command

From a command line, he issues the following command:
teamc fix -complete -workarea 456 -component optics -release robot control

Results

The fix record moves to the complete state. Because only one fix record was
generated for this defect, the work area moves to the integrate state at the same
time. When more than one fix record exists, they all must be completed before the
work area moves to the integrate state.

Integrating changed parts into a release

The changes that Alex has made are now ready to be put into the next set of
changes scheduled to be integrated with the release. This set of changes is known
as a driver.

A driver named 0105 currently exists, and several driver members have already
been added to the driver. Therefore, the driver is in the integrate state.

Adding a driver member

78

User's Guide

Carol, the project lead, adds work area 456 as a driver member of driver 0105:
Gul

From the GUI, she:

1. Selects Drivers » Add driver members from the Actions pull-down menu on
the Tasks window.

2. Types the following:
e 0105 in the Driver field
* robot_control in the Release field
e 456 in the Work areas field

3. Selects OK.

Add Driver Members
Driver o105

1

| IE | | 8| O

Release |r0b0t_control

11§

Work areas |45I3

[[1lgnore build status

| 0K I |Applg| |Cancel| |Imp0rt| | Help |

Figure 32. Add Driver Members window
Command

From a command line, she issues the following command:
teamc driverMember -create -driver 0105 -workarea 456 -release robot_control

Results

Carol previously created a driver member for driver 0105 that included changes to
optics.c, so Carol is naotified that collisions were detected. (Remember, the release
is in concurrent development mode.)

Carol deletes the driver member for work area 456. She then asks Alex to reconcile
the collisions.

Reconciling the differences

Before Alex can reconcile the differences, he needs to do the following:
1. Return the work area to the fix state

2. Reactivate the fix record

3. Refresh his work area

Returning the work area to the fix state

The first step in reconciling the differences is for Alex to return work area 456 to the
fix state. He does one of the following:

GUI

From the GUI, he:

1. Selects Work area » Fix from the Actions pull-down menu on the Tasks window.
2. Types 456 in the Work areas field and robot_control in the Releases field.

3. Selects OK.

Chapter 6. Working with component and release processes 79

80

User's Guide

Fix Work Areas El
Work areas |45I3 |

Releases |r0b0t_control |\='|

| 0K I |Cancel| |Imp0rt| | Help |

Figure 33. Fix Work Areas window
Command

From a command line, he issues the following command:

teamc workarea -fix 456 -release robot_control
Results

Work area 456 is in the fix state. After the fix record is reactivated, Alex will check
out optics.c from this work area to reconcile the differences.

Reactivating the fix record

Currently, the fix record for work area 456 is in the complete state. Alex must
reactivate the fix record to move it back to the active state so that he can make the
necessary changes to optics.c. He does one of the following:

cul

From the GUI, he:

1. Selects Records » Fix records =+ Activate from the Actions pull-down menu on
the Tasks window.

2. Types 456 in the Work areas field and selects robot _control from the
Releases field and optics from the Component field.

3. Selects OK.

4 Activate Fix Records O

Work areas |45I3

|
Releases |r0b0t_control |\='
|

Component |0ptics

| 0K I |Cancel| | Import | | Help

Figure 34. Activate Fix Records window
Command

From a command line, he issues the following command:

teamc fix -activate 456 -release robot control -component optics

Results

The fix record returns to the active state.
Refreshing the work area

Alex now needs to refresh his work area with the parts that are already in driver
0105. He does one of the following:

cul

From the GUI, he:

1. Selects Work areas » Refresh from the Actions pull-down menu on the Tasks
window.

2. Types the following in the Refresh Work Areas window and selects OK:
e 456 in the Work areas field
* robot_control in the Releases field
* 0105 in the Source field

M Refresh Work Areas 0|
Work areas |45|3 |

Releases |r0b0t_control |\='|

Source |01 05 |

| oK | |Cancel| %%mgx}?‘é: | Help |

Figure 35. Refresh Work Areas window

Command

From a command line, he issues the following command:

teamc workarea -refresh 456 -release robot control -source 0105
Results

TeamConnection notifies Alex of the collision, so his next step is to reconcile the
differences. He follows the same procedure that is described on page Bd.

Alex completes the fix record and then tells Carol that he has reconciled the part
differences and that she can now create the driver member. She creates the driver
member without any collisions this time.

Refreshing the driver

Carol is ready to integrate the changes in driver 0105 with the release. Because
other team leads have integrated changes as well, she wants to build her driver
with the most current release part versions. She does one of the following:

GUI

From the GUI, she:

1. Selects Drivers » Refresh from the Actions pull-down menu on the Tasks
window.

Chapter 6. Working with component and release processes 81

2. Types 0105 in the Drivers field and robot _control in the Release field.
3. Selects OK.

Refresh Drivers O
Drivers 0105 |

Release |r0b0t_control |\='|

| 0K | |Cancel| E%zzzgxz?‘é: | Help |

Figure 36. Refresh Drivers window

Command

From a command line, she issues the following command:
teamc driver -refresh 0105 -release robot control

Results

This command refreshes driver 0105 with any committed updates to the release.
Building the driver

Carol builds the application using the parts current to driver 0105. She does one of
the following:

cul

From the GUI, she:
1. Selects Build from the Action pull-down menu on the Tasks window.
2. Types the following in the Build Parts window:
* brain.exe in the Path name field.
* robot_control in the Release field.
* 0105 in the Work area field.
* normal in the Pool field.
3. Selects OK to start the build.

82 User's Guide

M Build Parts 0

Path name |brain.exe |

Type | |
Release |r0b0t_control

|
Work area |0105 |
|

s

g

s

Pool [normal

Build mode (8) HNormal (JJForced (J)Unconditional () Report

Parameters | |

Detail file | |

0K ?'%zzzgxkzé:

Figure 37. Build Parts window

Command

From a command line, she issues the following command:
teamc part -build brain.exe -release robot control -workarea 0105 -pool normal

Results
Carol runs some simple regression tests to verify that the application built properly.

She is satisfied with the results, and is ready for the next step—committing the
driver changes to the release.

Restricting the driver

After all changes have been integrated with the release, Carol needs to make some
final changes before building the driver. To enable her to make these changes while
protecting the driver from access by anyone else, she needs to restrict access to it.
She does one of the following:

cul

From the GUI, she:
1. Selects Drivers » Restrict from the Actions pull-down menu on the Tasks

window.
2. Types 0105 in the Drivers field and robot_control in the Release field.
3. Selects OK.

Chapter 6. Working with component and release processes 83

Restrict Drivers
Drivers |0105 |

Release |robotfcontrol

| OK | |Cancel| |Import| | Help |

Figure 38. Restrict Drivers window

Command

From a command line, she issues the following command:
teamc driver -restrict 0105 -release robot_control

Results

This command restricts driver 0105 so that only Carol is able to make changes to it.
Carol is now ready to build the application.

Integrating the parts

Carol commits the changes in the driver to the release by doing one of the
following:

cul

From the GUI, she:
1. Selects Drivers » Commit from the Actions pull-down menu on the Tasks

window.
2. Types 0105 in the Drivers field and robot _control in the Release field.
3. Selects OK.
M Commit Drivers =

Drivers 0105 |

Release |r0b0t_control |\='|

[llgnore build status

| 0K | |Cancel| é%zzzgxzz‘? | Help |

Figure 39. Commit Drivers window

Command

From a command line, she issues the following command:
teamc driver -commit 0105 -release robot_control

Results

84 user's Guide

TeamConnection moves the part versions associated with driver 0105 into the
release. Other members of the team can now view the changes. Committing a
driver commits all work areas designated as driver members and all parts changed
in reference to those work areas.

Completing the driver

The driver is ready for formal testing in the specified release’s environment list.
Testing is tracked using test records for each environment in which testing is to be
done. To create the test records, Carol must complete the driver.

GUI

From the GUI, she:
1. Selects Drivers » Complete from the Actions pull-down menu on the Tasks

window.

2. Types 0105 in the Drivers field, and selects robot_control from the Release
field.

3. Selects OK.

Complete Drivers O
Drivers [0105] |

Release |r0b0t_c0ntrol |:|

| 0K | |Cancel| éizzzgxz?é: | Help |

Figure 40. Complete Drivers window

Command

From a command line, she issues the following command:
teamc driver -complete 0105 -release robot_control

Results

All the work areas in the driver are changed to the test state, and test records are
created.

Testing the built application

Annmarie is the tester for the MVS version of the robot application. When she
receives notification that the test record is in the ready state, she tests the part
changes that were made within the release by Alex and several of his team
members. The tests complete successfully, so she accepts the test record by doing
one of the following:

cul

From the GUI, she:

1. Selects Records » Test records =» Accept from the Actions pull-down menu on
the Tasks window.

Chapter 6. Working with component and release processes 85

2. Types 456 in the Work areas field, and selects robot control from the
Releases field and MVS from the Environments field.

3. Selects OK.

b4 Accept Test Records |

Work areas |45Ei

¢
Releases |r0b0t_control |\='|
Environments [MVS H
Tester [annmarie] J¥|
| oK I | Cancel | | Import | | Help |

Figure 41. Accept Test Records window
Command

From a command line, she issues the following command:
teamc test -accept -workarea 456 -release robot_control -env mvs

Results

Annmarie’s test record moves to the accept state. However, work area 456 will not
go to the complete state until Tim, who is the tester for the OS/2 environment,
marks his test record.

After all test records are moved from the ready state, the work area moves to the
complete state. Because the component process includes the verifyDefect
subprocess, defect 456 moves to the verify state. A verification record for the defect
is created in the ready state.

Using a configured process

86

User's Guide

The scenarios in this chapter and the preceding chapter illustrate one release with
no process management enabled and another release with full process
management enabled. However, administrators can define a release that requires
users to work with some intermediate level of process management. That is, the
administrator can remove some of the subprocesses from the full-tracking scenario.

For example, the administrator might want to eliminate the driver subprocess. If the
driver subprocess is eliminated, the user cannot create driver members to associate
the changes in a work area with a driver. Likewise, users cannot commit drivers to
integrate several work areas with the release. Instead, users integrate the changes
for each work area by integrating the work area with the release.

To demonstrate how this works, assume that Carol and Alex are trying to fix the
robot’s dislike of striped wallpaper using a release without the driver subprocess
enabled. Initially, the scenario is not affected by the absence of the driver
subprocess. The defect is opened, and a work area is created. Alex, after receiving
notice that he needs to solve the problem, goes through the process of checking

out the faulty part, making fixes, checking the fixes into the work area, and
rebuilding. He can still freeze the work area whenever he wants to save its current
content.

The difference occurs when Alex is ready to integrate his changes with the release.
When the driver subprocess is not enabled, Alex issues the following command:

teamc workarea -integrate 456 -release robot_control

This command moves the part versions associated with work area 456 into the
release so they are visible to other developers. However, if collision records are
created, TeamConnection flags the concurrent changes and stops the integration
until the changes are reconciled and the corresponding collision records are
completed.

Retrieving a past version of a part

Versioning is an insurance policy for the developer. By freezing the work area, the
developer knows that the parts currently visible in the work area will be retained in
their current form.

For this example, assume that Alex just updated the optics.c module to add support
for a new zoom lens. Alex did a considerable amount of work on this task, and it
required a dozen check-out, check-in, and build cycles before he finished. Alex’s
work area now contains the following:

brain.c leg.c

brain.obj leg.obj

brain.exe (from Alex's build 12) foot.c

arm.c foot obj

arm.obj optics.c (modification 12)
hand.c optics.obj (from Alex's build 12)
hand.obj

Next Alex must update the brain.c part to set the appropriate conditions for
activating the new zoom capability. He does not yet want to integrate his changes
to optics.c for the zoom lens with the release because they are of little value without
his changes to brain.c. Also, he is not certain that he is completely done with
optics.c until he completes the modifications to brain.c. Rather than integrate an
incomplete change, he freezes his work area by issuing the following command:

teamc workarea -freeze 1208 -release robot control
This command takes a snapshot of the work area and its parts in their current state.

As Alex works on the brain.c module, he makes sweeping modifications to optics.c
to simplify the interface between brain.c and optics.c. Unfortunately, he realizes too
late that the simplification he is pursuing will not work. Rather than spend several
hours removing his updates to optics.c, he wants to start fresh from a copy of
optics.c that does not contain the changes for the simplification.

Alex has frozen his work area three times since beginning work on the zoom lens
integration. Also, he has done additional check-ins to his work area since his last
freeze. He cannot remember the particular version of his work area that contains
the copy of optics.c that he wants. So, he wants to see all the versions of his work
area that he has saved. He issues the following report command:

teamc report -view versionView -where "workAreaName='1208' and
releaseName="robot_control'" -stanza

Chapter 6. Working with component and release processes 87

This command returns a list of the versions frozen from work area 1208. The report

looks like this:

name 1208:1

workAreaName 1208

releaseName robot_control
predecessor robot_control:5
hasSuccessor yes

releaseVersion no

addDate 1995/01/11 14:30:26
freezeDate 1995/01/11 15:00:00
name 1208:2

workAreaName 1208

releaseName robot_control
predecessor 1208:1

hasSuccessor yes

releaseVersion no

addDate 1995/01/12 09:25:13
freezeDate 1995/01/12 17:15:58
name 1208:3

workAreaName 1208

releaseName robot_control
predecessor 1208:2

hasSuccessor yes

releaseVersion no

addDate 1995/01/14 11:13:25
freezeDate 1995/01/15 09:01:35
name 1208:4

workAreaName 1208

releaseName robot_control
predecessor 1208:3

hasSuccessor no

releaseVersion no

addDate 1995/01/16 08:10:15
freezeDate 1995/01/16 10:05:11

So what does it all mean?

¢ name is the name of the version in the work area.
* workAreaName is the name of the work area that owns the version.
e ReleaseName is the name of the release that owns the version.

* Predecessor is the name of the version that precedes, or is the parent of, this
version.

* hasSuccessor has a value of yes if the version has a successor, no if it does not.

* releaseVersion has a value of yes if the version is part of the release’s main
version history; the value is no if the version belongs to a work area.

¢ addDate is the date and time the version was created.
* freezeDate is the date the version was frozen.

This report seems erroneous. TeamConnection returned four versions in the report
even though Alex has executed the freeze command against his work area only
three times. The fourth version, 1208:4, is the unfrozen version in which Alex is
currently making his changes.

Another concern might be the predecessor of the first version returned in the report.
Why is its predecessor robot_control:5? At some point Alex began his work by
making modifications to the latest code in the release. The first version of Alex’s
changes is based on the release version robot_control:5.

88 uUser's Guide

After reviewing the report, Alex thinks that his last working copy of optics.c was
saved when he created version 1208:2. However, to make sure, he wants to see
the parts modified in version 1208:2. He issues the following command:

teamc report -view partView -version 1208:2 -release robot_control
-where "currentVersion='1208:2'" -stanza

This report returns a list of parts visible to version 1208:2 that have a
currentVersion (or version ID) of 1208:2. If a part has such a version ID, the part
was modified in the version 1208:2.

Note: If the -where clause were not specified, the report would return all of the
parts visible from version 1208:2.

The TeamConnection system returns the following report:

baseName optics.c
releaseName robot_control
compName robot_dev
versionSID 1208:2
addDate 02/02/94
TastUpdate 04/15/94
pathName smarts\eyes\optics.c
nuVersionSID 1208:2
nuAddDate

nuDropDate

nuPathName

userLogin alexm

fmode 0640

Because optics.c is the only part modified in version 1208:2, Alex assumes it is the
copy he wants. He extracts the part by issuing the following command:

teamc part -extract optics.c -version 1208:2 -workarea 1208 -release robot_control

This command extracts the desired copy of optics.c from the frozen version 1208:2.
Alex can then overlay the corrupted copy of optics.c that he has checked out with
the copy he just extracted, and he can start over fresh. He can also check in the
overlaid optics.c to his work area.

This method works only for parts with a file type of TCPart. If your part has a type
of something other than TCPart, you can do one of the following to restore the part:

» Use the undo action if restoring to the previous version.
» Use the link action to link to a previous version.

In addition to the reporting features mentioned above, Alex can also obtain a list of
work areas by issuing the following command:

teamc report -view WorkAreaView -where "releaseName='robot control'" -stanza
The report that is returned lists the work areas in the release robot_control. A user

can also see the parts changed for each work area by specifying the -long
parameter on this command.

Chapter 6. Working with component and release processes 89

90 user's Guide

Part 3. Using TeamConnection to build applications

Chapter 7. Basic build concepts T X
The physical structure of the build function 93
The build object model. ° 1)
Parent-child relationships in a build tree . [o]
Working with a build tree. 98
Putting the pieces together . 9
Chapter 8. Starting and stopping the servers e [0k
Setting up the mail facility .101
Starting the servers. . . . KO X §
Starting servers from the Famlly Adm|n|strat0r GUI e K X X
Starting build servers using teamcbld102
Caching and the build directories.103
An MVS build server .104
The build cache data sets . . . P K
Customizing the cache data set space attnbute . e 105
Starting a build agent for an MVS build server105
Creating build startup files .107
Startup file for build servers.107
Startup file for build agents108
Stopping the servers .108
Abuidserver .108
An MVS build server .109
Chapter 9. Working with build scripts and builders e
Creating a builder11
Writing a build script . . I £ <)
Passing parameters to a bwld scnpt A At 5
Writing a simple build script. i 1)
Writing an executable file for a build scrlpt i
Testing a build script . . e S
Modifying the contents of a bund scrlpt o I -
Putting a buildertowork .19
Removing a builder from a part . . . e 240
Working with VisualAge C++ and Templates T 240
Chapter 10. Working with MVS build scripts and builders 2
Creating a builder for MVS builds.121
Writing an MVS build script .125
File name conversions forMmvs125
Passing parameters to an MVS build script126
TeamConnection syntax for MVS build scripts127
Supported JCLsyntax. .128
EXEC statement. .128

DD STATEMENT. . . . e 243
Example of a build script for a C comp|le e 1)
Example of a build script for a COBOL compile131
Example of a build script foralink132
Chapter 11. Working with parsers135
Creatingawparser .. .13
Putting a parsertowork .137
Removing a parser fomapart138

© Copyright IBM Corp. 1992, 1995, 1996, 1997 91

Writing a parser command file139

Chapter 12. Building an application: an example P
Starting the build processors and build agents 7 4
Creating builders and parsers . . . 7 C
Creating the build tree for the apphcatlon 7 C
Starting the build on the client.1l47

Determining the build scope.149
Adding the job to the job queve151
Picking up the work orders .151
Putting the build processorstowork.151
Putting the build scripts to work . . . e Y A
Finishing the job and reporting the results to the user152
Monitoring the progress of a build152
Running a build in spite of errors . . . T A X
Building all parts, regardless of build tlmes e e e o .153
Finding out which parts will be built154
Cancelingabuid. .154
More sample build trees155

Defining multiple outputs from a smgle bUI|d event £ 1)

Synchronizing the build of unrelated parts156

This section tells how to install and use the TeamConnection build function.
Though build administrators will be most interested in this section, anyone who

builds an application using TeamConnection will find the first and last chapters
helpful.

92 Users Guide

Chapter 7. Basic build concepts

This chapter defines terms and briefly describes the TeamConnection pieces that
work together in building an application. For more details, continue to the other
chapters in this section.

The TeamConnection build function has numerous features:

It builds applications for platforms in addition to those it runs on. Currently you
can build applications using TeamConnection on the following platforms: AlX,
HP-UX, MVS, OS/2, Windows NT, and Windows 95. For more information on
installing, setting up, and using the AIX and HP-UX build servers, refer to the
readme file on the installation CD.

 Its graphical representation of the structure of an application makes it easier to
visualize and change.

It lets you build an application using any number of machines working in parallel.

* Because it is fully integrated with TeamConnection’s version control system, it
ensures that the correct versions of parts are used in a build.

» It can work not only with parts that represent files, such as C source files, but
also with parts that represent objects, such as VisualAge Generator applications.

» It can manage other steps related to software packaging and distribution.

For more information, see LRart 4_Lising TeamConnection to package praducts” on

The physical structure of the build function

Eigure 42 on page 94 shows the structure of TeamConnection:

© Copyright IBM Corp. 1992, 1995, 1996, 1997 93

Build server Build server

| | Build script : | | Build script :
| ! i | |
Build processor Build processor
i 0si2| ! 5 MVS|
Build agent Build agent
| ose| | | 0si2| |

ObjectStore

database

|
Family server Client
0s/2 0S/2

Figure 42. The physical structure of TeamConnection

Of special note to the build function are the build agents and build processors:

Build agent
This program handles access to parts data on behalf of the build processor.
Like the family server, the build agent uses an ObjectStore database client.

There can be any number of build agents. Each is connected to one and
only one build processor. TeamConnection provides build agents for the
following platforms: AIX, HP-UX, OS/2, and Windows NT.

Build processor
This program invokes the tools, such as compilers and linkers, that
construct an application. The build processor uses a build script to invoke
the tools. It maintains a file cache to reduce file transfer overhead.

There can be any number of build processors. Each is connected to one
and only one build agent. TeamConnection provides build processors on the
following platforms: AIX, HP-UX, OS/2, Windows NT, Windows 95, and
MVS. The term build server refers to this combination of build agent and
build processor.

Build processors and agents are started by a TeamConnection administrator. For

more information, see EChapter 8 Starting and stopping the servers” on page 101,

m shows each part of the build function on a separate machine. However,
you could install them in other combinations. For more information, refer to the
Administrator’s Guide

94 user's Guide

The build object model

Eigure 43 on page 97 shows the TeamConnection objects and events that constitute
the build function, as illustrated in a sample application named msgcat.exe. This
build object model is a conceptual model of the build function. When you use
TeamConnection to define a build, you work with a build tree (a simplified graphical
illustration of the build object model), which you can access through the
TeamConnection GUI. MWorking with a build tree” an page 98 explains build trees.
This section explains the build objects and events represented in a build tree.

In TeamConnection, the build function is always described and discussed in terms
of the final output of the build: the product or executable file that the build produces.
For the sample application shown in this illustration, msgcat.exe is the build output
and appears at the top of the build object model and as the top branch of the build
tree illustrated on page B72. when you want to actually build the product, you
request a build of msgcat.exe. TeamConnection uses the build tree that you define
for this product to determine which objects and build events it needs to generate
the final output. The objects and events that TeamConnection uses for a build
include the following:

TeamConnection part
An object produced or used during a build, containing any data produced or
used by the build. For example, a part called hello.c contains the source
code for the application called msgcat. A part might be a text or binary file,
or an object such as a VisualAge Generator generic collector.

Build event
An individual step in the build of an application, such as the compiling of
hello.c into hello.ob;.

A build scope is a collection of build events that implement a specific build
request. For example, if you start a build of an entire application,
TeamConnection creates a build scope containing many build events such
as compiles and links.

A job queue is a queue of build scopes. One job queue exists for each
TeamConnection family. When a developer starts a build, the resulting build
scope is added to the job queue for the family. The build agents then
process the build events in the build scope, on more than one machine at a
time if possible.

Build events, build scopes, and job queues are internal to TeamConnection;
you cannot interact with them directly.

Builder
An object that can transform a build event’s input parts into output parts by
calling tools such as linkers or compilers. For example, one builder might
know how to transform the input part hello.c into the output part hello.obj. A
different builder might know how to transform hello.obj into msgcat.exe.
Builders are associated with the parent, or output part, rather than the child,
or input.

Build script
An object that a builder uses in transforming inputs to outputs; it is
essentially a binding between TeamConnection and a transformation tool,
such as a linker or compiler. In OS/2, Windows, or UNIX environments, a
build script is usually a command file, but it can be a string that calls the
tool. In MVS, it is a file containing JCL.

Chapter 7. Basic build concepts 95

Parser
A tool that can read a source file and report back a list of dependencies of
that source file. It frees a developer from knowing the dependencies one
part has on other parts to ensure a complete build is performed. For
example, a C parser can read a C source code file and report back a list of
the files included by the source file or by the included files.

Parent-child relationships in a build tree

96

User's Guide

One relationship that is important to understand and distinguish is the relationship
between parent and child parts in a build tree.

Though parent-child relationships usually imply that the parent part generates the
child part, in a TeamConnection build it is the opposite. Because TeamConnection
places the build output at the top of the tree, it refers to the build output as the
parent and to the build input as the child.

A child part can be related to a parent part one of three ways: it can be an input
part, an output part, or a dependent part.

Input parts
A part used as direct input to your build. An example of this is a C language
source part. If you start a build and this part has changed, the changed part
will be part of the new build.

Output parts
A generated output from a build, such as an OBJ or EXE part, or a part
with no contents that serves as an organizer object. If you start a build and
this part has changed, the changed part will be included in the new build.

Dependent parts
A part needed for the build operation to complete but that is not passed
directly to the compiler. An example of this is an include part. If you start a
build and this part has changed, the changed part will be included in the
new build.

Though parent-child relationships usually imply that the parent part generates the
child part, in a TeamConnection build it is the opposite. Because TeamConnection
places the build output at the top of the tree, it refers to the build output as the
parent and to the build input as the child.

To understand how build output is generated, it may be easier to start at the bottom
of the build object model and work your way up. In Eigure 43 an page 97, hello.h
and bye.h are C source files that are embedded in hello.c and bye.c, respectively.
The parser, parserl, is able to read hello.c and bye.c to determine files they embed.
This build object model contains three build events:

* The builder compilerl compiles hello.c into hello.obj.
* The builder compilerl compiles bye.c into bye.obj.
* The builder linkerl links hello.obj and bye.obj into msgcat.exe

This build object model contains the following parent-child relationships:
* msgcat.exe is the parent of hello.obj and bye.obj.

* hello.obj is the parent of hello.c

* bye.obj is the parent of bye.c

You establish these parent-child relationships between parts when you create the

parts in TeamConnection.

Before you can build msgcat.exe, for example, you need to create a place-holder

part for it and designate linkerl as its builder. You then create place-holder parts for

hello.obj and bye.obj and designate compilerl as their builder and msgcat.exe as

their parent.

walks you through an

example of creating the build tree for this object model.

Part

msg.exe
A

generates

Build event

is built by

Builder

Link step

F 1

is transformed by

Part Part

hello.obj bye.obj

A A
generates

Build event Build event

linker1

is built by | Builder

Compile step Compile step

y

A A

is transformed by

Part Part

is parsed by | Parser

compilert

hello.c bye.c

A

is dependent on

Part
hello.h

parseri

Figure 43. Sample build object model for msgcat.exe

Chapter 7. Basic build concepts

97

Working with a build tree

98

User's Guide

Software developers must provide the information by which TeamConnection
determines the build events that make up a given build scope. An application’s build
tree shows this information graphically.

A build tree is a simplified version of the build object model, showing the

hello.exe

is parent of

» hello.obj

is parent of

» hello.c

Figure 44. The build tree for the hello application

In this simple application, hello.c is compiled to create hello.obj, which in turn is
linked to create hello.exe. The build tree shows that hello.exe is the parent of
hello.obj, which in turn is the parent of hello.c. To build the entire application, you
request to build hello.exe.

Just as the parts that make up an application are versioned, the relationships
between these parts are versioned. Thus, more than one version of the build tree

can exist. For example, Eigure 45 on page 99 shows two different versions of the

same build tree:

Work area 817

hello.exe
is parent of
» hello.obj
is parent of
» hello.c
Work area 915
hello.exe
is parent of
» hello.obj
is parent of
» hello.c
» hello2.0bj
is parent of
» hello2.c

Figure 45. Two versions of a build tree

Putting the pieces together

The table that follows lists the tasks involved in preparing for building an application
and in actually building it. Usually an administrator does the preparation steps, but
anyone with the proper authority can do so.

For more information about this task,

Gq

to this page.

Creating build startup files

Starting build servers

Stopping build servers

Writing a build script

Creating a builder

Creating a parser

Defining a build tree

Starting a build

Stopping a build

E]E]EJE]EE]E E]E

Chapter 7. Basic build concepts 99

For more information about this task, G+ to this page.

Verifying the parts to be built |@

100 users Guide

Chapter 8. Starting and stopping the servers

This chapter explains how to start and stop a build server.

Setting up the mail facility

TeamConnection users can receive naotification when certain events occur within
TeamConnection. A user’'s mail address is specified when a TeamConnection user
ID is created. TeamConnection uses this mail address to notify users when certain
actions occur.

In order for users to receive notification, the notification server must be running.
When you start the notification server, you specify an executable or command file
that specifies the mail exit routine that processes mail requests.

Two mail exit routine samples are shipped with TeamConnection: mailexit.cmd and
mailexit.exe. These samples are located in the directory where TeamConnection is
installed. Both of these samples use the sendmail command. You can either use
one of these sample mail exits or you can use a different mail facility and write your
own routine.

The sendmail command is part of TCP/IP, and is installed when TCP/IP is installed.
If you use the sendmail function to send notification messages, you must configure
it on your network in order for TeamConnection client workstations to receive
notification messages from the server. Refer to your TCP/IP documentation for more
information.

If you use a different mail facility, refer to the shipped mail exit routine sample,
mailexit.c, to see how you can tailor TeamConnection to support your mail facility.

In order not to lose messages when the mail exit routine fails, you can have the exit
routine return a code of 1041. This causes the notification daemon to exit and the
mail that was being processed is not deleted. If the exit routine returns any other
code, the mail that is being processed is deleted.

Starting the servers

This section explains how to start the TeamConnection family server, the notification
server, and the build server. These processes can be started together when you
start the family server, or individually.

Starting servers from the Family Administrator GUI

You can follow these steps to start both the family and notification servers from the
Family Administrator GUI:

1. Do one of the following to display the TeamConnection Family Administrator
window:

* From the TeamConnection Group folder on the desktop, double-click on the
Family Administrator icon.

e Type tcadmin from a prompt.

2. Double-click the family icon for the family you want to start. The Server window
appears.

© Copyright IBM Corp. 1992, 1995, 1996, 1997 101

3.

4.

When starting the family server, specify in the Daemons field the number of
daemons you want started.

To start only one server, select the appropriate Start push button. To start both
the family and notification servers, select the Start Both pushbutton.

When a server starts successfully, the message "Press CTRL-C to stop”
appears in the list box and the Start push button changes to Stop.

Minimize the Server window.

Note: Do not close the Server window. Closing the Server window stops the
family server.

Starting build servers using teamcbld

102

User's Guide

You can also start the build servers using the following line command:
teamcbld [-e environment] [-p pool] [-f family] [-c] [-s] [-1]

Where:

environment specifies the environment that you are building for, such as OS/2 or
MVS. The value you specify here can be anything you like, but it must exactly
match the environment specified for a builder in order for the builder to use this
build agent. This value is case-sensitive. You can also set this value using the
TC_BUILDENVIRONMENT environment variable.

pool is the name of the build pool. You can also set this value using the
TC_BUILDPOOL environment variable.

family is the name of the TeamConnection family. You can also set this value
using the TC_FAMILY environment variable.

If the agent is installed on a different machine than the family, this is the fully
qualified name: hostname:dbpath\family_name.tcd, where

— hostname is the name of the machine where the family resides.
— dbpath is the drive and path for the family.
— family_name is the name of the TeamConnection family.

Note: You can also access the database remotely by issuing a mount command.
For example, assume the build server is installed on a machine named
bldsrvl, the database is installed on a machine named teamc in the root
directory of the d: drive, and your family is named testfam. From bldsrv1,
issue the following mount command:

mount x: teamc:d:\

Also from bldsrvl, set the TC_DBPATH environment variable to x:\. When
you issue the following command from the bldsrvl machine, you will
access the family database testfam.tcd on the d: drive of the teamc
machine:

teamcbld -f testfam -e 0s2 -p pooll -s bldsock

-c turns caching off. For more information, see tCaching and the build

-s sends log file messages to the screen.The build server generates a log file
called teamcbld.log. Build server log messages can be routed to the screen using
the -s parameter.

-| increases the level of messages written to the log. This option is equivalent to
the verbose option on TeamConnection teamc commands.

You can also set the -c, -s, and - bwld optlons using the TC BUILDOPTS
environment variable. See L “
for a list of TeamConnection environment variables.

Caching and the build directories

The build server uses two special directories: the build directory and the build cache
directory.

When you start a build server, a build directory is created. By default, the hame of
this directory is cwa\fhbbuild, where cwd is the name of the current working
directory in which the build server was started. For example, if you start the build
server in the directory x:\teamcinstallPath\build (where x:\teamcinstallPath is the
drive and directory in which TeamConnection is installed), the build directory is
x:\teamcinstallPath\build\fhbbuild. You can specify a different cache location by
using the -c parameter on the teamcbld command. In this directory the actual
compiles, links, and other data transformations invoked from build scripts are
performed. The build server changes its current working directory to this directory
before it invokes a build script. The name of the cache directory that you specify on
the -c parameter must be unique.

All files needed by the build script are extracted from the TeamConnection database
into the build directory or some directory subordinate to it. Because a build extracts
parts from TeamConnection, anyone requesting a build needs to have PartExtract
authority to all parts involved in the build. When a build event is complete, the files
in the build directory are moved to the cache directory so they can be used again
later. The next time a build event is processed that uses some of the same files as
some previous build event, the necessary files are moved into the build directory
from the cache directory rather than extracted from the TeamConnection database.

The name of this cache directory is fhbcache. You can specify a different name for
the cache directory when you start the build server. If you are starting more than
one server on the same machine, you must specify a different cache directory for

each. How you do that is described in ['Starting build servers using teamcbld” ol
hage 103 .

A side information file called fhbhag.$$$ is maintained in the cache directory of the
build server. This file contains information about the files in the cache directory. Do
not delete this file, or else the cache directory will be emptied the next time the
build server is started.

To control the size of the cache directory, you can set two environment variables:

TC_CACHESIZELIMIT=n
TC_CACHEPRUNEMETHOD=value

Where:
* nis the maximum number of bytes to allow for the build server’s cache directory.

* value defines the order in which parts are pruned if the cache directory reaches
the value of TC_CACHESIZELIMIT. Valid values are the following:

Chapter 8. Starting and stopping the servers 103

SIZE Largest parts are pruned first.

DATE Least recently used parts are pruned first.

If you specify TC_CACHESIZELIMIT but not TC_CACHEPRUNEMETHOD, the
default pruning method is by size.

An MVS build server

104

User's Guide

To start an MVS build server, do the following to modify the RUNPGM JCL:

1. Add a job card.

2. Modify the STEPLIB DD statement to point to the data set that contains the load
module teamcbld.

3. Modify the TEAMCBLD DD statement to point to the data set that will contain all
your MVS build scripts.

4. Modify the EDCENV DD statement to point to the data set that contains the
environment variables for the fhbmenv.var file.

5. Modify the following statement:
//RUNPGM EXEC PGM=TEAMCBLD,PARM='-S @nnnn -K IBM-1047 [-U unit_name] [-T]'

Where the:

» -S parameter indicates the port address. The address itself is preceded by an
at sign (@). Ensure that the address matches the address specified in the
teamagnt command for the matching build agent (or the logical address maps
to the real address in your workstation TCP/IP hosts and services files).

« -K parameter indicates the code set that text data is converted to for Because
the MVS C compiler defaults to the code set IBM-1047, you need to specify
the IBM-1047 code set. When starting its matching build agent, you need to
specify the IBM-850 code set.

» -U parameter indicates the default unit type for dynamic data set allocations.
VIO is the default if this parameter is not specified.

» -T parameter turns trace on.
6. Submit the job.

The build cache data sets

As an MVS build server runs a build script, it creates a cache data set for each
unigue file extension type, associated with a TCEXT tag, that it encounters. When the
build completes successfully, the data sets created for the build are deleted, and
their contents are moved to the cache data sets.

Each cache data set is created using the attributes specified in the DD statement

associated with the TCEXT attribute. (See ETeamConnection syntax for MV/S build

“ for more information about the TCEXT attribute.) If attributes
are not specified, these are the defaults used for creating a cache data set:
DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
UNIT=VIO
SPACE=(CYL,(30,30,1000)

For example, when the build server reads a DD statement that contains a TCEXT=C
attribute, it allocates a partitioned data set for caching parts based on a file
extension of C. If a DD statement contains the attribute TCEXT=(H,HPP), it
allocates a partitioned data set for caching parts based on file extensions of H and

HPP. If, in a later build event, the build server encounters another DD statement
with the attribute TCEXT=C, it does not create a new cache data set. Instead, it
uses the one created previously.

These cache data sets are associated with the TEAMCBLD address space. They
are deleted only when the build server is stopped.

Fragmentation can occur in the cache data sets. Because TeamConnection does
not provide a compression tool to manage fragmentation in these data sets, we
recommend that you stop and then restart the build server when this situation
occurs.

Customizing the cache data set space attribute

The default space for cache data sets is always allocated using cylinders. The
primary and secondary space allocations in the space attribute are calculated from
the TC_CACHESIZELIMIT environment variable.

To specify the size of the cache directory, you can set two environment variables:
TC_CACHESIZELIMIT=n
TC_CACHEPRUNEMETHOD=value

Where:
* nis the maximum number of bytes to allow for the build server’s cache directory.

* value defines the order in which parts are pruned if the cache directory reaches
the value of TC_CACHESIZELIMIT. Valid values are the following:

SIZE Largest parts are pruned first.
DATE Least recently used parts are pruned first.

If you specify TC_CACHESIZELIMIT but not TC_CACHEPRUNEMETHOD, the
default pruning method is by size.

The number of cylinders allocated as primary and secondary is calculated using the
following formula:

secondary = primary = TC_CACHESIZELIMIT / 716400
This number is rounded up to the nearest whole number.

A minimum of 1 cylinder is allocated.

All cache data sets are allocated as partitioned data sets. The number of directory
blocks allocated are based on the following formula:

directory blocks = TC_CACHESIZELIMIT / 22000
This number is rounded up to the nearest whole number.

A minimum of 15 directory blocks are allocated.

Starting a build agent for an MVS build server

A build agent handles access to parts data on behalf of an MVS build server. Like
the family server, the build agent uses an ObjectStore database client.

Chapter 8. Starting and stopping the servers 105

106

User's Guide

There can be any number of build agents. Each is connected to one and only one
build server. TeamConnection provides build agents for the following platforms: AlX,
HP-UX, OS/2, and Windows NT.

There can be any number of build agents. As you start the build agents, you assign
them to build pools. The environment specified in the builder for a particular build
event determines which agents in the pool are available to it.

A pool is formed when you start the first build agent that specifies its name. There
is no limit to the number of agents that you assign to a build pool.

If you are responsible for starting the build agents, be sure to let others who will be
using them know the names of the pools and the kinds of machines assigned to
them.

To start an build agent, do one of the following:

* Double-click the TeamConnection Build Agent icon. On the pop-up window,
type the name of the startup file for the build agent you want to start. For a
sample startup file, see the file teamagnt.fil in the TeamConnection \bin

subdirectory. See LCLe.a.tmg_wad_staLtup_ﬁle_s_on_page_le for more information

about creating startup files.

To start the build agent without seeing the pop-up or to change the value for the
build pool, display the agent’'s Settings notebook. Type the appropriate values in
the Parameters field of the Program page. Next time you double-click on the
icon, the agent will start without asking for this information.

* From the command line, type the following and press Enter:

teamagnt -s socket_port -f familyname -p poolname -e environment
[-k local_codeset]

Specify the following attributes in the teamagnt command:

» socket portis the TCP/IP socket port. The socket port must match the socket
port specified in the teamcbld command used to start the corresponding build
server. The socket port value can have one of two formats:

— If you have added an alias name for the build socket in your hosts file, you
can use that value here. For example, assume your hosts file has the
following line:

9.12.987.65 tcserv.company.com tcfam bldsock

And your services file has the following line:
bldsock 7890/tcp # build agent

You can specify the socket port like this:
teamagnt -s bldsock -f tcfam -p pooll -e 0s2

— If you have not specified an alias name in the hosts file, you can specify
®hostname@address, where hostname is the name of the host on which the
build server to which it will connect is installed, and address is the port
address.

For example, you can specify the socket port like this:
teamagnt -s @bldprocl@7890 -f testfam -p pooll -e mvs
» familyname is the name of the TeamConnection family. If the agent is installed on

a different machine than the family, this is the fully qualified name:

hostname:dbpath\family _name.tcd, where

— hostname is the name of the machine where the family resides.

— dbpath is the drive and path for the family.
— family_name is the name of the TeamConnection family.

Note: You can also access the database remotely by issuing a mount command.
For example, assume the build agent is installed on a machine named
hag, the database is installed on a machine named teamc in the root
directory of the d: drive, and your family is named testfam. From hag,
issue the following mount command:

mount x: teamc:d:\

Also from hag, set the TC_DBPATH environment variable to x:\. When
you issue the following command from the hag machine, you will access
the family database testfam.tcd on the d: drive of the teamc machine:

teamagnt -f testfam -e 0s2 -p pooll -s bldsock
* poolname is the name of the build agent pool.

* environment specifies the environment that you are building for, such as OS/2 or
MVS. The value you specify here can be anything you like, but it must exactly
match the environment specified for a builder in order for the builder to use this
build agent. This value is case-sensitive.

* Jocal codeset is the code set for data stored in TeamConnection. When starting a
build agent that connects to an MVS build server, you need to specify the
IBM-850 code set for this parameter. Do not use the -k flag for Windows NT build
agents. Windows does not support code sets as implemented by
TeamConnection and the build agent is not enabled for translation.

This command starts a process that waits for work from the TeamConnection family
server, which in turn waits for work from TeamConnection clients.

Creating build startup files

You can create startup files for concurrently starting build servers with the family
server using the teamcd command. This is the preferred method for starting build
servers. When starting the build servers in this manner, you need to create a
startup file.

Information about the build servers is put in a startup file and the name of the
startup file is specified in one of two ways:

* In the teamcd command using the -p or -a parameters. See page for more
information about these parameters.

* Inthe TC_BUILD_PROCESSORS FILE or TC_BUILD_AGENTS_FILE
environment variables.

You can store the build startup files wherever you like, provided that you give the
full file path names for them in the -p or -a parameters, or in the
TC_BUILD_PROCESSORS_FILE or TC_BUILD_AGENTS_FILE environment
variables.

Startup file for build servers

Describe each build server on a separate line and specify the following:
-s socket_port [-c cache_location -k local_codeset -n]

where

Chapter 8. Starting and stopping the servers 107

 socket portis the TCP/IP socket port. See I'Starting build servers using
teamcbld” on page 102 for more about this parameter and its format.

= cache_location is the fully qualified name of the directory in which caching will

take place durlnq builds. For more information, see ECaching and the build

* Jocal _codeset is the code set that text data is converted to for the build.

» -n specifies to erase the contents of the cache directory before starting this build
server.

Lines beginning with # are considered comments. Blank lines are allowed. The
following is an example of a build server startup file:

-s 9001 -c g:\mycache -n

Startup file for build agents

Describe each build agent on a separate line and specify the following:

-s socket_port -e environment -p poolname [-k local codeset]

where

* socket_portis the TCP/IP socket port. The socket port must match the socket
port specified in the build server startup file used to start the corresponding build

server. See [Starting a build agent for an MVS build server” on page 108 for

more about this parameter and its format.

* poolname is the name of the build agent pool.

» environment specifies the environment that you are building for, such as OS/2 or
MVS. The value you specify here can be anything you like, but it must exactly
match the environment specified for a builder in order for the builder to use this
build agent. This value is case-sensitive.

» Jocal codeset is the code set for data stored in TeamConnection.

Lines beginning with # are considered comments. Blank lines are allowed. The
following is an example of a build agent startup file:

-s 9002 -e 0S2 -p pooll

Stopping the servers

A build server

108

User's Guide

To stop a build server, do one of the following:
» Close the window in which the build server is running.
* Press Ctrl+C when the build server window has focus.

» Close the window in which the family server was started if the build server was
started with the teamcd command.

An MVS build server

To stop an MVS build server, cancel the RUNPGM job that was used to start it.

Chapter 8. Starting and stopping the servers 109

110 uUser's Guide

Chapter 9. Working with build scripts and builders

A builder is an object that can transform one set of TeamConnection parts into
another by invoking tools such as compilers and linkers. For example, one builder
might transform a COBOL source file into an object file. Another might transform a
set of object files into an executable file. Builders use build scripts to invoke the
tools that actually transform TeamConnection parts.

Usually a build administrator creates build scripts and builders, but anyone with the
proper authority can do so. For more information about the required authority, see

This chapter tells how to create and maintain build scripts and builders. It assumes

that you have read EChapter 7_Basic build concepts” on page 93. The following

table directs you to the tasks to be done:

For more information about this task, Go to this

Creating a builder

Writing a build script

Testing a build script

Updating a builder

Putting a builder to work

SEEEEEE

Removing a builder from a part

Creating a builder

As with most other TeamConnection operations, there are two ways you can create
a builder: using the graphical user interface (GUI) or the command line interface.

To create a builder using the GUI:

1. From the Actions pull-down menu on the Tasks window, select
Builders =+ Create.

2. On the Create Builder window, type the requested information.

© Copyright IBM Corp. 1992, 1995, 1996, 1997 111

¥ Create Builder O
Builder | |

Release | |

Script | |

Environment |

g

[

Comparison operator |::

RC value | |

File type (@) Text ([iBinary (0 Mone

Source file | | | Select... |

Parameters | |

Timeout | |

0K | Apply [Cancel| wnport | Help |

Figure 46. Create Builder window

To create a builder using the command line:

From a command line, type the teamc builder -create command and press
Enter. The complete command syntax is the following:
teamc builder -create name -condition RC_expression

-environment name

-from script_filespec

-script name

-value RC_value -release name

-family name

[-text | -binary | -none]

[-parameters Parameters]

[-timeout number] [-become user_name]

[-verbose]

No matter which way you create a builder, you must specify a number of attributes
for it. Together with the contents of the build script and the tools you use (the
compilers, linkers, and so on), the following attributes define how a transformation
takes place.

Builder
The name of the builder must be unique within a release. It can be anything
you want; we recommend you establish and follow a meaningful naming
convention. An example of a builder name is c¢_set_2.

Release
This is the name of the release that contains the builder. Builders are
release-specific objects. They are not versioned within a release; therefore
you can have only one version of a builder at any time in a release.

To use the builder from a previous release, you can link to a part that uses
it in that release. This action copies the builder to the new release.
Otherwise, you must create the builder again in the new release.

Script, File type, and Source file
These fields work together to define the build script that the builder invokes
to accomplish the transformation. (The File type field on the GUI
corresponds to -text, -binary, and -none in the command. The Source file
field on the GUI corresponds to the -from attribute.)

112 user's Guide

* If the build script is simple enough to be expressed in one line, you can
specify it in the Script attribute when you create the builder, and specify
a file type of none. At minimum, the script must specify the name of the
transformation tool. For example, to invoke the C Set/2 compiler, you
might specify these values:

File type
none

Script icc

See MAiting a simple huild script” on page 116 for more information.

 If the build script is more complex, you must first create a separate file
containing it; see E\Writing an executahle file for a build script” od
M for more information about how to write it. Specify the fully
qualified path name of your file as the source file, and specify the file
type as text or binary. TeamConnection can also detect the file type and
store it in the proper format.

When the builder is created, this source file is stored as part of the
builder in the TeamConnection database; during a build, the build
processor creates and runs a local version of this file. Specify the name
you want for this local file in the Script field. For example, you might
specify these values:

File type
text

Script c_compile.cmd
Source file

c:\src\c_compile.cmd

When this builder is created, the contents of c:\src\c_compile.cmd are
stored in the builder. When this builder is invoked, TeamConnection
creates a file named ¢_compile.cmd, writes the build script into this file,
and then runs it.

 If the builder is being used to only collect a set of build objects (for
example, a VisualAge Generator collector part), specify these values:

File type
none

Script null

This prevents the build agent from extracting input and output parts to
send them to the build processor. See L izi j
Z for an example.

Environment
This is the name of the environment supported by the builder, such as
0S/2, Windows, AIX, HP-UX, or MVS. The value that you specify here can
be anything you like, but it must exactly match the environment value

specified in a corresponding build agent. (See EStarting build servers using
teamchld” on page 104 for more information.) Again, we recommend you

follow a naming convention for this attribute, using values such as os2 and
mvs.

Chapter 9. Working with build scripts and builders 113

Eigure 47 shows how the value for environment must match the
environment specified in a build agent in order for a build to take place:

teamagnt -e environment

teamc builder -environment Name
Figure 47. Matching environment values

Comparison operator and RC value
Together, these two attributes make up a Boolean expression that defines
the criteria used to decide whether a specific build event was successfully
accomplished, when evaluated against the value returned by the build
script. (The Comparison operator and RC value fields on the GUI
correspond to the -condition and -value attributes in the command.)

The values allowed for Comparison operator are as follows:

EQ or ==
Equals

LT or <
Less than

LE or <=
Less than or equals

GT or >
Greater than

GE or >=
Greater than or equals

NE or !=
Not equal to

RC value can be any positive integer. An example of a Boolean expression
formed from these two attributes is return_value LE 4, meaning that the
build event is considered a success if the build script returns a value less
than or equal to four.

Parameters
This is a string passed to the build script as its argument. If the string
includes blanks, enclose the string in double quotes. For example, for a
builder used for VisualAge C++ compiling, you might specify a parameter
string of "/Ss /Ge-". If the string includes a double quote, precede the
double quote with a backslash (\). If the string includes a dash (-), precede
the dash with a blank space, otherwise the string is interpreted as the start
of a TeamConnection action flag.

Timeout
This attribute specifies the number of minutes that a build server will wait
for an invoked build script to return before concluding an error has occurred
and stopping the build event. If this occurs, the build event fails and the
build agent will make itself available to process another build event.

114 users Guide

Writing a build script

When you create a builder, you must specify a build script. The build script actually
invokes the transformation tool and passes it parameters defined in the Parameters
attribute of the builder.

Passing parameters to a build script

There are three places where parameters can be specified that affect the outcome
of a build.

As attributes of a builder
Builder parameters are passed to the build script, after variable substitution
is performed. Variables are substituted based upon the following syntax:

$(variable_name)

To pass parameters to your build script, specify them in the Parameters
attribute of the builder. TeamConnection sets these variables before
invoking the build script.

In UNIX environments, you need to include an escape character before the
$: \$(variable name). The following is an example: \$ (TC_INPUT).

You can use the following TeamConnection environment variables:

TC_FAMILY
The TeamConnection family.

TC_RELEASE
The release of the parts that are being built.

TC_LOCATION
The current directory where the build script runs.

TC_INPUT
A list of the TeamConnection parts that are input to the object being
built.

TC_INPUTTYPE
Identifies each input type.

TC_OUTPUT
A list of the parts that are being built in this build event.

TC_OUTPUTTYPE
Identifies each output type. The default is file.

TC_WORKAREA
The name of the work area in which the build is being performed.

You can define other variables. These can be set when you start the build
by specifying a value for parameters in the part -build command (from the
command line or through the GUI). These variables are set in the
parameters string passed to the build script.

These variables are also used to set OS/2 environment variables before the
build script is invoked.

As attributes of a part in the build tree
Parameters that are unique to a particular part are specified on the part

Chapter 9. Working with build scripts and builders 115

-create and part -modify commands. Like the builder parameters, these
parameters allow variable substitution.

When parameters are specified for a part, these parameters are used in
place of the parameters specified for the builder. In other words, if both
builder and part parameters are specified, the part parameters take
precedence.

In addition, whenever parameters are specified for any part that is an output
of a build event, they apply to all the outputs of that build event. For
example, if a build event has two outputs, msg.exe and msg.map, then
changing the part parameters to "/Debug” for either of the two parts has the
same result. The next time the build event is processed, the "/Debug”
parameter is used when invoking the build script that produces both
msg.exe and msg.map.

You can also substitute the builder parameters into the file parameters by
using the variable $(BUILDERPARMS). For example, you might use the
following command:

teamc part -build myfile.c -parameters "/Ti+ $(BUILDERPARMS)" ...

At build time, the parameters specified in the builder for myfile.c are
substituted for $(BUILDERPARMS).

As parameters of the part -build command

93

The part -build command parameters are not used the same way as the
other two parameters. Instead, these parameters are used to set the values
of environment variables that can be used for substitution into either the
builder or part parameters. They are also set in the environment so they
can be retrieved by the build script. In other words, they set up the
environment used by the builder.

For example, if you issue a part -build command for msg.exe, you can
specify -parameters DEBUG=YES and, inside of both the compile and link
build scripts, retrieve the value of this variable from the environment, setting
compiler or linker flags accordingly.

The Windows 95 build processor does not allow you to pass other variables
to the build script.

Writing a simple build script

116

User's Guide

This kind of build script is written into the Script attribute of the builder. When you
create or modify the builder, you specify in this attribute the name of the
transformation tool to be invoked.

For example, suppose you want to create a builder that compiles a C source file
into a .exe file using IBM'’s VisualAge C++ compiler. You specify the following
attributes for the builder:

Build script

icc

Parameters
"$(TC_INPUT) /Fe$(TC_OUTPUT)"

You can create this builder using the following command:

teamc builder -create c_builder -script icc -parameters "$(TC_INPUT)
/Fe$(TC_OUTPUT)"

If you use this builder to create hello.exe from hello.c, the command actually issued
by the build processor is the following:

"icc hello.c /fehello.exe"

Writing an executable file for a build script

Suppose you need to build a C application and you want to specify at build time
whether to use debug information. To do this, you define in the builder parameters a
variable called debug and set the variable when you start the build. In this case,
you need a build script that is a separate executable file to pass the debug
parameter after the variable substitution.

For a build script of this form, you first write a program or command file; this file is
stored in the TeamConnection database when you create the builder. When a build
is performed, this build script file is extracted from the database and run. It
interprets the parameters passed to it and then invokes the actual transformation
tool, such as the compiler.

Our earlier example describes a builder that compiles a C source file into a .obj file
using IBM's VisualAge C++ compiler. Using this builder, you can specify at build
time whether to use debug information. Here is the complete build script for such a
builder, written in IBM’'s REXX language (it could just as easily have been written in
C or COBOL).

/* sample C Build Script using debug flag =/
parse arg parms

environ = 'OS2ENVIRONMENT'
input = VALUE('TC_INPUT',,environ)
output = VALUE('TC_OUTPUT',,environ)
debug = VALUE('DEBUG',,environ)
if debug = 'YES' then
do
parms = parms || '/Ti+'
end

icc parms '/Fo'||output input

exit result

93

o

Put your text here.

Chapter 9. Working with build scripts and builders 117

Windows NT and 95 build scripts must be able to return a value for a return code.
Because *.bat command files provide little support for programming logic and
cannot return a value, use a compiled executable for your build script.
TeamConnection provides two sample Windows build scripts and their source files.
These samples, fhbwcomp.exe and fhbwlink.exe, are C programs for the Microsoft
Visual C++ compiler and linker, respectively. Because these samples are C
programs, they can also be used with the OS/2 build processor with only slight
modifications.

You can create the builder that invokes this build script using the following
command:

teamc builder -create c_builder2 -script c_compile.cmd -parameters "/c"
-from d:\teamc\c_compile.cmd

Where d:\teamc\c_compile.cmd is the file to be stored in the TeamConnection
database and c¢_compile.cmd is the name of the local file that the build processor
creates and runs during a build.

To build hello.obj using the debug option, you use the following command:
teamc part -build hello.obj -parameters "debug=YES"

The command issued by the build server is the following:
c_compile.cmd /c

In turn, the build script inspects the contents of the parameters it received in its
argument list and from the environment, and it forms this command:

"icc /c /Ti+ /fohello.obj hello.c"

Testing a build script

The easiest way to test a build script is to write a simple driver program that sets
the environment variables that the build script will expect and then runs the script
against local files.

For example, to test the example build script in [Writing an executable file for a
build script” on page 117, write a program that sets the TC_INPUT, TC_OUTPUT,
and DEBUG parameters, and then runs the command file against a local copy of

hello.c. If the test is successful, the script correctly builds hello.obj in the current
directory, and DEBUG s interpreted correctly.

Modifying the contents of a build script

118

User's Guide

Sometimes you need to modify the contents of a build script. Remember that a
build script is stored as part of the builder itself. Because builders are not
versioned, you do not check them out as you would most TeamConnection parts.
Instead, follow these steps:

1. Extract the builder (in which the build script is stored) from the TeamConnection
database.

2. Make your changes at your workstation.

3. Store the contents back into the TeamConnection database by using the builder
-modify command.

For example, to modify the build script in [\Writing an executable file for a build
Bcript” on page 117, you first issue the following command:

teamc builder -extract c_builder2 -to d:\build\c_builder2

Then, you use an editor to update d:\build\c_builder2. To move the updated build
script back into TeamConnection, you issue the following command:

teamc builder -modify c_builder2 -from d:\build\c_builder2

The builder is an implied dependency for any part that uses it. Therefore, the next
time you build the application that uses the modified builder, all the parts that use it
get rebuilt.

Putting a builder to work

For an application to use a builder, the builder must be attached to the
TeamConnection parts that it will build.

For an existing part, do one of the following:

e GUI: From the Actions menu of the TeamConnection Tasks Window, select
Parts » Modify » Properties . On the Modify Part Properties window, type the
name of the builder in the Builder field.

Modify Part Properties g

Path names | |

Type | |
Release | |¢]
~Work Area Related
Work ares |

Builder | B

Parameters | |

11

Parser | |

Temporary file [JJ¥Yes (JHo (e Ho change

File permissions | |

LK | Cancel | | Import | | Help |

Figure 48. Modify Part Properties window

* From a command line, type the following and press Enter.

teamc part -modify name -Builder name

where the part name is the name of the output file to be created by this builder
and the builder name is the name of the builder itself.

The complete syntax for this command is described in the TeamConnection
Commands Reference.

You can also attach a builder to an output file when the part is created.

Chapter 9. Working with build scripts and builders 119

After you attach a builder to a part, the builder is ready for action. When the part is
built, the builder invokes the build script, which in turn invokes a tool to transform
the inputs of the part into the output.

For more information about attaching builders to the build tree, refer to m

Removing a builder from a part

If you no longer want to use a builder for a part, do one of the following:

* From the GUI, select Parts » Modify » Properties from the Actions menu of
the TeamConnection Tasks window. On the Modify Part Properties window, type
null in the Builder field.

.4 todify Part Properties g
Path names | |
Type | |
Release | |‘=’|
-Work Area Related
Work area | H
Builder [nut] ||
Parameters | |
Parser | |\='|
Temporary file (JJ¥es (JHo (@ HNo change
File permissi0n5| |
5 | Cancel | | Import |

Figure 49. Modify Part Properties window

* From a command line, type the following:

teamc part -modify name -builder null -release name -family name

Working with VisualAge C ++ and Templates

120

User's Guide

When using VisualAge C++ and templates, template-include objects are saved in a
subdirectory of the current directory called TEMPINC, so that subsequent builds can
use them. When you start a build from TeamConnection, you need to specify the
[Ft(dir) parameter with your builder or use PRAGMA statements to update the
template-include objects for subsequent builds. This parameter suppresses
resolution of files and imbeds them within the object file.

You can specify the /Ft(dir) parameter with a builder as follows:
teamc builder -create c_builder -script icc -parameters "/FtE:\template"

Chapter 10. Working with MVS build scripts and builders

A builder is an object that can transform one set of TeamConnection parts into
another by invoking tools such as compilers and linkers. For example, one builder
might transform a COBOL source file into an object file. Another might transform a
set of object files into an executable file. Builders use build scripts to invoke the
tools that actually transform TeamConnection parts.

For MVS, a build script is a text file that contains JCL statements with additional
TeamConnection syntax and substitutable variables. TeamConnection parses these
statements and does the necessary allocations and program calls for a build.

Usually a build administrator creates build scripts and builders, but anyone with the
proper authority can do so. For more information about the required authority, see

I . . . el

This chapter tells how to create MVS build scripts and builders. It assumes that you

have read lChapter 7_Basic build cancepts” on page 93. The following table directs

you to the tasks to be done. In some cases, if the instructions are the same for

0S/2 and MVS, the table refers you to topics in LChapter 9 Warking with build

kcupls.a.nd.b.uﬂdeslan.page.:l.’l.’ll
For more information about this task, Go to this
page.

Creating a builder for MVS builds k21
Writing an MVS build script k24
Testing a build script ka4
Updating a builder b4
Putting a builder to work bkzd
Removing a builder from a part k2d

Creating a builder for MVS builds

As with most other TeamConnection operations, there are two ways you can create
a builder: using the graphical user interface (GUI) or the command line interface.

To create a builder using the GUI:

1. From the Actions pull-down menu on the Tasks window, select
Builders =+ Create.

2. On the Create Builders window, type the requested information.

© Copyright IBM Corp. 1992, 1995, 1996, 1997 121

122

User's Guide

¥ Create Builder O

Builder |

Release | |‘=’

Script |

[

Environment |

g

Comparison operator |::

RC value | |

File type (@) Text ([iBinary (0 Mone

Source file | ||Selectm|

Parameters | |

Timeout | |
K L Apply |Cancel| import | HeU)l

Figure 50. Create Builder window

To create a builder using the command line:

From an OS/2 command line, type the builder -create command and press
Enter. The complete command syntax is the following:

teamc builder -create name
-environment name
-from script_filespec
-script name
-value RC_value -release name
-family nName
[-text | -binary | -none]
[-parameters parameters]
[-timeout number] [-become user_name]
[-verbose]

-condition RC_expression

No matter which way you create a builder, you must specify a number of attributes
for it. Together with the contents of the build script and the tools you use (the
compilers, linkers, and so on), the following attributes define how a transformation

takes place.
Builder

The name of the builder must be unique within a release. It can be anything
you want; we recommend you establish and follow a meaningful naming
convention. An example of a builder name is c370.

Release

This is the name of the release that contains the builder. Builders are

release-specific objects. They are not versioned

within a release; therefore

you can have only one version of a builder at any time in a release.

To use the builder from a previous release, you can link to a part that uses

it in the previous release. This action copies the
Otherwise, you must create it again in the new r

Script, File type, and Source file
These fields work together to define the build sc
to accomplish the transformation. (The File type
corresponds to -text, -binary, and -none in the

builder to the new release.
elease.

ript that the builder invokes
field on the GUI
command. The Source file

field on the GUI corresponds to the -from attribute in the command.)

You must first create a separate OS/2 file containing the build script. All
MVS build scripts must be written using JCL statements and the

TeamConnection syntax described in EWriting an MVS build script” onl

. You can store the build script one of two ways:

* To store the build script as part of the builder: specify the fully
qualified path name of your build script file as the source file, and specify
the file type as text. When the builder is created, this source file is
stored as part of it in the TeamConnection database.

During a build, the build processor creates and runs a local version of
this file. Specify the name you want for this local file in the Script field.
For example, you might specify these values:

File type
text

Script fhbc

Source file
C:\build\script\fhbc.jcl

When this builder is created, the contents of C:\build\script\fhbc.jcl are
stored in the builder. When this builder is invoked, TeamConnection
creates a file named FHBC in the data set referenced by the
TEAMPROC ddname, writes the build script into this file, and then runs
it.

* To store the build script on MVS: create the build script file and place
it in the data set allocated to the TEAMPROC ddname. When you do
this, specify the following attributes:

File type
none

Script link

Do not specify a source file.

 If the builder is being used to only collect a set of build objects (for
example, a VisualAge Generator collector part), specify these values:

File type
none

Script null

See LSynchronizing the build of unrelated parts” on page 154 for an

example.

Environment
This is the name of the environment supported by the builder, such as
MVS. The value that you specify here can be anything you like, but it must
exactly match the environment value specified in a corresponding build
agent. (See ['Starting build servers using teamchld” on page 102 for more
information.) Again, we recommend you follow a naming convention for this
attribute, using values such as os2 and mvs.

Eigure 51 an page 124 shows how the value for environment must match
the environment specified in a build agent and in the part -build command
in order for a build to take place:

Chapter 10. Working with MVS build scripts and builders 123

124

User's Guide

teamagnt -e environment

teamc builder ' -environment Name
Figure 51. Matching environment values

Comparison operator and RC value

Together, these two attributes make up a Boolean expression that defines
the criteria used to decide whether a specific build event was successfully
accomplished, when evaluated against the value returned by the build
script. (The Comparison operator and RC value fields on the GUI
correspond to the -condition and -value attributes in the command.)

The values allowed for Comparison operator are as follows:

EQ or ==
Equals

LT or <
Less than

LE or <=
Less than or equals

GT or >
Greater than

GE or >=
Greater than or equals

NE or 1=
Not equal to

RC value can be any positive integer. An example of a Boolean expression
formed from these two attributes is return_value LE 4, meaning that the
build event is considered a success if the build script returns a value less
than or equal to four.

Parameters

This is a string passed to the build script as its argument. For example, for
a builder used for linking load modules, you might specify a parameter
string of Tist,test.

Timeout

This attribute specifies the number of minutes that a build agent will wait for
an invoked build script to return before concluding an error has occurred
and stopping the build event. If this occurs, the build event is queued again
to be processed by the next available build agent.

Because MVS builds are processed in batch mode but the build is
submitted to the build agent in real time, consider writing a user exit to
check the time of day before allowing a build request to be submitted.
Another approach to handling the timing of MVS builds is to start the MVS
build agent only at night and ensure that the MVS builders do not have
short timeout values.

Note: The ddname TEAMPROC must be defined to a shared data set when the

MVS build processor is started; see lAn MVS build server” on page 104 for

more information. This data set is used as a cache for the build scripts of
MVS builders.

Writing an MVS build script

The best starting point for an MVS build script is an existing JCL fragment that is
used for transforming inputs into outputs. For example, suppose you want to create
a builder that compiles a C source file into an OBJECT file using IBM’s C/370
compiler. You probably already have JCL that can be submitted as a batch job that
does this.

When you create a build script for the MVS environment, you specify JCL
statements with additional TeamConnection syntax. This build script is parsed by
the build processor. From the parsed results, TeamConnection allocates the
specified ddnames and data sets; it then determines and executes the programs
dynamically. The MVS build processor uses the specialized TeamConnection syntax
in the JCL to determine where to store the parts involved in an MVS build.

All statements in the MVS build script except for comments and inline data stream
must start with two forward slashes (//).

Before you start writing your build script, refer to the manuals for the compiler,
linker, or other transformation program to determine the data set requirements. Pay
particular attention to the DCB attributes for LRECL, BLKSIZE, and RECFM.

Sample build scripts shipped with TeamConnection can be installed on MVS. Page
&3 lists the sample build scripts. For instructions on installing these samples, refer
to the Administrator’s Guide

If you are debugging a build script, these manuals are also the first place to look for
problems.

For more information about JCL syntax, refer to the JCL User’s Guide and JCL
Reference for your version of MVS. (These are listed in the bibliography at the back
of this book.)

The following sample MVS build scripts are shipped with TeamConnection:

fhbmasm.jcl
Calls the MVS assembler

fhbcobm.jcl
Calls the MVS COBOL compiler

fhbmpli.jcl
Calls the PL/1 MVS compiler

File name conversions for MVS

TeamConnection file names are modified by the MVS build server according to the
following rules:

* The directory path of a file name is not used. All characters of a file name up to
and including the rightmost slash (/ or \) are thrown away.

Chapter 10. Working with MVS build scripts and builders 125

* Lowercase characters are converted to uppercase characters.

* The file extensions are stripped from the right, up to and including the leftmost
period. The extension, minus the period, is used by the MVS build tool to direct
the file to particular data sets according to user-specified syntax in the MVS build
scripts.

* The remaining name is truncated from the left, to a maximum of 8 characters.

* Names must contain characters that are valid in MVS. MVS allows the following
characters:

0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ$@#

However, the name must begin with an alphabetic character.
» Underscore characters () in a base name are converted to at signs (@).

The following are examples of how a TeamConnection name is converted:

* A TeamConnection file name of src\build\fhbldobj.C is converted to FHBLDOBJ
on MVS.

¢ A TeamConnection file name of src/build/fhbtruncate.c is converted to
FHBTRUNC on MVS.

In both of these examples, the .C or .c is split away. The MVS build processor uses
the resulting C extension to resolve and possibly allocate the MVS data sets
needed for the build process.

A TeamConnection file name of src\build\fhbtest.c.old is converted to FHBTEST, and
c.old becomes the extension.

Passing parameters to an MVS build script

126

User's Guide

To pass parameters to your build script, specify them in the Parameters attribute of
the builder. These are passed to MVS through the combination of the PARM
keyword parameter on an EXEC card and the & TCPARM variable.

Note: Take extra care to use no single or double quotes in the Parameters
attribute of the MVS builder definition. This rule follows standard JCL syntax
for parameter substitution in the PARM keyword parameter of an EXEC
statement.

You can use the &TCPARM variable in your MVS build scripts. This variable is
substituted with any parameters that were specified using the -parameter attribute
of the builder command or the Parameters field on the Create Builder window
when the builder was created.

You can also use the following TeamConnection variables in writing MVS build
scripts:

&TCINPUT
This variable is used for in-stream data. For each build input, the line where
&TCINPUT appears is duplicated and the variable & TCINPUT substituted
with the input name.

&TCOUTPUT
This variable is used for in-stream data. For each build output, the line
where &TCOUTPUT appears is duplicated and the variable &TCOUTPUT
substituted with the output name.

&TCWKAREA
The name of the work area in which the build is being performed.

&TCRELEAS
The name of the release in which the build is being performed.

Note: The &TCINPUT and &TCOUTPUT substitutable variables have limited scope
in the MVS build scripts and should be used only within the in-stream data.

You can define other variables. You can set them by specifying a value for
Parameters when you start a build. These variables are set in the parameters
string passed to the build script.

Further, these variables can be used for variable substitution within MVS build
scripts. Variable substitution works similarly to JCL variable substitution.

TeamConnection syntax for MVS build scripts

TeamConnection has extended the existing JCL syntax. The extended syntax tells
the TeamConnection build processor where to put the inputs, where to get the
outputs, and where to get messages from the translators after an MVS build.

To direct inputs, outputs, and messages, add TCEXT=xxx to the data set attributes
defined to a ddname, where xxx is one of the following:

* The base name extension from the TeamConnection part—for example, TCEXT=H,
where H is the extension from A.H.

* One or more base name extensions from TeamConnection parts, surrounded by
parentheses—for example, TCEXT=(H,HPP), where H is an extension from A.H or
HPP is an extension from A.HPP.

» The string TCOUT, which declares that the contents of the data set assigned to the
ddname will be sent back to TeamConnection. Users can view this information in
one of these ways:

— On an 0OS/2 command line, typing teamc part name -viewmsg and pressing
Enter

— Selecting Part » View » View build message from the Actions pull-down
menu on the Tasks window
When you add the TCEXT attribute for a ddname specification, you must also
specify other attributes to allocate the data set through dynamic allocations:
* SPACE
* UNIT
* DCB, which includes the LRECL, BLKSIZE, and RECFM attributes

The UNIT attribute defaults to VIO unless the -U parameter is specified when the
MVS build processor is started.

For translation messages, you can allocate a data set to the ddname TC$LIST and
specify the attributes yourself. Otherwise, the build processor allocates this data set
with the following attributes by default:

//TC$LIST DD DCB=(RECFM=VB,LRECL=255,BLKSIZE=32640),
// SPACE=(CYL,(2,1)),DISP=(NEW,DELETE),UNIT=VIO

Chapter 10. Working with MVS build scripts and builders 127

Supported JCL syntax

The TeamConnection MVS build processor supports only a subset of the available
JCL syntax.

The following are not supported:
* A JOBSTEP statement
e DISP=(..,PASS)...

JCL procedures can be used on an EXEC statement. However, you must verify that
any procedure called by the build script uses syntax that TeamConnection supports.

The following list indicates the positional and keyword parameters that are
supported. You can verify the syntax in the JCL Reference.

EXEC statement

//1abel EXEC positional_parameter,keyword parameter
The following parameters are supported.

Positional parameters:

* PGM=program_name, where program_name is an executable load module

* PROC=procedure_name, where procedure _name is an existing JCL procedure
» procedure_name, where procedure_name is an existing JCL procedure

Keyword parameters:

* PARM='information', where information is the parameter string passed to the
load module.

* COND=(code,operator [,stepname])
— code is the value to test against the return code from a previous step

— operator is the comparison to be made between the value for code and the
return code

— Stepname is the step issuing the return code

All other keyword parameters are ignored and not used.

DD STATEMENT
//1abel DD keyword parameter

Positional parameters

The only supported positional parameter is [*], which begins an in-stream data set
containing no JCL.

Keyword parameters

The following keywords are supported.
* DSN=data_set_name or DSNAME=data_set_name

e DISP=status or DISP=([status] [,normal-termination-disp]
[,abnormal-termination-disp])

— Valid values for status are NEW, OLD, SHR, or MOD.

128 user's Guide

— Valid values for normal_termination_disp or abnormal _termination_disp are
DELETE, KEEP, CATLG or UNCATLG.

UNIT=unit_type, where unit_type is any value allowed in JCL. The default is VIO
unless a different default is set when the MVS build processor is started.

SPACE=(allocation_type, (primary[, secondary] [,directory])[,RLSE]
[,CONTIG])

— Valid values for allocation_type are TRK, CYL, or the block size.

— primary is the primary number of the allocation type.

— secondary is the secondary number of the allocation type.

— directory is the number of directory blocks for a partitioned data set.
DCB=(LRECL=record_Tength,BLKSIZE=block size,RECFM=record format)
Valid values for record_format are F, FB, V, VB, or U).
DSORG=data_set_organization

Valid values for organization are the following:

— PO for a partitioned data set

— PS for a sequential data set

DDNAME=1abel, where label is the later ddname label reference. This parameter is
supported only for simple cases.

SYSOUT=class
This will always be allocated as a DUMMY DSN.

All other keyword parameters are ignored and not used.

Example of a build script fo r a C compile

The following JCL can be submitted as a batch job to do the following:

Compile the source file member in the data set WELLSK.TEAMC.C
Produce an object file member in the data set WELLSK.TEAMC.OBJ

Produce a listing of the source file in the file member in the data set
WELLSK. TEAMC.LISTING

List the compiler messages in the file member in the data set
WELLSK.TEAMC.ERROR

Chapter 10. Working with MVS build scripts and builders 129

//COMPILE EXEC PGM=EDCCOMP,
// PARM='L0,SSCOMM,NOSEQ,NOMAR,LIS,FL(I),SO,DECK,TEST',

// REGION=1536K

//STEPLIB DD DSN=SYS1.EDC.SEDCCOMP,DISP=SHR
// DD DSN=SYS1.EDC.SEDCLINK,DISP=SHR
// DD DSN=SYS1.PLI.SIBMLINK,DISP=SHR

//SYSMSGS DD DSN=SYS1.EDC.SEDCDMSG(EDCMSGE) ,DISP=SHR

//SYSIN DD DSN=WELLSK.TEAMC.C(MEMBER) ,DISP=SHR

//USERLIB DD DSN=WELLSK.TEAMC.H,DISP=SHR

//SYSLIB DD DSN=SYS1.EDC.SEDCHDRS,DISP=SHR

//SYSPUNCH DD DSN=WELLSK.TEAMC.O0BJ (MEMBER) ,DISP=SHR

//SYSLIN DD SYSOUT=+

//SYSPRINT DD DSN=WELLSK.TEAMC.ERROR (MEMBER) ,DISP=SHR

//SYSCPRT DD DSN=WELLSK.TEAMC.LISTING(MEMBER),DISP=SHR

//SYSUT1 DD UNIT=VIO,DISP=(NEW,DELETE),

/] SPACE=(32000, (30,30)),DCB=(RECFM=FB, LRECL=80,BLKSIZE=3200)
//SYSUT4 DD UNIT=VIO,DISP=(NEW,DELETE),

/] SPACE=(32000, (30,30)),DCB=(RECFM=FB, LRECL=80,BLKSIZE=3200)
//SYSUTS DD UNIT=VIO,DISP=(NEW,DELETE),

// SPACE=(32000, (30,30)),DCB=(RECFM=FB, LRECL=3200,BLKSIZE=12800)
//SYSUT6 DD UNIT=VIO,DISP=(NEW,DELETE),

// SPACE=(32000, (30,30)),DCB=(RECFM=FB, LRECL=3200,BLKSIZE=12800)
//SYSUT7 DD UNIT=VIO,DISP=(NEW,DELETE),

// SPACE=(32000, (30,30)),DCB=(RECFM=FB, LRECL=3200,BLKSIZE=12800)
//SYSUT8 DD UNIT=VIO,DISP=(NEW,DELETE),

// SPACE=(32000, (30,30)),DCB=(RECFM=FB, LRECL=3200,BLKSIZE=12800)
//SYSUT9 DD UNIT=VIO,DISP=(NEW,DELETE),

// SPACE=(32000, (30,30)),DCB=(RECFM=VB, LRECL=137,BLKSIZE=882)
//SYSUT10 DD SYSOUT=+

//

Figure 52. A JCL fragment for an MVS compile

The first step in converting the JCL fragment is to recognize the intent for each of
the data sets and ddnames. For this C/370 compiler example, the SYSIN ddname
needs to be associated with the source file, the SYSPUNCH ddname needs to be
associated with the object file, and so on.

In each of these cases, the build script must tell the TeamConnection build
processor where to put or pick up the parts before and after the execution of the
specified program (PGM=EDCCOMP).

Assume that your source files in TeamConnection have the extension .c, your object
files have .obj, and your include files .h or .hpp. You allocate a data set to the
SYSIN ddname to contain a source file with a .c extension. You specify the DCB,
UNIT, DISP, and SPACE attributes to dynamically create this data set every time
this build script is invoked. Notice that the attribute SPACE=(TRK,(10,5)) indicates a
sequential data set organization.

You specify the output messages that will be returned to TeamConnection by using
the TCOUT attribute. This attribute tells the MVS build processor to return the
information in the data set associated with the TCEXT=TCOUT attribute.

Note: The STEPLIB is renamed by the MVS build processor to STEPLIBB for data

set lookup of the program specified by the PGM parameter on an EXEC
statement.

130 users Guide

The following MVS build script is the result of converting the JCL fragment by
adding the TeamConnection MVS JCL syntax.

//COMPILE EXEC PGM=EDCCOMP,
// PARM='10,SSCOMM,NOSEQ,NOMAR,LIS,FL(I),S0,DECK,&TCPARM",

// REGION=1536K

//STEPLIB DD DSN=SYS1.EDC.SEDCCOMP,DISP=SHR
// DD DSN=SYS1.EDC.SEDCLINK,DISP=SHR
// DD DSN=SYS1.PLI.SIBMLINK,DISP=SHR

//SYSMSGS DD DSN=SYS1.EDC.SEDCDMSG(EDCMSGE) ,DISP=SHR
//SYSIN DD TCEXT=(C,CPP),DISP=(NEW,DELETE),

/1l UNIT=SYSDA,SPACE=(TRK, (10,5)),

/! DCB=(RECFM=VB, LRECL=150,BLKSIZE=3200)
//USERLIB DD TCEXT=(H,HPP),DISP=(NEW,DELETE),

/] UNIT=VIO,SPACE=(TRK, (5,10,10)),

/1l DCB=(RECFM=VB, LRECL=50,BLKSIZE=3200)

//SYSLIB DD DSN=SYS1.EDC.SEDCHDRS,DISP=SHR

//SYSPUNCH DD TCEXT=0BJ,DISP=(NEW,DELETE),

// UNIT=VIO,SPACE=(TRK, (10,5)),

/] DCB=(RECFM=FB, LRECL=80,BLKSIZE=3200)

//SYSLIN DD SYSOUT=+

//SYSPRINT DD TCEXT=TCOUT,DISP=(NEW,DELETE),

// SPACE=(32000, (30,30)),UNIT=VIO,

// DCB=(RECFM=VB,LRECL=137,BLKSIZE=882)

//SYSCPRT DD TCEXT=TCOUT,DISP=(NEW,DELETE),

// SPACE=(32000, (30,30)),UNIT=VIO,

// DCB=(RECFM=VB,LRECL=137,BLKSIZE=882)

//SYSUT1 DD UNIT=VIO,DISP=(NEW,DELETE),

// SPACE=(32000, (30,30)),DCB=(RECFM=FB, LRECL=80,BLKSIZE=3200)
//SYSUT4 DD UNIT=VIO,DISP=(NEW,DELETE),

// SPACE=(32000, (30,30)),DCB=(RECFM=FB, LRECL=80,BLKSIZE=3200)
//SYSUT5 DD UNIT=VIO,DISP=(NEW,DELETE),

// SPACE=(32000, (30,30)),DCB=(RECFM=FB, LRECL=3200,BLKSIZE=12800)
//SYSUT6 DD UNIT=VIO,DISP=(NEW,DELETE),

// SPACE=(32000, (30,30)),DCB=(RECFM=FB, LRECL=3200,BLKSIZE=12800)
//SYSUT7 DD UNIT=VIO,DISP=(NEW,DELETE),

// SPACE=(32000, (30,30)),DCB=(RECFM=FB, LRECL=3200,BLKSIZE=12800)
//SYSUT8 DD UNIT=VIO,DISP=(NEW,DELETE),

// SPACE=(32000, (30,30)),DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT9 DD UNIT=VIO,DISP=(NEW,DELETE),

// SPACE=(32000, (30,30)),DCB=(RECFM=VB,LRECL=137,BLKSIZE=882)
//SYSUT10 DD SYSOUT=+*

!/

Figure 53. A JCL fragment converted to a build script
Example of a build script for a COBOL compile

TeamConnection provides a sample build script program for compiling MVS COBOL
programs. This sample is called fhbcobm.jcl. It invokes a JCL procedure called
IGYWC, which needs to be in the system PROCLIB concatenation or in the data
set identified by the TEAMPROC DD statement in the MVS build processor job. You
may need to adjust the default parameters for the system. The following JCL should
work with any IBM COBOL/II type of compiler such as the IBM COBOL/Il compiler
IGYCRCTL:

//* PROGRAM: cobolcmp.jcl
//* IBM COBOL for MVS

//* Compile Only

/1*

Chapter 10. Working with MVS build scripts and builders 131

//COBOLCMP EXEC PGM=IGYCRCTL,PARM="'&TCPARM'
/1%

//* INPUT FILES WITH EXTENSION CBL

/1%

//SYSIN DD TCEXT=CBL,DISP=(NEW,DELETE),
// SPACE=(32000, (30,10)),UNIT=SYSDA,

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=6160)
/1%

//* COPY FILES WITH EXTENSION CPY

/1*

//SYSLIB DD TCEXT=CPY,DISP=(NEW,KEEP),
// SPACE=(32000, (30,30,30)),UNIT=SYSDA,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=6160)
/1%

//SYSPRINT DD TCEXT=TCOUT,DISP=(NEW,DELETE),
// SPACE=(32000,(30,30)),UNIT=SYSDA,

// DCB=(RECFM=FBA,LRECL=133,BLKSIZE=3990)
//SYSLIN DD TCEXT=0BJ,UNIT=SYSDA,

// DISP=(NEW,DELETE),SPACE=(32000, (30,10)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
/1%

//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT4 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT5 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT6 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUTZ DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//

Example of a build script for a link

132

User's Guide

Because MVS load modules are not easily transferable, TeamConnection provides
a sample build script program that reads linkage editor SYSLIN control statements.
This script produces a single file that can be returned from MVS and loaded into
TeamConnection. You can later extract the file and transport it to MVS, where it can
be link edited to produce an executable load module.

The next example shows this sample build script, named fhbtcInk.jcl, which is
shipped with the TeamConnection client.

You can use either of the following for an INCLUDE control statement for the
FHBTCLNK program:

* INCLUDE DDNAME (MEMBER)
* INCLUDE DDNAME

This syntax is a subset of the linkage editor INCLUDE card.

If the card is an INCLUDE ddname(MEMBER) control statement, the object code is
copied into a sequential data set associated with the SYSMOD ddname. Otherwise,
the control card is embedded in the data set associated with the SYSMOD ddname.
This data set can be returned as the output from this build script.

//FHBTCLNK EXEC PGM=FHBTCLNK,

// PARM='SIZE=(768K,192K),LIST,MAP,AMODE (31),RMODE(24),LET,XREF"
//STEPLIB DD DSN=userid.teamc.LOADLIB,DISP=SHR

//SYSMOD DD TCEXT=LOAD,DISP=(NEW,DELETE),

// SPACE=(32000, (30,10)),UNIT=VIO,

// DCB=(RECFM=U,LRE10CL=80,BLKSIZE=3200)

//0BJ DD TCEXT=(0BJ,PRE),DISP=(NEW,DELETE),

// UNIT=VIO,SPACE=(32000,(30,10,10)),

// DCB=(RECFM=FB, LRECL=80,BLKSIZE=3200)

//SYSPRINT DD TCEXT=TCOUT,DISP=(NEW,DELETE),
// UNIT=VIO,SPACE=(TRK, (30,10)),
// DCB=(RECFM=FB,LRECL=121,BLKSIZE=1210)
//SYSLIN DD =

INCLUDE OBJ(&TCINPUT)

ENTRY CEESTART
/1

TCEXT attributes have been added to the following DD statements:

Data set
Purpose

SYSMOD
Return the output to check in to TeamConnection

OBJ Receive the object files transported to MVS from TeamConnection

SYSPRINT
Return any FHBTCLNK messages to TeamConnection

In the SYSLIN data stream, the statement INCLUDE OBJ (&TCINPUT) will be duplicated
for all of the inputs to this build. The &TCINPUT variable will be replaced with the
base name of the input without the extension.

To use the output of this build script as an MVS executable, do the following:
1. Extract the output from TeamConnection.

2. Transfer the output as a binary file from your workstation to MVS (for example,
using FTP).
3. Link edit this output into a load module. Possible SYSLIN control statements for
the link step include the following:
//SYSLIN DD *
INCLUDE OBJECT(OUTPUT)

NAME module(R)
//

The output specified in INCLUDE OBJECT (OUTPUT) contains embedded control
statements specified from the build script FHBTCLNK. The linkage editor
recognizes these embedded statements and produces an executable load
module from the output file. The NAME control statement cannot be embedded
in the output data set.

Chapter 10. Working with MVS build scripts and builders 133

134 users Guide

Chapter 11. Working with parsers

This chapter describes how to create a parser. It assumes that you have read

Consider the task of defining and maintaining a build tree. One of the more
time-consuming, and error-prone, portions of this task is defining the dependencies
that one TeamConnection part has on others.

For example, if hello.c includes hello.h, you need to define hello.h as a dependency
of hello.c in the build tree. That sounds simple enough, but imagine a real
application in which there are hundreds of dependencies and the dependencies
have dependencies. Defining such a tree becomes very difficult; maintaining it, even
more so.

To solve this problem and automate some of the work of defining and maintaining a
build tree, you can instead use a parser object. The task of a parser is to inspect
source code to determine dependencies. In the previous example, a parser can
inspect hello.c, recognize that it has a dependency on hello.h, and create that
dependency in the TeamConnection build tree.

Because parsers are language-dependent, you probably need a different parser for
each language you use in a particular release. For example, you might have both a
COBOL parser and a C parser in a release. Many parts in the release can use the

same parser.

Usually a TeamConnection administrator defines parsers, but anyone with the
proper authority can do so. For more information about the required authority, see

Bppendix H_Authority and notification for TeamConnection actiond.

Creating a parser

As with most other TeamConnection operations, there are two ways you can create
a parser: using the graphical user interface (GUI) or the command line interface.

To create a parser using the GUI:

1. From the Actions pull-down menu on the Tasks window, select
Parsers -» Create.

2. On the Create Parser window, type the requested information.

© Copyright IBM Corp. 1992, 1995, 1996, 1997 135

136

User's Guide

¥ Create Parser 0|

Parser | |

Release | |‘=’|

Command | |

Include | |

OK | Appiy |Cancel| L import | Help |

Figure 54. Create Parser window

From a command line, type the parser -create command and press Enter. The
complete command syntax looks like the following:

teamc parser -create name -command name -release name -family name

[-include paths]
[-become user_name] [-verbose]

No matter which way you create a parser, you must specify a number of attributes
for it. Together with the contents of the parser command file, the following attributes
define how a parser determines the dependencies for a TeamConnection part.

Parser
The name of the parser must be unique within a release. It can be anything
you want, but for best results, establish and follow a meaningful naming
convention. An example of a parser name is c_parser.

Release
This is the name of the release that contains the parser. Parsers are
release-specific objects. They are not versioned within a release; therefore
you can have only one version of a parser at any time in a release.

To use the parser from a previous release, you can link to a part that uses
it in that release. This action copies the parser to the new release.
Otherwise, you must create the parser again in the new release.

Command
This is the name of the command file that the parser invokes to determine
the dependencies. It can be any file name that exists in the execution path
of the family server at the time a build is performed. TeamConnection runs
the command as a subprocess on the machine where the build processor is
located.

The task of the command file is to inspect the source file and return a list of
dependencies. The syntax for invoking this command is discussed in

Include
This is a concatenated set of paths that define where the parser looks for
parts when processing the set of dependencies returned from the command
file. These dependencies come in two types:

* A dependency in which the file is stored in the TeamConnection
database. For example, hello.c includes hello.h, and both files are stored
in the TeamConnection database. During a build, these dependencies
must be extracted to a path accessible by the build processor. Because a
build extracts parts from TeamConnection, anyone requesting a build
needs to have PartExtract authority to all parts involved in the build.

* A dependency on a file that is not stored in the TeamConnection
database. An example of such a dependency is stdio.h, which is typically
stored in a compiler’s include path and not in the TeamConnection
database.

Each path named in Include is queried in the TeamConnection database to
see if it contains a part matching the dependency name. For example,
suppose you define a parser named c_parser with an include path as
follows:

src\include;src\package;.;src\comm\include;

One of the parts to which this parser is attached, src\example.cpp, contains
the statement #include "example.hpp". Thus the command file for ¢c_parser
reports example.hpp as a dependency of src\example.cpp. The parser
concatenates each path listed in c_parser’s include path with the name
example.hpp, then inspects the contents of the TeamConnection database
to see if a part with that name exists. So the TeamConnection database is
queried first to find src\include\example.hpp, then src\package\example.hpp.

The period (.) in the include path tells TeamConnection to concatenate the
path of the part to which the file is a dependent with the dependent’s file
name. In this example, that means the TeamConnection database is
queried to find a part named src\example.hpp.

Putting a parser to work

For an application to use a parser, the parser must be attached to the
TeamConnection parts that it will check for dependencies. Unlike a builder, a parser
is attached to the input part rather than the output.

To attach a parser to a part, do one of the following:

* From the GUI, select Parts » Modify » Properties from the Actions menu of
the TeamConnection Tasks window. On the Modify Part Properties window, type
the name of the parser.

Chapter 11. Working with parsers 137

.4 odify Part Properties g

Path names | |

Type | |
Release | |‘=’|
-Work Area Related
Work ares |

Builder | |

Parameters | |

Parser | |\='|

Temporary file (JJ¥es (JHo (e Ho change

File permissions | |

514 | Cancel | | Import |

Figure 55. Modify Part Properties window

* At a command prompt, type the following and press Enter:

teamc part -modify part -parser name -release name
-family name

The complete syntax for this command is described in the Commands Reference
You can also attach a parser to a part when the part is created.

After you attach a parser to a part, it is ready for action. The next time the part is
used in a build, the parser will invoke its command file, which will report back a list
of dependencies.

Using a parser does not keep you from defining dependencies manually by using
the GUI or the part -connect command. If you explicitly define a dependency in this
way, the dependency is not deleted unless you delete it, regardless of whether the
parser would recognize it as such.

For more information about attaching parsers to the build tree, refer to m

Removing a parser from a part

If you no longer want to use a parser to determine dependencies for a part, do one
of the following:

* From the GUI, select Parts » Modify » Properties from the Actions menu of
the TeamConnection Tasks window. On the Modify Part Properties window, type
null in the Parser field.

138 users Guide

e4 Modify Part Properties g

Path names | |

Type | |
Release | |‘=’|
-wWork Area Related
Work area |

5]

11

Builder |

Parameters | |

Parser |null |

1

Temporary file [JJ¥Yes (JHo (e Ho change

File permissions | |

OK | Cancel | | Import | | Help |

Figure 56. Modify Part Properties window

* From a command line, type the following:

teamc part -modify name -parser null
-release name -family name

Writing a parser command file

A parser command file accepts two parameters as input:
» source file—the name of the file that contains the source to be parsed.

* dependency list file—the name of a file into which the names of the dependent
files should be written, one per line. For example, the contents of the file might
look like this:

hello.h
stdio.h

Both the source file and the dependency list file are created by the TeamConnection
family server. They are erased after the parse is complete.

To write a command file, write a program, in any language, that does the following:
1. Reads the source file

2. Determines which other files are used by it

3. Writes out the list of such files into the dependency list file

For example, for a C source file, the program could report a list of all the files
included by the source file (using #include statements). For a COBOL program,
COPY statements would be the cue. TeamConnection ships a sample of a command
file named fhbopars.cmd. It is written in REXX.

Chapter 11. Working with parsers 139

140 users Guide

Chapter 12. Building an application: an example

This chapter uses an extended example to describe in more detail how each of the
components of the build function work together. This example walks through the
control flow for a sample application, explaining what happens at each step.

These are the tasks involved in building our sample application, msgcat.exe:

Task

Starting build processors and build agents

Creating builders and parsers

Creating the application build tree

Starting the build

Monitoring the build

Building in spite of errors

Forcing a build of all parts

Finding out which parts will be built

&l & B B & B B BB

Canceling a build

We will use a simple example build tree that looks like the following:

msgcat.exe

A 4

hello.obj

A 4

hello.c

A 4

hello.h

A

bye.obj

A 4

bye.c

A 4

bye.h

Figure 57. Sample build tree

For more examples of build trees, see L i z

In terms of the build object model, the objects that make up this tree look like this:

© Copyright IBM Corp. 1992, 1995, 1996, 1997 141

Part

msgcat.exe
A
generates
Build event is built by Builder
Link step c_linker

Ft

is transformed by

Part Part
hello.obj bye.obj

A y

generates

Build event Build event is built by | Builder
Compile step Compile step p| C_compiler

A y

is transformed by

Part Part is parsed by | Parser
hello.c bye.c g C_parser

Figure 58. Sample build object model for msgcat.exe

Starting the build processors and build agents

142

User's Guide

The software development team in our example is building large applications using
a family named testfam, so they set TC_FAMILY to testfam. They plan to spread
the work across several build processors, taking advantage of TeamConnection’s
ability to perform multiple build events simultaneously.

Mark, the build administrator, has installed a number of build processors and build
agents on the team’s machines, for building OS/2 and MVS applications. As he
starts them (in pairs), he groups the build agents into pools, according to the work
he expects to use them for.

Mark plans for the following pools:

mvs For MVS builds

pooll For normal OS/2 builds

pool2 For fast, high-priority OS/2 builds

Each pool is formed as Mark starts build agents and assigns them to it. Among the
build processor-build agent pairs that he starts are the following:

teamproc -s bldsock?2
teamagnt -s bldsock2 -p pooll -e o0s2

The first command starts the build processor at TCP/IP address 0705. The second
command starts the matching build agent at TCP/IP address 0705. The other
parameters specify the following:

-p The agent is assigned to the pool named pooll.
-e The environment is 0s2.
Use the teamproc and teamagnt commands to start the build processor and agent

when the family server has already been started. To start the family server along
with the build processor and build agent, you can use the teamcd command.

Creating builders and parsers

For the parts of the application that are written in C language, Mark creates the
following:

* A builder named c_compiler, to do the compiles
* A builder named c_linker, to do the links
» A parser named c_parser, to check for dependencies

For both builders Mark specifies 0s2 as the Environment , the same as that of the
build agent started earlier at TCP/IP address 0705. Build events that use these
builders (c_compiler and c_linker) can take place on this build agent-build processor
pair.

After he creates the builders and parsers for the applications, Mark spreads the
following information to the programmers who will be using them:

* The names of the build pools
* The names and purposes of the builders and parsers

Creating the build tree for the application

At this point, Greg begins defining the build tree for his portion of the application, as

shown in Eigure 57 an page 141l. He has already created the files hello.c, hello.h,

bye.c, and bye.h in the TeamConnection database. Now he does the following:

1. Creates a place-holder part for the output of the link step. This file, msgcat.exe,
is the target for the entire build, the output of linking hello.obj and bye.obj using
the builder c_linker, and the parent of hello.obj and bye.obj. Because the file
has no contents initially, he selects No source (or specifies -empty on the
command line), to identify it as a place holder.

Using the GUI, he can create this file by selecting Create from the
Actions » Parts menu of the Tasks window, and completing the fields as
shown in the following illustration:

Chapter 12. Building an application: an example 143

L4 Create Parts

E

Part names ‘msgcat.exe | | Choices... |
Release 9503 H
Work area |223 |‘=’|
Component [comp1 E
File type (JText () Binary [Hone

Source () Same (s Mo source () Copy from

Source file ‘ | Select.

Source direciony ‘ ‘

Remarks [~
]

[¢] B_|

Parent ‘ ‘

Parent tune ‘ ‘

Retation lo pavent & npud L Oyipul 1 Dependent

Builder |c_linker |:|
Parameters ‘ ‘
Parser | |‘='|

[[1 Temporary file

| 0K I ‘ Apply | |Cancel| |Imp0rt| ‘ Help |

Figure 59. Create Parts window

Using the command-line interface, he can create the part by issuing the
following command:
teamc part -create msgcat.exe -builder c_linker -binary -empty
-release 9503 -workarea 223 -component compl

2. Creates two place-holder parts for the output of compiling the .c files. These
parts are the output of the compile step; c_compiler, the builder that manages
that step, is attached to both of them. He indicates that they are input to their
parent file, msgcat.exe.

Using the GUI, he can create these files by selecting Create from the
Actions » Parts menu of the Tasks window, and completing the fields as
shown in the following illustration:

144 user's Guide

M Create Parts]
Part names |hell0.0bj bye.obj | | Choices... |
Release [9503 E
Work area |223 |‘="
Component [comp1 El
File type (JText [(wBinary [Honeg
Source () Same (8 MNo source () Copy from
Source tile | | Select..
Source directiony | |
Remarks [~]
[<] Jﬂ
Parent |msgcat.exe |
Parent type | |
Relation to parent (@) Input () Output () Dependent
Builder |c_compiler| |‘=’\
Parameters | |
Parser | El
[[1 Temporary file
| 0K I | Apply | |Cancel| |Imp0rt | | Help |

Figure 60. Create Parts window

Using the command-line interface, he can create the parts by issuing the

following command:

teamc part -create hello.obj bye.obj -builder c_compiler -binary -empty
-release 9503 -workarea 223 -component compl -parent msgcat.exe -input

3. Attaches the parser c_parser to the .c files.
Using the GUI, he can attach the parser to these files by selecting

Modify -+ Properties from the Actions =+ Parts menu of the Tasks window,

and completing the fields as shown in the following illustration:

Chapter 12. Building an application: an example

145

146

User's Guide

b4 IModify Part Properties g

Path names |hello.c bye.c |
Type | |
Release 3503 E
~¥Work Area Related
Work area 223 H
Builder | H
Parameters | |
Parser |c_parser |‘=’|
Temporary file (J¥es (JNo [®iNo change

File permissions | |

| 0K I |Cancel| ‘Importl | Help |

Figure 61. Modify Part Properties window

Using the command-line interface, he can attach the parser to these parts by
issuing the following command:

teamc part -modify hello.c bye.c -parser c_parser -release 9503
-workarea 223

Remember, the parser is attached to an input file.
4. Connects the .c files into the build tree.

Using the GUI, he can connect these files by selecting Connect from the
Actions » Parts menu of the Tasks window, and completing the fields as

shown in the following illustration. He needs to execute this function twice: once

to connect hello.c to hello.obj and once to connect bye.c to bye.obj.
Using the command-line interface, he can connect these parts by issuing the

[Connect Parts O
Path names ‘hello.c |
Type \ |
Release 9503 H
Work area [223 E
Parent Ihello.obj |

Parent type ‘ |

Relation to parent (&) Input () Output () Dependent

| 0OK I |Apply| |Cancel| import |Help|

Figure 62. Connect Parts window

following commands:

teamc part -connect hello.c -parent hello.obj -input -release 9503
-workarea 223

teamc part -connect bye.c -parent bye.obj -input -release 9503
-workarea 223

5. Now, Greg can see the build tree in the GUI. From the Objects pull-down menu

on the Tasks window, he selects Parts » View build

tree . The BuildView Filter

window is displayed; from here he can bring up the build tree.

K TeamConnection - BuildView

File Selected Edit Objects Windows Help

Release:9503 |W0rk Area:223

Version:

baseName in ('msgcat.exe’)

greg testfam

Figure 63. The build tree display

Starting the build on the client

After much hard work on his source code, Greg is ready to start building his

application.

Using the GUI, he can start the build by selecting build from the Actions = Parts

menu of the Tasks window, and completing the fields as
illustration:

b4 Build Parts

Path name |msgcat.exe |

Type | |

9503
Work area |223

Release

Pool |p00[1

Build mode (8 Mormal (JJForced () Unconditional () Report

Parameters | |

Detail file |msgcat.det |

itzz;mz ¢

shown in the following

Figure 64. Build Parts window

Chapter 12. Building an application: an example

147

Using the command-line interface, he can start the build by issuing the following
command:

teamc part -build msgcat.exe -release 9503 -workarea 223
-pool pooll -normal -detail msgcat.det

This command specifies the following:

Build target
The name of the part at the top of the build tree, msgcat.exe, which is the
final output of this build. TeamConnection uses the build target to determine
the scope of the build.

Work area
The version of the TeamConnection parts and build tree to be used when
performing this build. This version is completely specified by naming the
family, release, and work area: in this case, -release 9503 -workarea 223.
The output of the build is placed in this work area.

Build pool
The set of build agents that should be used to process the build request, as
defined when the build agents are started. The pool pooll includes the

build agent started in 'Starting the build processars and huild agents” ar

Build mode
How the build takes place. Possible values for this build option include the
following:

Normal
Builds only the parts that are out-of-date. Processing stops after the
first error is returned.

Force Builds all parts, even if they are not out-of-date. Processing stops
after the first error is returned.

Unconditional
Builds only parts that are out-of-date but continues processing even
if errors are returned. Note that outputs are not rebuilt for inputs
that have failed.

Report
Gives a preview of what would be built if you invoked a build. The
report identifies what steps would occur without any translations
taking place.

In our example, Greg specifies -normal, which is the default. In this mode,
only the parts that are stale with respect to their inputs are rebuilt. In other
words, only the minimum amount of work to bring everything up-to-date is
performed. EDetermining the huild scope” on page 149, gives more
mformatlon about how TeamConnection determines which parts to build.

i z and following sections
provide examples of using the other build modes.

In normal mode, the build is halted if an error is found. Any remaining build
events in the build scope are canceled, but any build events already
performed are not undone.

Detail file name
The name of an output file in which TeamConnection stores the collected
stdout and stderr of the build scripts.

148 users Guide

When Greg starts the build, the information from the command is passed to the
testfam family server over TCP/IP. At this point, Greg’s TeamConnection client waits
to receive confirmation from the family server that the build request was received
and is being processed.

Note: Only one build is allowed in a work area at one time (though the build events
that make up the build might be distributed to different build agents on a
number of machines). So if Greg is sharing work area 223 with Barbara, she
cannot issue a part -build command in that same work area until Greg’s build
is complete.

TeamConnection handles the next parts of the build process automatically.

Determining the build scope

The next step is for the build function to determine the build scope. The build scope
is a set of all the build events that need to be done to bring a particular build target
up-to-date with respect to its inputs. When a part is built, TeamConnection marks
both the input and output with the time of the build; when a later build takes place,
the output part is rebuilt if its build time is different from the input part’s.

In our example, the TeamConnection family server looks at the build tree for
msgcat.exe. If the build time on an input part is different than the build time on its
output, then the output part must be rebuilt. (Remember that the output of one build
event can also be the input to the next.)

In our example, suppose the update times look like this.

Chapter 12. Building an application: an example 149

150

User's Guide

msgcat.exe

6/21/94
9:00am
hello.obj
6/21/94
8:59am
hello.c
6/22/94
12:00pm
hello.h
6/21/94
8:45am
bye.obj
6/21/94
8:58am
bye.c
6/21/94
8:00am
bye.h
6/21/94
9:50am

Figure 65. Build tree showing build times

In this case, Greg’s build command for msgcat.exe causes the creation of a build
scope including the following build events:

* A build event for creating hello.obj—that is, a compile of hello.c
* A build event for creating msgcat.exe—that is, a link of hello.obj and bye.obj

The build event for creating bye.obj is not included in the build scope, because
bye.obj is up-to-date with respect to its input bye.c. The build time on bye.obj is not
equal to that of its input, bye.c.

Greg wants to make sure that bye.obj is rebuilt, so he touches bye.c or bye.obj,
using the TeamConnection command part -touch. This command marks the part as
out-of-date in the work area so that it is included in the next build. Now when he
starts a build of msgcat.exe, the build scope includes the build event to create
bye.ob;.

The resulting build scope contains three build events: two compiles and a link.
Notice that the two compiles can be performed in parallel, for faster performance.

At this point any parsers associated with parts in the scope of this build are
invoked. The information returned from the parsers is used to analyze
dependencies.

TeamConnection can determine if a part has already been built in another context
using identical inputs and time stamps. Suppose, for example, a part is build in
work area 913 and that work area has been integrated. Next, a new work area,
914, is created in the same release and the same part is requested to be built in
that work area. Since the time stamps in work area 913 and the release are the
same as in work area 914, the build does not have to execute and the build outputs
are copied to work area 914.

Adding the job to the job queue

The next step is for TeamConnection to add the build scope to the testfam family’s
job queue. This step ensures that the build events in it are picked up and
processed by any available build agents. After adding the build scope to the job
queue, the family server gives Greg's client confirmation that the build is being
processed. It also reports some statistics about the build, such as the number of
build events. The client reports this data to Greg; it then waits to receive and report
the outcome of each build event as it happens.

Picking up the work orders

Let's look at what has been happening while the preceding steps have been going
on. Each of the build agents that Mark started earlier is actively polling the family’s
job queue to see if there is any work they can perform.

Each build agent looks at the top-most build scope in its job queue. If it contains a
build event that this build agent can perform (that is, one for the pool and
environment it was started for), the build agent takes the event and starts to
process it. If it does not find a build event it can process, it waits awhile and then
tries again.

Suppose that Mark started four build processors and their corresponding build
agents, two in pooll and two in pool2. That means that, as soon as
TeamConnection determines the build scope for msgcat.exe, each of the build
agents in pooll finds a build event it can perform, one for compiling hello.c and one
for compiling bye.c.

Putting the build processors to work

Each build agent that finds an event it can perform sends a description of the event
to its corresponding build processor over TCP/IP. It then sends to and receives from
the TeamConnection database any parts data the processor needs.

In our example, each of the two build agents in pooll sends a description of the
compile event to its connected processor and then waits to answer any requests
from the processor for parts data.

Putting the build scripts to work

At this point, the build processor looks at the description of the event it has been
asked to perform, then checks its cache for each part and the build script it needs.
If it does not find them there or if the cached parts are out of date, it asks the build
agent.

Chapter 12. Building an application: an example 151

It then invokes the build script, passing it the names of the input and output parts
and the parameters specified on the builder. The parts created by the build script
and the return code generated by it are sent back to the waiting build agent. The
build agent then updates the contents of the TeamConnection database.

In our example, each of the two build processors receives a compile event to
perform. Each asks its corresponding build agent to extract the .c source files it
needs from the TeamConnection database and the contents of the build script for
the c¢_compiler builder. It then runs the build script.

The results (the .obj files and the return code) are sent back to the build agents.
After updating the TeamConnection database, the build agents re-enter their polling
loop to see if any more build events await their attention.

Because the compile steps are performed in parallel, Greg can build this application
a little more quickly than if they had happened in serial mode. In this simple
example, the difference is hardly noticeable; but in a large build of hundreds of
parts, with multiple build processors available on a local area network, the
performance improvement can be enormous.

Finishing the job and reporting the results to the user

The processing described by the previous two steps is repeated until there are no
more build events that comprise the build scope. The results of the build are
displayed in the Build Progress window or in stdout. At this point the build is
complete.

To complete our example, the previous two steps are repeated to complete the link
step, using either of the two build agents in pooll. Greg now can extract the
resulting executable from TeamConnection, using the part -extract msgcat.exe
command, and run it.

Monitoring the progress of a build

152

User's Guide

During the course of a build, you can monitor its progress in several ways:

 If the build was started from the command line, by issuing the report -view
partview command against the work area in which you are building. From this
report, you can determine the states of the parts. Use the part -viewmsg
command to see the build messages issued because of a failed build. For
complete syntax of these commands, refer to the Commands Reference

* If the build was started from the GUI, in the Build Progress window. You can find
the same information by looking at stdout.

Greg can see how the build is progressing by checking the Build Progress window.
For example, he might see these messages:

6021-301 Invoking Parser c_parser for hello.c

6021-303 A successful parse resulted from using the parser c_parser. The
parser return code is 0

6021-301 Invoking Parser c_parser for bye.c

6021-303 A successful parse resulted from using the parser c_parser. The
parser return code is 0

6021-700 Number of distinct build events for this build: 3.

Build of 'hello.obj' started at '15:33:47 1995-08-10"

via a build agent on the host 'OCTOFVT'.

Build of 'hello.obj' successfully completed at '15:34:45 1995-08-10".

Completed Jobs: 1

Remaining Jobs: 2

Build of 'bye.obj' started at '15:34:49 1995-08-10'

via a build agent on the host 'OCTOFVT'.

Build of 'bye.obj' successfully completed at '15:35:22 1995-08-10"'.
Completed Jobs: 2

Remaining Jobs: 1

Build of 'msgcat.exe' started at '15:35:26 1995-08-10'

via a build agent on the host 'OCTOFVT'.

Build of 'msgcat.exe' successfully completed at '15:35:56 1995-08-10'.
Completed Jobs: 3

Remaining Jobs: 0

Processing Completed for 'msgcat.exe'.

To see the commands that TeamConnection issued during the build, he can look at
the detail file that he specified in the part -build command.

Running a build in spite of errors

If you find that a build is stopping because of errors, you can check the build detail
file or the Build Progress window for the cause. If the error is minor, you might
decide to run the build despite the errors—for example, when you are debugging.
To do this, specify that you want the build to complete unconditionally.

In our example, when Greg builds msgcat.exe for the first time, he wants to find
and correct any errors that occur during the build, so he uses the following
command:

teamc part -build msgcat.exe -release 9503 -workarea 223 -unconditional

As in normal mode, only the parts that are stale with respect to their inputs are
rebuilt; only the minimum amount of work to bring everything up-to-date is
performed.

However, even if an error is found, the build continues if possible. As with normal
mode, if the build is halted, any build events remaining in the build scope are
canceled. Any build events already performed are not undone.

Building all parts, regardless of build times

To make sure that all parts in the build tree get built, whether or not they are stale,
you specify the -force parameter on the part -build command.

In this mode, all parts that are descendants of the build target are rebuilt, no matter
what.

In our example, Greg can force TeamConnection to build all parts in the msgcat.exe
build tree using the following command:

teamc part -build msgcat.exe -release 9503 -workarea 223 -force -pool pooll

If an error occurs, the build is halted. Any remaining build events in the build scope
are canceled, but any build events already performed are not undone.

Chapter 12. Building an application: an example 153

Finding out which parts will be built

Before running a build of a large application, you might want to find out exactly
which parts will be built. If you specify that you want to run in report mode,
TeamConnection determines what will be built in a normal build and produces a
report showing the results.

If Greg really wants to see which parts of msgcat.exe will be built before he runs
the actual build, he can issue the following command:

teamc part -build msgcat.exe -release 9503 -workarea d410 -report -pool pooll

He sees the following report:

6021-301 Invoking Parser c_parser for hello.c
6021-303 A successful parse resulted from using the parser c_parser. The
parser return code is 0
6021-301 Invoking Parser c_parser for bye.c
6021-303 A successful parse resulted from using the parser c_parser. The
parser return code is 0
6021-700 Number of distinct build events for this build: 3.
6021-407 The builder c_compiler will be invoked.
6021-406 The builder parameters consist of:
command: compC.cmd
input: hello.c
output: hello.obj
dependent: hello.h
6021-407 The builder c_compiler will be invoked.
6021-406 The builder parameters consist of:
command: compC.cmd
input: bye.c
output: bye.obj
dependent: bye.h
6021-407 The builder c_Tinker will be invoked.
6021-406 The builder parameters consist of:
command: 1linkC.cmd

input: hello.obj bye.obj
output: msgcat.exe
dependent:

The report shows that bye.obj and msgcat.exe must be rebuilt.

Canceling a build

154

User's Guide

To cancel a build that is in progress, do one of the following:

» If the build was started from the GUI, on the Build Progress window select the
Cancel Build push button.

 If the build was started from the command line, type the following command and
press Enter:
teamc part -build name -cancel

Where name is the part that you are building. Be sure to specify the same part
name that you specified when starting the build, rather than a part that is lower in
the build tree.

This command stops any further build events being performed for that build scope.
Any build events already performed for that build are not undone.

For example, if Greg cancels the build of msgcat.exe when the compile steps have
been completed, then the link step is not performed. However, the newly compiled
hello.obj and bye.obj are left in the database, with their build times updated.

341

You cannot use the Stop Build button on the Build Progress window to
cancel a build in progress in the Windows environment. Always use the
part -build -cancel command instead.

More sample build trees
The msgcat.exe example is just one possible build tree. Here are some others.
Defining multiple outputs from a single build event

m shows part of the build tree for robot.dll:

robot.dll

robot.cpp

robot.map

Figure 66. The build tree for robot.dll

Because the build tree shows the relationships between parts hierarchically,
robot.map is a child of robot.dll, even though it is actually built from the same input
part, robot.cpp. But robot.map is defined as an output of robot.dll. Here are the
commands to set up this relationship.

First come the commands to create the parts:

teamc part -create robot.d11 -builder d11_builder -binary -empty
-release 9503 -component robot

teamc part -create robot.cpp -release 9503 -component robot

teamc part -create robot.map -builder d11_builder -binary -empty
-release 9503 -component robot

Next are the commands to connect the parts into the build tree:
teamc part -connect robot.cpp -parent robot.d11 -input -release 9503

teamc part -connect robot.map -parent robot.d11 -output -release 9503

You might use this command to start the build:
teamc part -build robot.d11 -workarea 915 -release 9503

Chapter 12. Building an application: an example 155

The output of this build would be both robot.dll and robot.map. Any parameters
specified in the teamc part -build robot.d11 command would also apply to the
build of robot.map.

Synchronizing the build of unrelated parts

An entire application can require multiple separate builds. For example, in the robot
application, there might be one build to create the .dll parts, another to create the
.exe parts, and so on. To ensure that the entire application gets built together, you
can create a part that acts as a collector, with the .dll and .exe parts as input to it.

For example, Tim creates this build tree for the robot application:

robot.app
robot.dll
robot.cpp
robot.map
robot.exe
robot.obj

robot.c

Figure 67. The build tree for robot.app

Assuming he already has the build trees for robot.dll and robot.exe set up, here is
how he sets up the collector part:

1. He creates a null builder with no contents:

teamc builder -create nullBuilder -script null -none -environment o0s2
-condition == -value 0

2. He creates the collector part:

teamc part -create robot.app -builder nullBuilder -none -release 9503
-component robot

The -none flag identifies this as a part that will never have any contents.

3. Tim connects the other parts to the collector:
teamc part -connect robot.d11 robot.exe -parent robot.app -input
-release 9503

When Tim builds robot.app, the result is a build of both robot.dll and robot.exe.

156 user's Guide

Part 4. Using TeamConnection to package products

Chapter 13. Using TeamConnection to package a product
Setting up your build tree for packaging

Setting up a build tree for the gather tool .

Setting up a build tree for the NVBridge tool.

Setting up a build tree for other distribution tools .

Chapter 14. Using the Gather tool .
Using the teamcpak command for the Gather tool.
Command line flags.
Examples of the teamcpak gather command
Writing a package file for the Gather tool .
Syntax rules for a Gather package file .
Keywords for a Gather package file .
Using exit keywords in the DATA clause .
Using exit keywords in the RULE clause .
Using exit keywords: an example.

Chapter 15. Using the NVBridge tool
Using the teamcpak command for NVBridge.
Command line flags. .
Examples of the teamcpak nvbndge command.
Writing a package file for NVBridge .
Syntax rules for an NVBridge package file
Keywords for an NVBridge package file
Problem determination for NVBridge.
NVBridge utilities .
FHPSTAT
Syntax
Return Codes .
Example .
FHPOBDEL.
Syntax .
Return Codes .
Example .
FHPOBMON
Syntax .
Return Codes .
Example .
FHPOBDIF .
Syntax .
Return Codes .
Example .
FHPISCAT .
Syntax .
Return Codes .
Example .
FHPICAT.
Syntax .
Return Codes .
Example .
FHPUCAT .
Syntax .
Return Codes .

© Copyright IBM Corp. 1992, 1995, 1996, 1997

. 159
. 160
. 160
. 162
. 163

. 165
. 166
. 166
. 167
. 168
. 168
. 169
171
172
172

. 173
. 174
. 175
. 176
. 176
. 177
. 177
. 185
. 186
. 187
. 187
. 187
. 187
. 187
. 187
. 187
. 187
. 187
. 188
. 188
. 188
. 188
. 189
. 189
. 189
. 189
. 189
. 189
. 189
. 189
. 190
. 190
. 190
. 190
. 190
. 190

157

158

User's Guide

Example .
FHPMCAT .
Syntax
Return Codes .
Example .
FHPVERIF .
Syntax .
Return Codes .
Example .
FHPRQPUR
Syntax .
Return Codes .
Example .
FHPRQMON
Syntax .
Return Codes .
Example .
FHPTRVER.
Syntax .
Return Codes .
Example .
FHPTRPUR
Syntax .
Return Codes .
Example .

Chapter 16. Using the Tivoli/Courier packaging tool
Using the teamcpak command with Tivoli/Courier .
Command line flags. e
Example of the teamcpak softdist command .

Writing a package file for Tivoli/Courier.

Syntax rules for a Tivoli/Courier package file
Keywords for a Tivoli/Courier package file
Problem determination for the Tivoli/Courier tool

Sample package file

. 191
. 1901
. 191
. 191
. 191
. 191
. 191
. 192
. 192
. 192
. 192
. 192
. 192
. 192
. 193
. 193
. 193
. 193
. 193
. 193
. 194
. 194
. 194
. 194
. 194

. 195
. 195
. 196
. 196
. 197
. 197
. 197
. 200
. 200

This section describes how to use the TeamConnection packaging function, which
helps you automate the packaging and distribution of your applications. This section

is written for the person in your organization who is responsible for software

distribution.

Chapter 13. Using TeamConnection to package a product

After you have built an application to your satisfaction, it is time to distribute it to
users. This chapter describes how you can use TeamConnection to help automate
the packaging and distribution steps.

TeamConnection provides the following:
e Two electronic software distribution tools:

— Gather, which moves an application’s parts into a single directory in
preparation for distribution.

@
o

The Gather utility is available on OS/2 and Windows NT platforms.

— NVBridge , a bridge tool that automates the installation and distribution of
software or data using IBM NetView Distribution Manager/2 as the distribution
vehicle.

@

The NVBridge utility is available only on OS/2.

» Two sample build scripts for connecting the Gather and NVBridge tools with
TeamConnection user-defined builders.

* A set of mini-utilities that can be used to develop customized electronic software
distribution solutions.

To use TeamConnection in packaging a product, you might do any of the following
tasks:

Task

Setting up your application’s build tree for packaging

Using the teamcpak gather command

Writing a package file for the gather tool

Using the teamcpak nvbridge command

EEEEE

Writing a package file for the NVBridge tool

© Copyright IBM Corp. 1992, 1995, 1996, 1997 159

Setting up your build tree for packaging

When TeamConnection builds an application, the application’s build tree identifies
the parts to be built and the tools to use in building it. Similarly, when you use
TeamConnection for packaging the application, the build tree can define the parts to
be packaged and the tools to do it.

The output of a packaging step might be any of the following:

* The application’s parts gathered into a new directory structure

* The distribution of the application using NVBridge

* The distribution of the application using some other distribution tool

Setting up a build tree for the gather tool

160

User's Guide

To gather the parts of your application into a single directory for distribution, you
create an output part whose builder calls the gather tool, and you make this output
part the top level of the build tree.

For example, for the robot control application, robot.app, the build tree might look in
part like this:

robot.app
robot.dll
robot.cpp
robot.map
robot.exe
robot.obj

robot.c

Figure 68. Part of the build tree for robot.app

After the application is built, the programming team needs to get it to the test team.
They could extract the application, but doing a simple extract would preserve the
existing structure, with parts contained in directories according to their application
component. A better structure might be to place all of the .dll files in one directory,
all of the .exe files in another, and so on. To move the parts into this structure, the
test team does a different kind of build, using the gather tool.

To make this happen, Annmarie does the following:

1. She creates the top-level part for the new build tree. The name of this part is
the same as the directory in which the gathered parts are to be placed. In this
example, e:\robot is the output file from the gather step. Annmarie uses the
following command:
teamc part -create e:\robot -none -builder gatherl -family octo

-release 9503 -workarea 410

2. She writes a package file that contains instructions for the gather tool and

creates this file as a TeamConnection part:

teamc part -create robot.pkf -text -parent e:\robot -input -family octo
-release 9503 -workarea 410

For more information, see F\Writing a package file far the Gather taal” od

3. She creates a builder, gatherl, that calls the gather tool:

teamc builder -create gatherl -script gather.cmd
-parameters "-o -x" -release 9503
-environment 0s2 -condition == -value 0 -family octo

gather.cmd is a sample build script that is shipped with TeamConnection. It
specifies the teamcpak gather command.

4. She connects robot.exe and robot.dll to e:\robot as inputs:
teamc part -connect robot.exe -parent e:\robot -family octo
-release 9503 -workarea 410
teamc part -connect robot.d11 -parent e:\robot -family octo
-release 9503 -workarea 410
5. She also connects a readme file for the application:

teamc part -connect read.me -parent e:\robot -family octo
-release 9503 -workarea 410

As a result of Annmarie’s work, the build tree for e:\robot looks like this:

Chapter 13. Using TeamConnection to package a product 161

e:\robot

» robot.exe

» robot.obj

» robot.c

» robot.dll

» robot.cpp

» robot.map
» read.me
» robot.pkf

Figure 69. Adding the gather step to the build tree

The package file, robot.pkf, specifies the directories into which the robot files are
gathered, with e:\robot as the target root directory. When Annmarie builds e:\robot,
the .dll files are placed in e:\robot\dll; the .bin files are placed in e:\robot\bin. Instead
of extracting the built application from TeamConnection, the test team can pull the
application from e:\robot.

If Annmarie wants to gather the same files into a different target directory, all she
needs to do is write a different package file and connect the parts to a different
parent.

Setting up a build tree for the NVBridge tool

162

User's Guide

If you have NetView DM/2 on your LAN, you can use the NVBridge tool to distribute
your application to users. Setting this up is similar to setting up the build tree for the
gather tool.

For example, Marylin, the packaging administrator for our robot development team,

does the following:

1. She creates the top-level part for the new build tree. In this example, robotn.out
is the output file from the NVBridge build. Marylin uses the following command:
teamc part -create robotn.out -none -builder NVB1

-release 9503 -workarea 817 -family octo

2. She writes a package file that contains instructions for the NVBridge tool and

creates this file as a TeamConnection part:

teamc part -create robotnvb.pkf -text -parent robotn.out
-release 9503 -workarea 817 -family octo

For more about creating this package file, see ['\Writing a package file fod
3. She creates a builder, nvbl, that calls the NVBridge tool:

teamc builder -create nvbl -script nvbridge.cmd -release 9503
-environment 0s2 -condition == -value 0 -family octo

The build script for this builder specifies the teamcpak command, with its
parameters.

4. She connects e:\robot and robotnvb.pkf to indicate that they are input to
robotn.out:

teamc part -connect e:\robot robotnvb.pkf -parent robotn.out
-family octo -release 9503 -workarea 817

As a result of Marylin’s work, the build tree for robotnvb.out looks like this:

robotn.out

e:\robot

y

robotnvb.pkf

Figure 70. Adding the NVBridge step to the build tree

When Marylin builds robotn.out, NVBridge uses the rules in the package file to

issue NetView DM/2 commands. The result is that the entire package is distributed

using NetView DM/2.

In this example, Marylin uses NVBridge to distribute the output of the gather tool.
This step is not required, but the gather tool is good preparation for distributing an

application to users.

Setting up a build tree for other distribution tools

This process is similar to setting up for NVBridge. You create a top-level part in the

build tree and a builder that invokes the distribution tool.

Chapter 13. Using TeamConnection to package a product

163

164 users Guide

Chapter 14. Using the Gather tool

¢
i

The Gather tool is available on OS/2 and Windows NT platforms. The
command syntax for using the tool is the same for both platforms.

The Gather tool automates the movement of software and data from one directory
to another on the same machine to prepare a package for electronic distribution. It
can copy or erase files; it can create or delete directories.

This tool takes a list of input files and moves them into a directory structure as
directed by a package specification file. You specify the target root directory path in
this file, along with a collection of rules that instruct which files to copy to which
directories. How these files and directories are actually handled is controlled via
option flags.

By writing different package specification files, you can take the same input files
and transfer them into different target directory structures.

Take the robot application as an example. We previously showed one possible
directory structure, with each subdirectory containing files with the same extension:

e:\robot
\d11
hand.d11
optics.dll

\exe
hand.exe
optics.exe

By writing a different package file, you might put both .dll and .exe files in the same
target directory:

f:\robot
\bin
hand.d11
optics.dll
hand.exe
optics.exe

You can build both target directories concurrently.

© Copyright IBM Corp. 1992, 1995, 1996, 1997 165

Using the teamcpak command for the Gather tool

To start the Gather tool, use the teamcpak command. This command is found in the
directory where the TeamConnection family server is installed. If it is started from a
build script, it does not need to be in the execution path of the machine from which
the build is started.

The complete command syntax for teamcpak gather looks like the following; you
must supply a value for the words that start with a capital letter, such as String. You
must specify the command parameters in the order shown.

teamcpak [-i] [-o0 "String"] gather Input_file...

Where

-i Specifies that only one Input _file is specified in the command: an include
file containing the list of input files. This parameter is optional.

If you specify -1, it must precede the gather flag.

-0 " String"
Specifies that the string listed in quotes be passed to the Gather tool. The
opening quote must be followed by a blank. For a list of possible flags to be
passed, see L i .

This parameter is optional. If you do not specify -o, the default settings for
the tool are used.

If you specify -o, it must precede the gather flag.

gather
Specifies the tool to be invoked. If you specify -i or -o, they must precede
this value.

Input_files
Specifies the files to be copied and the name of the package specification
file. You can specify this parameter in these ways:

» Specify the name of an include file, whose contents is a list of input files.
One of these input files must be a package specification file with the
extension .pkf. In this case, you must also specify the -i parameter.

» Specify a list of two or more files. One of the files must be a package
specification file with the extension .pkf.

» Specify the directory from which the files are to be copied and the name
of the package specification file.

If more than one package file is listed, the first package file on the
command line or in the include file is used, and the others are treated as
ordinary files.

Command line flags

You can specify the following flags in the teamcpak command, using the -o
parameter. All of these flags are optional. If you do not specify a flag, the teamcpak
command runs using defaults.

-a Assume that the target tree structure might not exist. If a required directory
does not exist, create it and continue processing.

This flag cannot be specified if the -t flag is specified.

166 uUsers Guide

If neither -a nor -t is specified, the default is to assume that the desired
tree structure already exists. No verification is performed to confirm that the
directories exist. If they do not, the condition is detected while the package
file rules are being processed. If you stop the teamcpak command, some
target directories might contain updated files.

-t Ensure that the target tree is exactly the tree specified in the package file. If
a directory of the same name exists, the Gather tool does the following:
» Erases the entire contents of the directory and all of its subdirectories
« Destroys the directory and all subdirectories

* Performs a mkdir command to create the entire tree structure again as
specified in the package file

This flag cannot be specified if the -a flag is specified.
If an rmdir command fails during processing, the teamcpak command stops.

If neither -a nor -t is specified, the default is to assume that the desired
tree structure already exists. No verification is performed to confirm that the
directories exist. If they do not, the condition is detected while the package
file rules are being processed. If you stop the teamcpak command, some
target directories might contain updated files.

-m Accept missing source files.

If this flag is not specified, the default is to ensure that at least one file
matches each source specification in the package file. If a match is not
found, the Gather tool stops processing.

-d Accept duplicate files. If a file is found on the target directory that matches
the source file specification, it is overwritten by the source file.

If this flag is not specified, the default is to ensure that no files on the target
match the source file specification. For example, if the source specification
is g*.c, and greg.c is found on the target, the Gather tool stops processing.

-C Clean up the target directories. Erase all files on all target directories that
existed before writing source files to these directories. No confirmation
messages are issued, and permission errors are ignored.

If this flag is not specified, the default is to write the source files into the
target directories without erasing existing files.

-e End with delete. This action removes all source files and directories after
the Gather tool successfully completes.

If this flag is not specified, the default is to end without deleting source files
and directories.

-X Abort without recovery. If the program does not end successfully, no attempt
is made to restore the file system.

If this flag is not specified, the Gather tool attempts to restore the file
system if the program does not end successfully. To do this, the tool first
backs up the file system. The backup directory is the value of the TMP
environment variable.

Examples of the teamcpak gather command

The following are examples of the teamcpak gather command.

Chapter 14. Using the Gather tool 167

teamcpak gather d:\demoapp demoapp.pkf
teamcpak gather a.exe b.exe \help*.h1p demoapp.pkf

In the first example, an input source directory is specified. In the second example, a
list of files is specified. In both cases, the files are to be copied into target
directories as specified in the demoapp.pkf file.

teamcpak -i -0 " -t -m -x" gather myfiles.lIst

The file myfiles.Ist contains a list of files to be transformed by the Gather tool, and

the name of the package file to be used in the gather. The -0 "-t -m -x"

parameter passes three flags to the Gather tool:

* -t specifies that, if the target directories already exist, they be destroyed and
recreated.

* -m specifies that processing continues even if a source file cannot be found.

» -x specifies that, if the program does not end successfully, the file system is left
as is, with no attempt to restore it.

Writing a package file for the Gather tool

Use the package file to specify the target directories and the rules for copying files
for a gather operation. You can also specify user exit programs to run before,
during, or after the gather operation.

A sample package file named gather.pkf is shipped with TeamConnection. You can
customize it for your own gather operations.

Syntax rules for a Gather package file

168

User's Guide

Follow these syntax rules when you write a package file:

» Package files are free format. Text is not positional, and many statements can
exist on the same line.

« Comments can appear anywhere within the file. Use the characters #| and |# as
delimiters, as shown in the following example:

#| This is a comment |#

» Package file keywords must be prefixed with a left parenthesis and must have a
corresponding balanced right parenthesis to end the scope of the keyword.

» If the value for a keyword is a string that contains blanks or parentheses, enclose
the string in double quotes.

The following shows the syntax of a package file for the Gather tool. Keywords
must appear in the order shown. The first letter of an argument is capitalized; you
must supply these values.

(DATA

(PACKAGEFORMAT gather)

(TARGETROOT Filename)

(RULE
(SOURCE Filename...)
(TARGET Path)
[(EXITPRIOR String... | EXITREPLACE String... | EXITPOST String...)])
)

[(EXITPRIOR String...)]
[(EXITPOST String...)]

Keywords for a Gather package file

DATA

This keyword is required. It must be the first keyword in the package file,
and it can be specified only once.

All other keywords are nested within the DATA clause.

PACKAGEFORMAT gather

This keyword is required. It can be specified only once. It tells the teamcpak
command that this package file is for Gather.

TARGETROOT target_root_path

RULE

This keyword is required. It can be specified only once.

Use this keyword to identify the target root directory. Source files are copied
to this directory as specified by the RULE statements.

Follow these guidelines when you select your TARGETROOT values:
* Include the drive letter along with the target directory.

» Specify a directory that contains few if any subdirectories that are
unrelated to the data you are moving.

 If you specify a drive’s root directory (drive:\), run the teamcpak
command using the defaults or only the -x or -x -a flags.

* Do not set the value of TARGETROOQT to drive:\ under the following
circumstances:

— The TARGETROOT drive is the same as the drive from which the
teamcpak command is run, and you have recovery set (that is, you
have not specified -o "-x").

— The logical drive for the TARGETROOT has less than 50% free
space, and you have recovery set (that is, you have not specified -o
II_XII X

This keyword is required. You can use one or more RULE keywords within
a Gather package file.

Each RULE clause represents a set of Gather operations targeted for one
target subdirectory. A RULE clause must contain one SOURCE and one
TARGET keyword. The files in the SOURCE directory are copied to the
TARGET path. The target path is derived by concatenating the value of
TARGETROOT with a backslash (\), followed by the value of the TARGET
keyword specified in the RULE clause.

A RULE clause can also contain one user exit clause: EXITPRIOR,
EXITPOST, or EXITREPLACE. For a description of the exit keywords, go to
page bzd.

The following example copies all *.exe, *.cmd, and *.hlp files to target
directory f:\demoapp\bin.

(DATA

(TARGETROOT f:\demoapp)

(RULE
(SOURCE *.exe *.cmd +.hlp)
(TARGET bin)

Chapter 14. Using the Gather tool 169

170

User's Guide

)

SOURCE <list of file specifications>

This keyword is required once for each RULE clause. It must be the first
keyword within the RULE clause.

This keyword specifies the files to be copied to the path specified by the
TARGET keyword. Specify a list of file specifications separated by blanks.
You can use the wildcard characters supported by OS/2 or Windows NT.

The directory from which these files are copied depends on how the input
files are specified in the teamcpak command:

» If the teamcpak command specifies a source directory, the files specified
in the SOURCE keyword come from that directory or subdirectories of it.
The full path of the source files is constructed by concatenating the
directory from the teamcpak command with a backslash (\), followed by
the file specifications found in the SOURCE keyword. You can specify
subdirectories in the SOURCE file specifications.

+ If the teamcpak command specifies a list of files, these files are first
copied to a temporary directory, then copied from there to the TARGET
directories. In this case, you can use OS/2 or Windows NT wildcards to
specify multiple file names in the SOURCE file specifications, but you
cannot specify subdirectories.

In the following example, directory d:\demoapp is specified on the teamcpak
command:

teamcpak -0 "-x -t -m" gather d:\demoapp demoga.pkf

The resulting source path is the concatenation of d:\demoapp with the
SOURCE file specifications. Therefore, all of the .exe files in the directory
d:\demoapp\bin are copied to the target directory e:\demoapp\bin.

(DATA
(TARGETROOT e:\demoapp)

(RULE
(SOURCE bin*.exe)
(TARGET bin)

)
)

In the following example, a list of input files is specified on the teamcpak
command:

teamcpak -0

-x -m" gather c:\a.exe c:\b.exe d:\rexx*.cmd demoga.pkf

The resulting source path for the files in the SOURCE clause is the
concatenation of the teamcpak temporary directory with the SOURCE file
specifications. Therefore, the source for the *.exe files is
d:\teamcpak.@ @ @*.exe. The input files d:\teamcpak.@@ @\a.exe and
d:\teamcpak. @@ @\b.exe are copied to the directory e:\demoapp.

(DATA
(TARGETROOT e:\demoapp)

(RULE
(SOURCE *.exe)
(TARGET targetroot)

)

)

TARGET Target_path
This keyword is required one time in each RULE clause. It must follow the
SOURCE keyword.

The value specified by this keyword is used to construct the target path into
which the files specified by the SOURCE keyword are copied. The value of
the TARGETROOT keyword is concatenated with a backslash (\), followed
by the value of the TARGET keyword.

If you specify targetroot as the value, files are copied directly to the target
root directory, not to a subdirectory.

In the first RULE clause of this example, files are copied to the target
directory f\demoapp\bin\files. In the second RULE clause, the target
directory is f\demoapp.

(DATA
(TARGETROOT f:\demoapp)

(RULE
(SOURCE *.bin =.d11)
(TARGET bin\files)

)

(RULE
(SOURCE *.h1p)
(TARGET targetroot)

)

)

EXITPRIOR, EXITPOST, and EXITREPLACE String...
These keywords are optional. They specify a user exit program to run as
part of the gather operation.

To specify an exit that is global to the Gather operation, specify EXITPRIOR
or EXITPOST in the DATA clause. You can specify each of these keywords
only once in the DATA clause. These keywords must come after all of the
RULE clauses. EXITREPLACE cannot be used in the DATA clause.

You can also specify an exit that is specific to one RULE clause. Only one
exit keyword is allowed in each RULE clause.

These keywords accept a list of strings separated by spaces. The first string
is the name of the program to execute. The strings that follow are its
parameters.

Using exit keywords in the DATA clause

When used within a DATA clause, these keywords identify a program or command
to be executed within a command shell. EXITPRIOR executes before all RULE
statements have been processed; EXITPOST, after all RULE statements.

The exit keywords accept any executable file or command. The exit program must
return an integer return value, with zero meaning the exit was successful.

Chapter 14. Using the Gather tool 171

172

User's Guide

Using exit keywords in the RULE clause

EXITPRIOR, EXITPOST, and EXITREPLACE are optional within a RULE clause.
Only one can be specified in any given RULE clause.

When used within a RULE clause, these keywords identify a program or command
to be executed within a command shell before, after, or in place of processing of
each Gather copy operation. The exit program is called once for each SOURCE
specification entry within the SOURCE clause. Parameters are separated by spaces
and passed to the exit in this order:

* Any parameters included in the invocation string
* The resolved SOURCE file specifications
* The resolved TARGET specification

The exit keyword accepts any executable file or command. The exit program must
return an integer return value, zero meaning successful; it must also accept or
ignore the additional Gather parameters added to the end of the invocation string.

When used in the context of the RULE clause, exit keywords must follow the
TARGET keyword.

Using exit keywords: an example

In the following example, the first EXITPRIOR statement relates to the DATA clause
and specifies a user backup exit program, which executes before performing Gather
copy operations. This backup exit is passed two flags. The command stream
executed in an OS/2 shell is:

"e:\util\backup.cmd \i \t"

The second occurrence of the keyword illustrates how to use it in the context of a
RULE clause. In this example, an encryption program will run against each source
file specification. The exit program is passed the \k:347867 key option, the value for
the source specification, and the value for the target specification. In this example,
the command stream executed in an OS/2 shell is:

"encrypt \k:347867 d:\demoapp\a.exe f:\demoapp\bin":

The package file looks like this:

(DATA

(PACKAGEFORMAT gather)

(TARGETROOT d:\tcws)

(RULE
(SOURCE *.exe *.cmd)
(TARGET exe)
#|this program will be run for each source file|#
(EXITPRIOR encrypt \k:347867)

)
(EXITPRIOR "e:\util\backup.cmd \i \t")

Chapter 15. Using the NVBridge tool

@

The NVBridge tool is available only on OS/2.

The NVBridge tool supports automated distribution between a single NetView DM/2
CC server and its LAN-connected CC clients. It also supports remote distribution to
APPC-connected NetView DM/2 servers and mainstream servers.

A sample build script named nvbridge.cmd is shipped with TeamConnection. It can
be invoked within a TeamConnection builder. This build script maps
TeamConnection build parameters to the command line syntax for invoking the
NVBridge tool via the teamcpak command line interface.

You can use NVBridge as a builder for packaging in two ways:

* Integrate it with the gather step, so that the Gather tool leaves the package files
in a directory from which NVBridge picks them up.

» Use it without the gather step. In this case, the build script for NVBridge must set
up the directory and move files into it to interface correctly with the teamcpak
command.

For information about setting up a build tree for running NVBridge, see m

NVBridge produces the following NetView DM/2 output files:

A change file
This file, containing all of the software deliverables, is stored in the fsdata
subdirectory of the NetView DM/2 directory. The file name is buildID.cf,
where buildID is the ID specified in the -0 "-b" flag of the teamcpak
command.

A procedure file
This file is stored in the fsdata subdirectory of the NetView DM/2 directory.
It contains the command instructions for uninstalling an installed software
object during its next build. The file name is system-generated.

A flat data file
This file, containing the text data of mail information that accompanies other
objects, is stored in the fsdata subdirectory of the NetView DM/2 directory.
The file name is system-generated.

Catalog entries for the generated change file, procedure file, and mail
notification object
These files are named according to the following naming convention:

_Tx_corporation_ID.buildID.xxx.0.0
Where:

* xis an identifier for the TeamConnection server. The default is C.

» corporation_ID is a string of up to ten characters. The default is
NULLCORP.

© Copyright IBM Corp. 1992, 1995, 1996, 1997 173

* Build ID is a string of up to 16 characters, representing the 1D specified
on the -b flag of the teamcpak nvbridge command.

* xxx identifies the file. The following values are used:
— REF for the generated change file
— CMD for the generated uninstall procedure
— MAIL for the generated mail notification object

Using the teamcpak command for NVBridge

To start the NVBridge tool, use the teamcpak command. This command is found in
the directory where the TeamConnection family server is installed. If it is started
from a build script, it does not need to be in the execution path of the machine from
which the build is started.

The complete syntax for the teamcpak nvbridge command is the following. You
must specify the command parameters in the order shown.

teamcpak -o "string" nvbridge input_source-directory
package_specification_file
-0 "string"

Specifies that the string listed in quotes be passed to the NVBridge tool.

For a list of pOSSIb|e flags to be passed, see [Command line flags” onl

Input_source_directory
A directory containing all the files and subdirectories of the software to be
distributed using NetView DM/2. You must specify this directory as an
absolute path with no wildcard characters.

The source root directory can be created in an earlier build step. The
Gather tool can be used to create the source root directory and move the
files into it as the TARGETROQT directory.

All files contained in the source root directory are included in the NetView
DM/2 object that is built and distributed via NVBridge. It is important that
the source root directory contain only the subdirectories and files required
for the software package distribution.

File names within the source directory cannot contain blanks. Only
non-hidden files are supported. The names of the files are reproduced on
the target NetView DM/2 CC clients. Therefore, HPFS file names can be
included only if the target NetView DM/2 CC clients listed in the package
file have target drives that support HPFS.

If you are using the uninstall function, the uninstall program must reside in
the source directory. If you use the MAIL keyword for remote servers, the
MAIL text file that is sent to the remote servers must also reside within this
directory.

package_specification_file
A file describing how the NVBridge function is to build, catalog, and
distribute software. Additional controls of NVBridge processing are provided
through the optional command line flags described in the following section.

174 user's Guide

Command line flags

You can specify the following flags in the teamcpak command, using the -o
parameter. All of these flags except -b are optional.

-b: buildID

This flag is required. The build ID represents the software to be distributed.
It is a string of up to 16 alphabetical characters or underscores. It cannot
contain blanks or other special characters. If you are distributing software to
NetView DM/2 clients whose target drives do not support HPFS file
systems, the build ID can be only eight characters in length.

Use this flag to verify that NetView DM/2 CC clients listed in the INSTALLS
keyword of the package file are defined to the NetView server and are in an
active state. Verification takes place one time at the start of the teamcpak
command. Changes that occur after verification are not detected.

Verification fails if one or more clients is in running rather than active status.
Running status indicates that the client currently has a NetView command
in progress.

If this flag is not specified, NVBridge ignores errors resulting from undefined
or inactive clients.

If the SENDS keyword is specified in the package file, this flag also verifies
the following:

* All of the remote destinations are defined in the NetView DM/2 remote
destinations table.

* Any transmission queues associated with the remote destinations are in
a released state.

* The transmission queues are empty.

If the INSTALLS or SENDS keywords are not specified in the package file,
verification always succeeds.

Use this flag to monitor NVBridge-generated requests to NetView DM/2. If
any install, uninstall, or send requests do not complete successfully,
messages are generated.

This flag works with the CLIENTINTERVAL, SENDINTERVAL, and

ATTEMPTS package file keywords. See ['Writing a package file for
NVBridge” on page 176 for details about using them to control monitoring

durations and limits.

If you specify this flag, NVBridge continues to run as long as it takes to
install on all the designated clients and send to remote destinations, or until
the durations set by the package file keywords are exceeded.

If this flag is not specified, NVBridge submits the install and send requests
and then ends without waiting for them to complete. In this case, you can
use NetView DM/2 functions to track these pending requests.

Use this flag to retry an earlier failed attempt to install. Using the same
package file, you can correct install failures without rebuilding the software
object and without installing again on clients that were successful the
previous time.

TEST and SENDS keyword in the package file are ignored, because testing
and sending are assumed to have taken place already.

Use this flag to issue NetView ACTIVATE requests. This request causes the

Chapter 15. Using the NVBridge tool 175

client machine to reboot after installation processing and SEND requests
are complete. This is the last request that NVBridge performs before
completion.

This flag is ignored if the TEST and INSTALLS keywords are not specified
in the package file.

If you specify this flag, you must also specify the -m flag.

-l Use this flag to install software in a NetView DM/2 service area. This allows
installation of files that replace system-locked files.

A NetView ACTIVATE request is required to move the files from the
temporary service area and to make updates to the config.sys file take
effect. You can use the -a flag to request the ACTIVATE. If you do not use
the -a flag, you must use NetView to reboot the clients manually.

If you use this flag, the installation program must be installed on the client
already, or the installation program must reside in the CC server’s NetView
DM/2 shared areas.

This flag is ignored if TEST and INSTALLS keywords are not specified in
the package file.

-t:time Use this flag to set a timer so that NVBridge runs at a later time. For
example, you can invoke NVBridge, go home, and let it start during the
night. This timer applies to all NVBridge functions, not individual INSTALLS
or SENDS requests.

Valid values for time are 0000 to 2359. For example, specify -t:0000 to run
NVBridge starting at midnight. Specify -t:1200 to start NVBridge at noon.

-f Use this flag to prevent the sending of objects that have install or uninstall
problems. If any INSTALL or UNINSTALL requests fail, NVBridge returns a
nonzero return code and purges any pending requests.

If this flag is not specified, NVBridge returns a return code of 0 and
continues with SENDS requests, even if some UNINSTALL or INSTALL
requests fail to complete.

Examples of the teamcpak nvbridge command

The following is an example of the teamcpak nvbridge command.

teamcpak -0 "-b:demoapp -m -v" nvbridge d:\demoapp demoapp.pkf

The input source directory, d:\\demoapp, contains the files to be installed. The file
demoapp.pkf is the package specification file.

The -o parameter passes three flags to the NVBridge tool:
* -b:demoapp specifies that demoapp is the build ID.
* -m specifies that NVBridge monitor requests to NetView DM/2 to completion.

» -v specifies that NVBridge verifies that all clients are defined to NetView DM/2
and active.

Writing a package file for NVBridge

This section describes the NetView DM/2 package file keywords and their effect on
normal processing behavior.

176 uUsers Guide

A sample package file named nvbridge.pkf is shipped with TeamConnection. You

can customize it for your own use.

Syntax rules for an NVBridge package file

Follow these syntax rules when you write a package file:
» Package files are free format. Text is not positional, and many statements can

exist on the same line.

« Comments can appear anywhere within the file. Use the characters #| and |# as
delimiters, as shown in the following example:

#| This is a comment |#

» Package file keywords must be prefixed with a left parenthesis and must have a

corresponding balanced right parenthesis to end the scope of the keyword.

» If the value for a keyword is a string that contains blanks or parentheses, enclose

the string in double quotes.

The following shows the syntax of a package file for NVBridge. The order of the

keywords inside the NVGLOBALS clause does not matter; all other keywords must

appear in the order shown. You must supply the values for the strings that are

shown in Jtalics.

(DATA

(PACKAGEFORMAT nvbridge

(NVGLOBALS
[(MAIL filename)]
[(TEAMCSERV x)]
[(CORPID name)]
(INSTALLDIR path)
[(INSTALLPGM path\filename)]
[(IPARMS parameters)]
[(UNINSTALLPGM filename)]
[(CLIENTINTERVAL n)]
[(SENDINTERVAL n)]
[(ATTEMPTS n)]

[(TEST
(ENTRY client)

)]
[(INSTALLS
(ENTRY client target _directory)

)]
[(SENDS
destination

)1
)

Keywords for an NVBridge package file

DATA This keyword is required. It must be the first keyword in the package file,

and it can be specified only once.

All other keywords are nested within the DATA clause.

Example:
(DATA

Chapter 15. Using the NVBridge tool

177

178

User's Guide

other keywords go here

)

PACKAGEFORMAT nvbridge

This required keyword must be the first keyword within the DATA clause. It
can be specified only once. It tells the teamcpak command that this
package file is for NVBridge.

Example:
(DATA

(PACKAGEFORMAT nvbridge)

NVGLOBALS

This required keyword must follow the PACKAGEFORMAT keyword within
the DATA clause. It can be specified only one time.

All the global and default keywords for the package file are specified in the
NVGLOBALS clause. At least one INSTALLDIR keyword must be specified
within this clause; all other NVGLOBALS keywords are optional.

Keywords in the NVGLOBALS clause can appear in any order.

Example:
(DATA

(NVGLOBALS

NVGLOBALS keywords go here

)

MAIL filename

This optional keyword can appear at any place within the NVGLOBALS
clause. It can be specified only one time.

This keyword identifies a text file that is sent as a mail notification object to
all destinations listed in the SENDS keyword. The file name specified must
contain only the file name and extension, no path information. NVBridge
searches the input directory specified on the command and uses the first
file that matches this file name.

The mail object is created and cataloged on the local server along with the
.ref and .cmd objects. Mail objects typically take the form of readme files.

Example:

In the following example, the input directory is searched for the first
occurrence of the file readme.txt during NetView DM/2 processing. This file
is used to create a new .mail object cataloged to NetView DM/2. This object
is then sent along with the .ref and .cmd objects during the processing of
any SENDS requests.

(DATA

(NVGLOBALS

(MAIL readme.txt)

)

TEAMCSERV x
This optional keyword can appear at any place within the NVGLOBALS
clause. It can be specified only one time.

This keyword specifies a 1-character alphanumeric ID to be used in global
name generation. It identifies the TeamConnection family server that built
and distributed the global named object. If this keyword is specified, the first
four characters of the global name are _Tx_. If this keyword is not specified,
the first characters of the global name default to _TC_.

Example:

An example of a NetView DM/2 object name based on the following
example is _tl nullcorp.demoapp.ref.0.0.
(DATA

(NVGLOBALS

(TEAMCSERV 1)

)

CORPID name
This optional keyword can appear at any place within the NVGLOBALS
clause. It can be specified only one time.

This keyword is used in constructing the global names of NetView objects
generated by NVBridge. You can use it to further identify the NetView
objects, for example by specifying the name of your company. The name
specified in this keyword follows the value of the TEAMCSERYV keyword in
global names.

The name specified in this keyword can be from one to ten alphanumeric
characters. If this keyword is not specified, it defaults to the value
NULLCORP.

Example:

An example of a NetView DM/2 object name based on the following
example is _t1 ibmcorp.demoapp.ref.0.0.

(DATA

(NVGLOBALS

(CORPID ibmcorp)

Chapter 15. Using the NVBridge tool 179

180

User's Guide

INSTALLDIR path

This required keyword can appear at any place within the NVGLOBALS
clause. It can be specified only one time.

This keyword defines the default workstation directory that is to be created
as the root software directory on the clients.

The path must be an absolute file specification, including a valid drive. You
can override this value for individual clients, within the ENTRY clause of the
INSTALLS keyword. This target directory need not exist on the CC clients.
NetView creates this directory and populates it with the same data as
contained in the input directory specified on the teamcpak command.

Example:

In the following example, the path e:\demoapp is used as the target drive
and directory for all CC clients listed in the INSTALLS keyword. NetView
DM/2 will install the files and subdirectory structure specified on the
teamcpak command within a target directory e:\demoapp on each CC client
machine.

(DATA

(NVGLOBALS

(INSTALLDIR e:\demoapp)

)

INSTALLPGM pathlfilename

This optional keyword can appear at any place within the NVGLOBALS
clause. It can be specified only one time.

This keyword defines the installation program to be invoked after the
software files are copied on the CC client machine. If this keyword is not
specified, the installation process includes only the movement of files, and
an installation program is not invoked.

The installation program can be specific to the software just installed. In this
case, the installation program is itself a file that was copied. Alternatively,
the installation program can be a separate software product installed
previously on the client machine. The installation program must meet the
following criteria:

* It must be in the client’s execution path, or the executable name must
include its fully qualified path.

* The return value of the program must be 0 if you want NetView DM/2 to
catalog the installation as successful. If the program returns a value other
than 0, NetView DM/2 concludes the installation was a failure.

* The installation program cannot be interactive; that is, it cannot expect
user input.

The installation program can invoke other programs.

The INSTALLS entries and hence the path to the installation program can
differ from client to client. As a result, the installation program often needs
to know the target directory into which the software was installed. To aid

with NetView environmental information such as this, you can include the

following macros anywhere and as many times as needed within the
INSTALLPGM value. When including these macros, enclose the value in
quotes.

$(TargetDir)
Substitutes the path of the directory where the software was
installed on the client

$(WorkStatName)
Substitutes the name of the client

Example:

In the following example, after the software and data files are installed on
the CC clients, an installation program inst.exe is invoked to update each
client’s config.sys file. The path to this installation program is within the
software being installed and is resolved to a fully qualified path of
e:\demoapp\bin\inst.exe on each CC client. In this example, the value of
INSTALLPGM is enclosed in quotes because of the macro within the string.

(DATA

(NVGLOBALS
(INSTALLDIR e:\demoapp)

(INSTALLPGM "$(TargetDir)\bin\inst.exe")

)

IPARMS parameters
This optional keyword can appear at any place within the NVGLOBALS
clause. It can be specified only one time.

This keyword defines the input parameters passed to the installation
program specified on the INSTALLPGM keyword. If this keyword is not
specified, it defaults to a null string. This keyword is ignored if the
INSTALLPGM keyword is not also specified.

The INSTALLS entries and hence the path to the installation program can
differ from client to client. As a result, the installation program often needs
to know the target directory into which the software was installed. To aid
with NetView environmental information such as this, you can include the
following macros anywhere and as many times as needed within the
IPARMS value. When including these macros, enclose the value in quotes.

$(TargetDir)
Substitutes the path of the directory where the software was
installed on the client

$(WorkStatName)
Substitutes the name of the client

Example:
(DATA

(NVGLOBALS

Chapter 15. Using the NVBridge tool 181

182

User's Guide

(IPARMS "\i \t \g \d:$(TargetDir)")

)

UNINSTALLPGM filename

This optional keyword can appear at any place within the NVGLOBALS
clause. It can be specified only one time.

This keyword defines the program that will be used to uninstall this version
of the software when its next version is installed. For example, if you are
installing version 1.0 of your package, use this keyword to specify the
program that will be used to uninstall version 1.0 when version 1.1 is
installed.

The uninstall program must be contained in the input software directory.
NVBridge searches the input directory specified on the teamcpak command
and uses the first file that matches the file name specified on this keyword.

If both this keyword and the INSTALLS or TEST keywords are specified,
then a NetView PROCEDURE object is created along with the software
object. When the next version of this package is installed, this uninstall
procedure is run against previous install clients, before the removal of the
old version of the software and the creation of the new NetView software
object. NVBridge tracks only whether the uninstall operations complete, not
whether they are successful.

The uninstall program can itself invoke other programs.
Example:

In the following example, the input directory is searched for the first
occurrence of the file uninst.cmd during NetView DM/2 processing. This file
is used to create a new uninstall PROCEDURE object cataloged to NetView
DM/2.

(DATA

(NVGLOBALS

(UNINSTALLPGM uninst.cmd)

)

CLIENTINTERVAL n

This optional keyword can appear at any place within the NVGLOBALS
clause. It can be specified only one time.

This keyword identifies the sleep interval used for monitoring client
operations such as uninstalling and installing. It is used with the -m flag on
the teamcpak command.

Specify a value in seconds. Valid values are from 10 to 600. The default is
15 seconds.

Example:
(DATA

(NVGLOBALS

(CLIENTINTERVAL 60)

)

SENDINTERVAL n
This optional keyword can appear at any place within the NVGLOBALS
clause. It can be specified only one time.

This keyword identifies the sleep interval used for monitoring SEND
operations. It is used with the -m flag on the teamcpak command.

Specify a value in seconds. Valid values are from 10 to 600. The default is
15 seconds.

Example:

(DATA

(NVGLOBALS

(SENDINTERVAL 40)

)

ATTEMPTS n
This optional keyword can appear at any place within the NVGLOBALS
clause. It can be specified only one time.

This keyword identifies the maximum number of attempts to monitor
NVBridge operations. Specify a number from 1 to 6. The default is 4.

This value is combined with the CLIENTINTERVAL and SENDINTERVAL
values to compute the maximum monitoring time. For each operation per
client or prior remote destination, NVBridge uses this formula:

Monitor and check every x seconds up to y times

Where x is the value for CLIENTINTERVAL or SENDINTERVAL, and y is
the value for ATTEMPTS.

Example:

If you are installing to four clients and you specify the -m flag on the
teamcpak command, by default NVBridge monitors every 15 seconds, up to
four attempts. It repeats this 4 times for each of the four clients, resulting in
a total of 16 attempts at 15-second intervals.

(DATA

(NVGLOBALS

(ATTEMPTS 4)

Chapter 15. Using the NVBridge tool 183

184

User's Guide

)

TEST This optional keyword appears within the DATA clause before the

INSTALLS or SENDS keywords. It can be specified only one time.

This keyword identifies a single NetView DM/2 CC client to be used as a
test machine. All normal processing is first performed against this single

client. If everything succeeds, normal processing continues for all clients
listed in the INSTALLS keyword; otherwise normal processing stops.

This keyword accepts a single ENTRY keyword, which identifies the client.
Do not repeat this client value in the INSTALLS entries, or NVBridge might
fail.

Example:

In the following example, the test CC client named CLIENT1 will be used to
perform a test installation. The software and data will be installed to the
target client directory e:\demoapp.

(DATA

(TEST
(ENTRY CLIENT1 e:\demoapp)
)

)

INSTALLS

This optional keyword is specified within the scope of the DATA clause. It
must follow the NVGLOBALS and TEST keywords. It can be specified only
one time.

This keyword identifies the list of ENTRY keywords specifying the clients
where the software object is to be installed. Duplicate ENTRY keywords for
the same client are ignored.

ENTRY client, directory

This required keyword is specified within the scope of the TEST or
INSTALLS clauses. It can be specified many times.

This keyword identifies a NetView DM/2-defined CC client workstation on
which the software is to be installed. For each ENTRY keyword, you must
specify the name of a CC client machine.

Optionally, you can also specify a target installation directory for the client.
This directory overrides the directory specified in the INSTALLDIR keyword.
The target directory must be an absolute file specification, including a valid
drive. If this value is found to be not valid, NetView uses the default value
found in the INSTALLDIR keyword.

Example:

In the following example, the .ref object created by NetView DM/2 will be
installed to CLIENT1, CLIENT2, CLIENT3, and CLIENT4 CC client
machines. In the case of CLIENT2 and CLIENT4, the software is installed
in the default INSTALLDIR value of d:\demoapp. For the others, the target
directory in the ENTRY keyword overrides the INSTALLDIR value.

(DATA
iNVGLOBALS
iINSTALLDIR d:\demoapp)
) .

(INSTALLS
(ENTRY CLIENT1 e:\demoapp)
(ENTRY CLIENT2)
(ENTRY CLIENT3 c:\demoapp)
(ENTRY CLIENT4)
)

)

SENDS destination ...
This optional keyword is specified within the scope of the DATA clause. It
must follow the NVGLOBALS, TEST, and INSTALLS keywords. It can be
specified only one time.

This keyword identifies the list of remote destinations that are to receive
NVBridge-created objects. These destinations are APPC-connected
NetView DM family servers.

Each remote destination in this list should be configured to accept creation
or replacement of cataloged objects. If the remote server does not allow
incoming SENDS of objects, then NVBridge cannot send objects to it. Also,
if the remote server accepts only creates and not replacements, then
NVBridge can send it only objects that do not already exist in its catalog.

Example:
(DATA

(SENDS
USSNANR.AUSTIN2
USSNANR.AUSTIN3
USSNANR. NEWYORK1
USSNANR. CHICAGO4

)

Problem determination for NVBridge

If a particular object has a status of SCHEDULED or IN PROGRESS that does not
reflect its true status, then the existing version of the software object might be in a
bad locked state. The result is that NetView DM/2 cannot build new versions of the
object. NetView DM/2 always attempts to purge all previous locked requests when it
builds new versions of software to be distributed. However, there are abnormal
NetView DM/2 cases where locked objects require further manual intervention to
correct locked NetView DM/2 files.

If during NetView DM/2 processing, messages indicate that NetView DM/2 failed
because it could not remove a previous version of an object, try the following steps.
If these steps fail to correct the problem, then contact your IBM NetView DM/2
representative.

Chapter 15. Using the NVBridge tool 185

1. Check the NetView DM/2 message.dat file on the server and, if possible, on the
client, checking to see if any NetView DM/2 errors have been detected. If a
NetView DM/2 error has occurred, then take appropriate steps to report and
correct the problem.

Rebooting your system sometimes will temporarily correct the NetView DM/2
condition so that you can get your work done. Even if you take this route, go on
to the next steps after rebooting.

2. Look at the request queue contents and at the install history to find the object
name generated from NetView DM/2 processing. The name of the NetView
DM/2 object is also in the messages. The locked entries can be identified by
inspecting the NetView DM/2 request queue and seeing an entry for the object,
where it is obvious that the entry is not being processed. At other times, a
locked entry can be found by looking at the install history for clients that have
install status other than INRU.

3. Temporarily undefine from the server the CC clients that involve the lock.
Locked requests for undefined clients can sometimes be corrected by making
the CC client unknown to the CC server.

This step causes the NetView DM/2 CC client to stop running. Restart the client
either manually or via another remote access to the machine.

4. If any requests are in the request queue, try to both purge and delete the
request. (If you are using the GUI, the following steps can be combined into one
or two steps.)

5. Perform a Deleteit against the object’s group name to remove install target
information that might have been set previously. Do this for all client
workstations with the /ws option.

6. Remove all install history for the object.
7. Redefine to the server the CC clients that were locked.
8. Try your initial NetView DM/2 request again.

NVBridge utilities

186

User's Guide

TeamConnection provides a collection of utilities that can be combined into a
user-defined build script, to help automate customized forms of packaging steps.
You can use these utilities instead of the teamcpak command, to customize your
distribution steps.

Note: These interfaces are program-sensitive interfaces used by NVBridge. As a
result, these interfaces are likely to change and evolve from release to
release, and no IBM commitment is implied that these interfaces will remain
unchanged and compatible in future versions.

The only form of parameter checking performed by these utilities is verifying that
required parameters are specified and that the parameter list meets syntax
requirements. These utilities assume that valid parameter values are passed to
them.

To display the syntax of these utilities, type the name followed by a question mark.
For example, type FHPOBDEL ? to see the syntax of this tool.

FHPSTAT

FHPOBDEL

FHPOBMON

Use this function to check the status of the NetView DM/2 CC server components.
This is used to determine if NetView DM/2 is available and if the necessary
components have been started.

This utility continues until it has made the number of attempts specified in the loop
parameter or until the return code is 0, whichever occurs first.

Syntax
fhpstat [timer], [loop], [config=lan|APPC], [display=YES|no]
* timer - time in seconds for sleep interval for monitoring.

* loop - number of times to loop before giving up. Defaults to 1 attempt, meaning it
will not loop and monitor.

» config - LAN means to check only for Agent and Change Controller components,
whereas APPC means to check also for Transmission Controller.

» display - specifies whether to display results or not.

Return Codes

* Returns 0 if the CC server components are running. What components have to
be running depends on standalone LAN or APPC environment.

* Returns 1 if one or more CC server components are not running.
* Return 4 if not an APPC configured CC server.
* Return 8 if not a NetView DM/2 CC server machine.

Example
fhpstat 30, 2, lan, yes

This function unconditionally attempts to remove all NetView DM/2 information
about a cataloged NetView DM/2 object, including anything currently in the request
gueue. Deletes all component name information and any previous NetView DM/2
ADDIT requests that might be in effect for the object.

Syntax

fhpobdel object, [display=YES|no]

* object - NvDM/2 global object name.

» display - specifies whether to display results or not.

Return Codes

* Returns 0 if the syntax of FHPOBEL was valid. Check for success using the
FHPISCAT tool.

* Return 8 if a parameter error occurred or object name was not specified.

Example
fhpobdel _tc_demoapp.nullcorp.ref.0.0, no

Use this function to check the install history for a particular NetView DM/2 global
object against an input list of install clients listed in an input file inclients.

Chapter 15. Using the NVBridge tool 187

FHPOBDIF

188

User's Guide

This tool continues until it has made the number of attempts specified in the loop
parameter or until the return code is 0, whichever occurs first.

This function only supports installation monitoring related to CC clients, not to the
local CC server.

Syntax

fhpobmon object, inclients, [timer], [loop], [display=YES|no]

* object - NetView DM/2 global object name.

 inclients - the name of the file containing the list of CC clients.
* timer - time in seconds for sleep interval for monitoring.

* loop - number of times to loop before giving up. Defaults to 1 attempt, meaning it
will not loop and monitor.

» display - specifies whether to display results or not.

Return Codes

* Returns 0 if an object existed and all clients listed in inclients file were installed.
The inclients file is emptied.

* Returns 1 if an object existed but some of the clients in the inclients were not
reflected in the object’s install history. Input file is updated with the list of only
those clients in inclients originally that did not show up in the history of the
object.

* Returns 2 if an object did not exist in CC server catalog. The input file is
unchanged.

* Returns 8 if a parameter error occurred on invocation. The input file is
unchanged.

* Returns 16 if an internal error occurred. The input file is unchanged.

Example
fhpobmon _tc_demoapp.nullcorp.ref.0.0, infile, 30, 2, yes

Each line of the file infile must contain a client name. No blank lines are allowed.

clientl
client2
client3
betal
testl

Use this function to cross-reference the differences between the install history of a
NetView DM/2 global object and a particular list of install clients listed in an input
file. All clients in filel that are not in the install history are left in filel. All clients in
the install history that are not in filel are put into file2. Hence filel is updated with
the list of clients that should be installed, that are not already installed, and file2 is
updated with the list of clients that are installed, but are not in the list of clients that
should be installed. This command generates the differences.

This function only supports install history related to CC clients, not the local CC
server.

Syntax
fhpobdif object, filel, file2, [display=YES|no]
* object - NetView DM/2 global object name.

» filel - input file of comparison clients, also output file for clients that were not in
the install history.

» file2 - output file updated with clients that were in the install history but which
were not in the original filel list of clients.

» display - specifies whether to display results or not.

Return Codes

» Returns 0 if an object existed and there were no differences. file1 and file2 are
emptied.

* Returns 1 if an object existed but there were differences. filel and file2 reflect
these differences.

* Returns 2 if an object did not exist. filel and file2 are unchanged.

* Returns 8 if a parameter error occurred on invocation. filel and file2 are
unchanged.

* Returns 16 if an internal error occurred. filel and file2 are unchanged.

Example
fhpobdif _tc_demoapp.nullcorp.ref.0.0, filel, file2, no

Each line of the file filel must contain a client name. No blank lines are allowed.

clientl
client2
client3
betal
testl

FHPISCAT

This function checks to see if a NetView DM/2 object exists in the NetView DM/2
catalog. It checks only for a catalog entry, not the associated file.

Syntax

fhpiscat object, [display=YES|no]

* object - NetView DM/2 global object name.

» display - specifies whether to display results or not.

Return Codes
» Returns O if an object was cataloged.

* Returns 1 if the object was not cataloged.
* Return 8 if a parameter error occurred and object name was not specified.

Example
fhpiscat _tc_demoapp.nullcorp.ref.0.0

FHPICAT

This function does the following:
* Creates a NetView DM/2 software object based on the name specified by object

Chapter 15. Using the NVBridge tool 189

FHPUCAT

190

User's Guide

» Walks the input directory sdir to create the filespeclist section of the object
* Names the change file based on buildid
» Sets the InstallDir value in the profile to the value of tdir

» Sets the InstallSection of the profile to reference the install program of jpgm and
parms of iparms

Syntax

fhpicat object, tdir, sdir, buildid, [ipgm], [iparm], [display=YES|no]
* object - NetView DM/2 global object name.

 tdir - value to be used for TargetDir in object change profile.

» sdir - fully qualified path of input directory where software resides.

* buildID - value to be used in naming the change file created and stored in
NetView DM/2 fsdata subdirectory.

* jpgm - name of an installation program to be used for installation.

» jparm - value of installation program parameters to be specified in the object
profile.

» display - specifies whether to display results or not.

Return Codes

* Returns 0 if a new object create attempt was successful. FHPISCAT can be used
to verify that the object was created.

* Returns 1 if a new object create attempt failed.
* Returns 8 if a parameter error occurred.

Example
fhpicat _tc_demoapp.nullcorp.ref.0.0, d:\demoapp, c:\demoapp,
$(targetdir)\inst.exe, -1 -f -t, yes

This function does the following:

* Creates a NetView DM/2 PROC (procedure) object based on the name specified
by object.

» Walks the input directory sdir, looking for the first occurrence of the procedure
file.

» Copies the file into the NetView DM/2 fsdata subdirectory.

» Catalogs the object to NetView DM/2. This object can then have NetView DM/2
INITIATE commands requested against it.

Syntax
fhpucat object, procedure, sdir, [display=YES|no]
* object - NetView DM/2 global object name.

» procedure - the file name of the REXX procedure file located within the sdir that
is to be used to create the object.

» sdir - fully qualified path of input directory where software resides.
» display - specifies whether to display results or not.

Return Codes

» Returns 0 if a new object create attempt was successful. FHPISCAT can be used
to verify that the object was created.

* Returns 1 if a new object create attempt failed.

FHPMCAT

FHPVERIF

* Returns 8 if a parameter error occurred.

Example
fhpucat _tc_demoapp.nullcorp.proc.0.0, uninst.cmd, c:\demoapp, no

This function does the following:

* Creates a NetView DM/2 flat data text object based on the name specified by
object.

» Walks the input directory sdir, looking for the first occurrence of the mail_file file
name.

» Copies the file into the NetView DM/2 fsdata subdirectory.

» Catalogs the object to NetView DM/2. This object can then have NetView DM/2
SEND commands requested against it, or its contents can be viewed.

Syntax
fhpmcat object, mail file, sdir, [display=YES|no]
* object - NetView DM/2 global object name.

* mail_file - the file name of a text file located within the sdir specified that is to be
used to create the object.

* sdir - fully qualified path of input directory where software resides.
» display - specifies whether to display results or not.

Return Codes

* Returns 0 if a new object create attempt was successful. FHPISCAT can be used
to verify that the object was created.

* Returns 1 if a new object create attempt failed.
* Returns 8 if a parameter error occurred.

Example
fhpmcat _tc_demoapp.nullcorp.txt.0.0, readme.txt, c:\demoapp, no

This function verifies that the CC clients listed in the inclients file are defined to the
local CC server and in active status. The file inclients is then modified to contain
only those clients that were not defined or active, or it is emptied if all clients are
verified.

This tool continues until it has made the number of attempts specified in the loop
parameter or until the return code is 0, whichever occurs first.

Syntax
fhpverif inclients, timer, loop, [display=YES|no]

 inclients - the name of the input file containing the list of CC client names to be
verified. This file will be modified to contain the list of those clients that failed to

verify.

» timer - time in seconds for sleep interval for monitoring.

* Joop - number of times to loop before giving up. Defaults to 1 attempt, meaning it
will not loop and monitor.

» display - specifies whether to display results or not.

Chapter 15. Using the NVBridge tool 191

Return Codes

* Returns 0 if every client in the file was defined and active to local CC server.
* Returns 1 if one or more clients in the file did not verify.

* Returns 8 if a parameter error occurred or an input file inclients did not exist.

Example
fhpverif infilel.inp, 30, 2

Each line in the file (infilel.inp) must contain a client name. No blank lines are
allowed.

clientl
client2
client3
betal
testl

FHPRQPUR

This function purges any outstanding requests in the NetView DM/2 request queue

related to the object. After the function completes, you can use the FHPRQMON

tool to confirm that no object-related requests are in the request queue.

This function supports only object-related requests made to CC clients, not the local

CC server. In other words, if there is a request for this object but it is for the CC

server, then the request will not be detected or purged.

Syntax

fhprgpur object, forced=yes|NO, [display=YES|no]

» object - NetView DM/2 global object name to be purged from request queue.

» forced - a yes or no value that defaults to no. If yes is specified, this tool will use
all means possible to force the purging of related requests. If no is specified, this
tool will try only normal means to purge related requests. A forced purge can
result in requests being purged in the middle of processing.

» display - specifies whether to display results or not.

Return Codes

* Returns 0 if one or more requests for the specified object was found in the
request queue, and a purge attempted.

* Returns 1 if no matching requests were found in the request queue.

* Returns 8 if a parameter error occurred.

* Returns 16 if an internal processing error occurred.

Example

fhprgpur _tc_demoapp.nullcorp.ref.0.0, yes, yes

FHPRQMON

This function monitors any outstanding requests in the NetView DM/2 request
queue related to the object.

This tool continues until it has made the number of attempts specified in the loop
parameter or until the return code is 0, whichever occurs first.

192 users Guide

FHPTRVER

This function only supports object-related requests made to CC clients, not the local
CC server.

Syntax
fhprgmon object, file, [timer], [loop], [display=YES|no]
» object - NetView DM/2 global object name to be monitored from request queue.

 file - an output file to be created/updated to contain the list of request identifiers
that are in the request queue regarding the particular object.

* timer - time in seconds for sleep interval for monitoring.

» Joop - number of times to loop before giving up. Defaults to 1 attempt, meaning it
will not loop and monitor.

» display - specifies whether to display results or not.

Return Codes
* Returns 0 if there are no outstanding requests for the object.

* Returns 1 if there were requests detected in the queue and file has the list of
their request IDs.

* Returns 8 if a parameter error occurred.
* Returns 16 if an internal processing error occurred.

Example
fhprgmon _tc_demoapp.nullcorp.ref.0.0, outfile, 0, 1

The output in the file outfile would look like the following:

3
4
16

This function verifies that every NetView DM/2 remote destination listed in the input
file indests is defined to the local CC server and that all the related NetView DM/2
transmission queues are empty and in a released state.

This tool continues until it has made the number of attempts specified in the loop
parameter or until the return code is 0, whichever occurs first.

Syntax
fhptrver indests, timer, loop, [display=YES|no]

* indests - the name of the input file containing the list of NetView DM/2 remote
destination names to be verified. This file will be modified to contain the list of
those destinations that failed to verify, or the file will be empty if they all verified.

* timer - time in seconds for sleep interval for monitoring.

* loop - number of times to loop before giving up. Defaults to 1 attempt, meaning it
will not loop and monitor.

» display - specifies whether to display results or not.

Return Codes

* Returns 0 if every remote destination in the file was defined and related
transmission queue was empty and in a released state.

* Returns 1 if one or more remote destinations did not verify.
* Returns 8 if a parameter error occurred or an input file indests did not exist.

Chapter 15. Using the NVBridge tool 193

* Returns 16 if an internal processing error occurred.

Example
fhptrver infilel.inp, 30, 2

Each line of infilel.inp must contain a remote destination name. No blank lines are
allowed.

usibmnr.austinl
usibmnr.austin2
usibmnr.newyork3
usibmnr.newyork6
usibmnr.chicagol

FHPTRPUR

This function empties the transmission queues and releases the transmission
queues corresponding to the list of remote destination names specified in the input
file indests.

Syntax
fhptrpur indests, [display=YES|no]
* indests - the name of the input file containing the list of NetView DM/2 remote

destination names to be purged. This file will be modified based on the return
codes.

» display - specifies whether to display results or not.

Return Codes
* Returns 0 if no purges were performed due to all transmission queues already
being empty and released. Input file is emptied.

* Returns 1 if some purge modifications were performed against transmission
gueues. The input file is updated to reflect that remote destinations triggered
purge requests.

* Returns 8 if a parameter error occurred or there is a missing input file.

* Returns 16 if an internal processing error occurred.

Example
fhptrpur infilel

Each line of infilel must contain a remote destination name. No blank lines are
allowed.

usibmnr.austinl
usibmnr.austin2
usibmnr.newyork3
usibmnr.newyork6
usibmnr.chicagol

194 users Guide

Chapter 16. Using the Tivoli/Courier packaging tool

The Tivoli/Courier packaging tool supports automated distribution between a single
Tivoli/Courier server and its TCP/IP-connected clients. The Tivoli/Courier tool works
either by itself or in conjunction with TeamConnection’s Gather tool to enable you to
distribute files through Tivoli/Courier. Use of this tool requires you to be familiar with
Tivoli configuration and system administration so that TeamConnection can start
Tivoli/Courier to distribute file packages.

The Tivoli/Courier distribution tool must be run on a Tivoli managed node running
on any of TeamConnection’s UNIX platforms or Windows NT.

The Tivoli/Courier distribution tool includes a sample build script named softdist (on
UNIX platforms) or softdist.exe (on Windows/NT). It can be run from within a
TeamConnection builder. This build script maps TeamConnection build parameters
to the command line syntax for the Tivoli/Courier tool through the teamcpak
command line interface.

You can use Tivoli/Courier as a builder for packaging in two ways:

* Integrate it with the gather step, so that the Gather tool leaves the package files
in a directory from which Tivoli/Courier picks them up.

» Use it without the gather step. In this case, the build script for Tivoli/Courier must
set up the directory and move files into it to interface correctly with the teamcpak
command.

To simplify the interface, the Tivoli/Courier tool uses a select set of options. If you
want to take full advantage of Tivoli/Courier features, you can import a Tivoli/Courier
package specification. Importing a package specification provides you access to all
Tivoli/Courier functions.

The Tivoli/Courier tool produces a Tivoli FilePackage, which is used for distribution.

Using the teamcpak command with Tivoli/Courier

To start the Tivoli/Courier tool, use the teamcpak command. This command is found
in the directory where the TeamConnection family server is installed. If it is started
from a build script, it needs to be in the execution path of the build server.

The complete syntax of the teamcpak softdist command follows. You must specify
the command parameters in the order shown.

teamcpak [-i] [-o0 "string"] softdist inputFile

-i Specifies that only one inputFile is specified in the command: an include file
containing the list of input files. This parameter is optional.

-0 "string"
Specifies that the string listed in quotes be passed to the Tivoli/Courier tool.

For a list of possible flags to be passed, see [Command line flags” on
hage 196 .

inputFile
Specifies the files to be copied and the name of the package specification
file. You can specify this parameter in these ways:

© Copyright IBM Corp. 1992, 1995, 1996, 1997 195

» Specify the name of an include file, whose contents is a list of input files.
One of these input files must be a package specification file with the
extension .pkf. In this case, you must also specify the -i parameter.

» Specify a list of two or more files. One of the files must be a package
specification file with the extension .pkf.

» Specify the directory from which the files are to be copied and the name
of the package specification file.

If more than one package file is listed, the first package file on the
command line or in the include file is used, and the others are treated as
ordinary files.

The following are examples of specifying input files.

teamcpak -i softdist myInputFile
teamcpak softdist inputFilel inputFile2 inputFile3 . . .
teamcpak softdist d:\inputDir\myPkfFile.pkf

Command line flags

You can specify the following flags in the teamcpak command, using the -o
parameter. All of these flags are optional.

-a Create directories on the target.

-C Clear the target (delete all specified files and directories) before the apply. If
you use this option, do not use the -x option.

-t Overwrite existing files (delete files on the target prior to distribution).

-m Accept input errors, such as missing files and directories from the SOURCE
keyword.

-n Send no notices to Tivoli. If you want to post Tivoli notices, you must
configure Tivoli Notices before using this packaging tool.

-p Preview only; do not actually distribute files.

-r Reboot the target after distribution.

-X If an error occurs, leave any distributed files on the target; do not clean up.

If you use this option, do not use the -c option.

-k Keep the Tivoli file package. To enable the Tivoli/Courier tool to perform
more efficiently, the Tivoli/Courier package file is created when the package
part is created and then destroyed and recreated whenever the part is
modified. Use the -k option to prevent the package file from being
destroyed.

Example of the teamcpak softdist command

196

User's Guide

The following is an example of the teamcpak softdist command.

teamcpak -i -0 "-a -n -t" softdist Client.lIst

The -i parameter specifies that the input file Client.Ist is to be used. The -0
parameter passes the following options to Tivoli/Courier:

» -a creates directories on the target.
* -nindicates that no error notices are to be sent to Tivoli/Courier.
* -t indicates that any existing files on the target are to be overwritten.

Writing a package file for Tivoli/Courier

This section describes the Tivoli/Courier package file keywords and their effect on
normal processing behavior.

A sample package file named client.pkf is shipped with TeamConnection. You can
customize it for your own use.

Syntax rules for a Tivoli/Courier package file

Follow these syntax rules when you write a package file:
» Package file keywords must appear in the order shown below.

» Package file keywords must be prefixed with a left parenthesis and must have a
corresponding balanced right parenthesis to end the scope of the keyword.

 If the value for a keyword is a string that contains blanks or parentheses, enclose
the string in double quotes.

» Default options are supplied for all Tivoli/Courier required Tivoli/Courier options.
Specific options can be set in your TeamConnection package file.

« Comments can appear anywhere within the file. Use the characters #| and |# as
delimiters, as shown in the following example:

#| This is a comment |#

The following shows the syntax of a package file for Tivoli/Courier. The keywords
must appear in the order shown here. You must supply the values for the strings
that are shown in Jtalics.
(DATA
(PACKAGEFORMAT softdist)
(TARGETROOT filename)
(MANAGER ProfileManager)
(NODES "ManagedNode. .. PCManagedNode...")
(IMPORT filename |
[(DISTRIBUTE [FULL | CHANGED])
[(INSTALLPGM filename)]
[(LOGNODE ManagedNode)]
[(LOGFILE directory)]
)
)

Keywords for a Tivoli/Courier package file

DATA This keyword is required. It must be the first keyword in the package file,
and it can be specified only once.

All other keywords are nested within the DATA clause.

Example:
(DATA

other keywords go here

)

PACKAGEFORMAT softdist
This required keyword must be the first keyword within the DATA clause. It
can be specified only once. It tells the teamcpak command that this
package file is for Tivoli/Courier.

Chapter 16. Using the Tivoli/Courier packaging tool 197

198

User's Guide

Example:
(DATA

(PACKAGEFORMAT softdist)

TARGETROOT

This keyword specifies the directory path to which files are to be distributed
on the target systems. You can specify only one target root. All target
systems use identical target roots.

Example:
(DATA

(TARGETROOT /usr/local/teamc/images)

MANAGER

This keyword specifies a Tivoli/Courier profile manager that you have
already created in the Tivoli/Courier system.

Example:
(DATA

(MANAGER Distribl)

NODES

This keyword specifies the nodes to which the files are to be distributed.
These must already have been defined to the profile manager as subscriber
ManagedNodes or PCManagedNodes. To distribute files to non-subscribers,
you need to use Tivoli/Courier options set in an import file package
definition.

Example:
(DATA

(NODES "tcaix01 tcaix02")

IMPORT

Use this keyword to select Tivoli/Courier options not supported in the -o
parameter of the teamcpak softdist command. The filename parameter is
the name of a Tivoli/Courier import file package definition. You can generate
an import file using the Tivoli/Courier user interface. If you use the IMPORT
keyword, then instead of calling the standard Tivoli/Courier packaging
command the Tivoli/Courier tool will call wimprtfp to get all of the
Tivoli/Courier configuration options. Using the IMPORT keyword disables
other options and causes errors if they are specified.

If you specify the IMPORT keyword, do not specify the DISTRIBUTE,
INSTALLPGM, LOGNODE, or LOGFILE keywords.

If you use the INCLUDE option in an import file, it is overridden by the list
of files provided to the teamcpak command.

Example:
(DATA

(IMPORT importFile)

DISTRIBUTE
Specify FULL to distribute all files or CHANGED to distribute only those
changed since the last distribution. The default is FULL.
Example:
(DATA

(DISTRIBUTE CHANGED)

INSTALLPGM
Use this keyword to specify an installation script to be run during
distribution on each node that receives files. Specify the full file path name
of the script.
Example:
(DATA

(INSTALLPGM /tivoli/fpTeamcAIX/tcinst1.ksh)

LOGNODE
This keyword specifies the system on which the log file is located. The node
name you specify must be a managed node. The default is the current build
machine or a machine running teamcpak.
Example:
(DATA

(LOGNODE tcaix04)

LOGFILE

This keyword specifies the directory path and file name of the log file on the

log node. Include this keyword only if you use the LOGNODE keyword. The
default value for this keyword is softdist.log.

Example:
(DATA

(LOGFILE /tmp/softdist.log)

Chapter 16. Using the Tivoli/Courier packaging tool 199

Problem determination for the Tivoli/Courier tool

If you are having trouble distributing files using the Tivoli/Courier distribution tool,
you can use the following tools or teamcpak options to determine what the problem
is:
Log file
Check the softdist.log file (or the file name you specified in the LOGFILE
keyword) for error messages.

Mail ~ Check Tivoli mail messages generated during the distribution.

-k option
Run the teamcpak command with the -k option to keep the package file
after the distribution has been run.

-X option
Run the teamcpak command with the -x option to leave any distributed files
on the target.

Trace facility
Run teamcpak with the trace facility. Use this facility only under guidance of
an IBM service representative. See the Administrator’s Guide for more
information.

The following message displays when a Tivoli/Courier command fails during a
distribution.

6022-303 Tivoli/Software Distribution %s command failed with return code: RC.
To correct problem use:
- package file parameters LOGNODE and LOGFILE to record Tivoli output,
- packaging option "-k" to keep Tivoli File Package and teamcpak log file
or "-m" to ignore input errors,
- packaging option "-x" to not clean up files that are distributed,
- TeamConnection Trace facility (see TeamConnection Administration Guide)
- or Tivoli Trace facility (see Tivoli documentation)

Sample package file

200

User's Guide

The following is an example of scripts and items required to automatically execute
packaging, distribution, and installation of files in a AlX-based system.

* The teamcpak command syntax that will execute subcommands or scripts for
the package, distribute, and install functions.

teamcpak -i -0 "-a -n -t" softdist Client.lIst

* The Client.pkf file you create containing keywords and parameters for
distributing and packaging functions.

(DATA
(PACKAGEFORMAT softdist)
(TARGETROOT /user/local/teamc/images)
(MANAGER Distribi)
(NODES perlovrs tcaix02)
(INSTALLPGM /tivoli/fpTeamcAIX/tcinstall.ksh)
(LOGNODE tcaix00)
(LOGFILE /tmp/fpTeamcAIX.log)
)

* The Client.Ist file you create containing the list of files passed to teamcpak . The
first line contains the package file by convention. The example also contains
customized installation files (tcinstall.ksh), TeamConnection tar files, and an
installation script (tcinst.ksh).

Client.Ist;

/usr/teamc/tivoli/Client.pkf
/usr/teamc/tivoli/tcinstall.ksh
/tcinstall/v208/fullpak/aix4/tar/client.tar
/tcinstall/v208/fullpak/aix4/tar/msgen_us.tar
/tcinstall/v208/fullpak/tcinst.ksh

The following presents an example of a Tivoli installation script (tcinstall.ksh) that
is copied to the target along with the tar files and the TeamConnection installation
script (tcinst.ksh), then executed on the target.

#1/bin/ksh
Clear existing Tog

INST_DIR=/usr/local/teamc
INST_TMP=${INST DIR}/tcinst1.tmp
INST_OUT=${INST_DIR}/tcinstl.out
INST_ERR=${INST DIR}/tcinstl.err
INST_LOG=${INST_DIR}/tcinst1.log
IMAGE_DIR=${INST_DIR}/images

rm -f $INST_ERR $INST OUT $INST_LOG $INST TMP >/dev/null 2>&1
mkdir -p ${IMAGE_DIR}

exec 1>${INST_ERR}
exec 2>&1
exec 3>${INST_LOG}

Install TeamConnection using responsefile
print -u3 Starting TeamC installation at 'date
print -u3 User id= "id’

print -u3 Input: $=*

Set up installation environment
- assumes bourne or korn shell
grep 0S_ROOTDIR '/.profile'
if (($7 1=0))
then
print -u3 Updating /.profile
exec 4>>/.profile
cd /
print -u3 'ObjectStore and TeamConnection settings'
print -u4 '0S_ROOTDIR=/usr/1pp/0DI/0S4.0'
print -u4 'export OS_ROOTDIR'
print -u4 'PATH=$PATH:$0S ROOTDIR/cset/bin'
print -u4 'export PATH'
print -u4 'LIBPATH=$LIBPATH:$0S_ROOTDIR/common/1ib'
print -u4 'export LIBPATH'
. /.profile
else
print -u3 /.profile already updated
fi

Set up error Togging
- if x.warning is in file (preceeded by spaces and tabs only
grep " []**.warning" /etc/syslog.conf
if (($7 1=0))
then
print -u3 'Updating /etc/syslog.conf'
touch /var/spool/syslog
chmod 666 /var/spool/syslog
exec 4>> /etc/syslog.conf
print -u4 'x.warning /var/spool/syslog'
stopsrc -s syslog
startsrc -s syslog
else
print -u3 /etc/syslog.conf already updated

Chapter 16. Using the Tivoli/Courier packaging tool 201

202

User's Guide

fi

Update services file for tcocto family
grep "tcocto" /etc/services
if (($7 1=0))
then
print -u3 Updating /etc/services
exec 4>> /etc/services
print -u4 'tcocto 8888/tcp'
else
print -u3 /etc/services already updated

fi

Generate response file

###

Change to use enviroment variables!!
###

print -u5 '1'

print -u5 '5'

print -u5 '/usr/local/teamc/images'
print -u5 '/usr/local/teamc'

print -u5 '/usr/local/teamc/nls'
print -u5 'en_US'

print -u5 '/usr/local/teamc/X11'
print -u5 "'
print -ub

.i
Run provided TeamC install script
1s -1aR ${IMAGE_DIR} >> ${INST_TMP} 2>&1
cd ${IMAGE_DIR}
${IMAGE_DIR}/tcinst.ksh < ${IMAGE DIR}/tcinstl.response
if (($7 1= 0))
then
Failed installation
print -u3 TeamC installation failed
exit 1
else
Clean up installation directory after listing contents
print -u3 We have successfully copied TeamC installation files
print -u3 Installation directory contents:
1s -1aR ${INST_DIR} >> ${INST_TMP} 2>&l
fi

cd /

Remove installation stuff

print -u3 TeamC cleaning up temporary installation directory
rm -rf ${IMAGE_DIR}

cat ${INST_TMP} >> ${INST_LOG}

rm -rf ${INST_TMP}

exit 0

end of file

Appendix A. Environment Variables

You can set environment variables to describe the TeamConnection environment in
which you are working. You are not required to set your TC_FAMILY environment
variable for the TeamConnection client command line interface. However, if the
TC_FAMILY environment variable is not set, the -family must be specified for every

client command. See ['Setting environment variables” on page 207 for more

information about setting environment variables.

The names of the TeamConnection environment variables, the purpose they serve,
the equivalent TeamConnection flag, the equivalent Settings notebook field, and the
TeamConnection component that uses the environment variable are listed in the
following table.

You can override the value you set for an environment variable by using the
corresponding flag in a TeamConnection command. When an environment variable
has a Settings notebook equivalent, TeamConnection uses the two as follows:

* The environment variable controls the command line interface.

* The Settings notebook controls the graphical user interface.

If there is no Settings notebook equivalent for the environment variable, then the
environment variable takes effect regardless of the interface you are using.

To see a list of current environment variable settings, you can issue the following
command from a command prompt:

teamc report -testServer

This command returns information like the following:

Connect to Family Name: ptest

Server TCP/IP Name: amachine.company.com
Server IP Address: 9.1.23.45

Server TCP/IP Port Number: 9999

Server Specific Information ------==--=mmmmmmmmmm
Product Version: 3.0.0

Operating System: AIX

Message catalog language: English
Server Mode: non-maintenance
Authentication Level: HOST_ONLY

TC_RELEASE|v300
TC_FAMILY |ptest@amachine.company.com@9999

Table 1. TeamConnection environment variables

Environment variable Purpose Flag Setting Used by

LANG Specifies the language-specific Client, family
message catalog. server

NLSPATH Specifies the search path for NLS path Client, family
locating message files. server

OS_NETWORK Specifies the networking ObjectStore

protocols used by ObjectStore
servers and clients. Set during
installation.

© Copyright IBM Corp. 1992, 1995, 1996, 1997

203

Table 1. TeamConnection environment variables (continued)

Environment variable Purpose Flag Setting Used by

OS_ROOTDIR Specifies the path where the ObjectStore
TeamConnection server is
installed. Set during
installation.

OS_TMPDIR Specifies where ObjectStore is ObjectStore
to place temporary files. Set
during installation. This
variable is used only in
Windows 32s environments.

PATH Specifies where tcadmin is to Family server
search for the family create
utilities.

TC_ALLOWTRACKFIX Allows users to add works Family server
areas in fix state to drivers.

TC_BECOME Identifies the user ID you want -become Become Client, build server
to issue TeamConnection user
commands from, if the user ID
differs from your login. You
assume the access authority of
the user ID you specify.

TC_BUILDENVIRONMENT Specifies the build environment -e Client
name, such as OS/2 or MVS.
The value you specify here
can be anything you like, but it
must exactly match the
environment specified for a
builder in order for the builder
to use this build agent. This
value is case-sensitive.

TC_BUILDOPTS Specifies build options for -C, -S, -l Build server
sending build log file
messages to the screen, and
setting the logging level.
Possible values are
TOSCREEN, and VERBOSE.
If you do not specify any of
these options, then the build
server writes build messages
to the build log file
(teamcbld.log), and writes a
minimum level of messages to

the log file.
TC_BUILDPOOL Specifies the build pool name. -pool Pool Build server
TC_BUILD_RSSBUILDS FILE Specifies the name of startup Build server

files to be used to provide
information about build servers
to the build process.

204 user's Guide

Table 1. TeamConnection environment variables (continued)

Environment variable Purpose Flag Setting Used by

TC_BULKCHUNKSIZE Identifies the size, in bytes, of
the storage blocks used to
store binary parts in
ObjectStore. Do not use,
unless you are trying to tune
database performance with
guidance from IBM service.

Family server

TC_CASESENSE Changes the case of the Case Client
arguments in commands, not
in queries.

TC_CATALOG Specifies a specific file for the Family server

TeamConnection message
catalog. Sometimes,
depending upon the operating
system environment, the
catalog open command will
only look in a particular
directory for the catalog. If the
host is running multiple
versions of TeamConnection,
this variable may be used. To
set this environment variable,
specify the file path name of
the message catalog as in the
following example:
TC_CATALOG="/family/msgcat/teamc.cat”

TC_COMPONENT Specifies the default -component Component Client, make
component. import tool
TC_DBPATH Specifies the database Family server

directory path.

TC_FAMILY Identifies the TeamConnection -family Family
family you work with.

Build server,
client, family
server, make
import tool

TC_MAKEIMPORTRULES Specifies the name of the rules
file that TeamConnection uses
when importing the makefile
data into TeamConnection. If
you set this environment
variable, then you do not have
to use the /u option with the
fhomigmk command. Specify
the full path name of the rules
file. If neither this environment
variable nor the /u option is
used, TeamConnection uses
default rules.

Make import tool

Appendix A. Environment Variables 205

Table 1. TeamConnection environment variables (continued)

Environment variable

Purpose Flag Setting

Used by

TC_MAKEIMPORTTOP

Strips off the leading part of
the directory name when
importing parts into
TeamConnection. For example,
you have parts with the
following directory structure:
g:\octo\src\inc\. To create these
parts without the g:\octo
structure, you can set
TC_MAKEIMPORTTOP=g:\octo
before you invoke the make
import tool. The parts created
in TeamConnection have the
directory structure of srclinc\.

Make import tool

TC_MAKEIMPORTVERBOSE

Causes the -verbose flag to be
added to part commands
created by tfhomigmk.

Make import tool

TC_MIGRATERULES

Specifies the name of a file
containing the rules to be
applied for migration of
makefiles if the name is not
supplied on the fhomigmk
command line as a parameter.

Client

TC_NOTIFY_DAEMON

An alternate way of starting
notifyd with the teamcd
command. If you set this
environment variable, then you
do not have to use the -n
option with the teamcd
command. Specify the full path
name of the mail exit to use
with notifyd.

Family server

TC_RELEASE

Specifies a release. -release Release

Client, make
import tool

TC_SYSTEM_LOG

Specifies where syslog
messages are to be written.
Specify the full path name of
the file to use for syslog
messages. The default is

Family server

syslog.log.
TC_TOP Specifies the source directory. -top Top Client
TC_TRACE Specifies the variable that lets Client, family
the user designate which parts server, build
should be traced. You should server

modify this only when directed
to do so by an IBM service
person. Otherwise it is set to
null. To trace all parts, specify
TC_TRACE=*.

206 User's Guide

Table 1. TeamConnection environment variables (continued)

Environment variable

Purpose

Flag

Setting

Used by

TC_TRACEATTEMPTS

Specifies maximum number of
failed trace attempts accepted
before giving up. You should
modify this only when directed
to do so by an IBM service
person.

Client, family
server

TC_TRACEDELAY

Specifies the amount of time,
in seconds, that
TeamConnection waits, when a
trace attempt fails, before
attempting another trace. The
default is 1 second. You should
modify this only when directed
to do so by an IBM service
person.

Client, family
server

TC_TRACEFILE

Specifies the output (part path
and name) of the trace that the
user designates using
TC_TRACE. The default trace
file name is tctrace. For the
MVS build server, the default
trace file is stdout.

Client, family
server

TC_TRACESIZE

Specifies the maximum size of
the trace file in bytes. If the
maximum is reached, wrapping
occurs. The default is one
million bytes.

Client, family
server

TC_USER

Specifies the user login ID for
single-user environments
0S/2, Windows 3.1, and
Windows 95. This environment
variable is not used in
multiuser environments AlX,
HP-UX, Solaris, and Windows
NT.

User ID

Client, build server

TC_WORKAREA

Specifies the default work area
name.

-workarea

Work area

Client, make
import tool

TC_WWWPATH

Specifies the path for the
HTML helps and image files for
Web client.

-workarea

Work area

Client, family
server

Setting environment variables

For methods of setting your environment variables, refer to your operating system
documentation. For example, for OS/2 you can use the following command to set
the TC_FAMILY environment variable:

SET TC_FAMILY=familyName@hostname@portnumber

Appendix A. Environment Variables 207

208 user's Guide

Appendix B. Importing makefile information into
TeamConnection

TeamConnection provides a command to help you import makefile information into
the TeamConnection database. The fhomigmk command reads a makefile and
creates the parts in it. Build tree connections are created based on a rules file. The
command syntax of the fhomigmk command is:
fhomigmk /m [makefile]

/f [family]

/r [release]

/w [work area]

/c [command file]

/u [rules file]

/x

/s

/k

You can precede the parameter with either a slash (/) or a dash (-).

The parameters are defined as follows:

Im [makefile]
The name of the makefile you want to import into TeamConnection. If you
do not specify this parameter, TeamConnection uses makefile.

It [family]
The name of the TeamConnection family into which the makefile data will
be imported. If not specified, TeamConnection uses the value of the
TC_FAMILY environment variable. If the value of TC_FAMILY is not defined,
the value none is used.

Ir [release]
The name of the TeamConnection release into which the makefile data will
be imported. If not specified, TeamConnection uses the value of the
TC_RELEASE environment variable. If the value of TC_RELEASE is not
defined, the value none is used.

Iw [work area]
The name of the TeamConnection work area into which the makefile data
will be imported. If not specified, TeamConnection uses the value of the
TC_WORKAREA environment variable. If the value of TC_WORKAREA is
not defined, the value none is used.

Ic [command file]
The name of the command file that will be produced and saved. If this file
already exists, commands created by the specified makefile are appended
to the existing contents.

lu [rules file]
The name of the rules file that TeamConnection will use when importing the
makefile data into TeamConnection. If not specified, TeamConnection uses
the value of the TC_MAKEIMPORTRULES environment variable. If no rules

file is found, TeamConnection uses default rules. [Creating a rules file” on

explains the rules, the format of this file, and the default rules.

IX Specifies that you want to run the command file that was produced by the
/c parameter.

© Copyright IBM Corp. 1992, 1995, 1996, 1997 209

Is Specifies that the build tree is to be displayed after the command is issued.
If specified, the command file is run even if the /x parameter is not
specified.

Kk Specifies that you want TeamConnection not to erase the intermediate files
it uses to process this command. This might be useful in debugging
problems that arise during the import. However, in general, you will not
specify this parameter. When specified, the following intermediate files are
saved:

modified makefile
A modified form of the imported makefile. The command invocations
(of things like linkers and compilers) are replaced by calls to a
TeamConnection command that captures dependency data. To find
the cause of import errors, type the following command at an OS/2
command line:

nmake -f mod_make

create file
A list of all the objects referenced by the makefile that should be
created in the TeamConnection database.

connect file
A list of all the objects referenced by the makefile that should be
connected to other objects in the TeamConnection database. Each
line contains one dependency relationship in the format <child>
<parent>.

TeamConnection provides an environment variable, TC_MAKEIMPORTTOP, that
when set strips off the leading part of the directory name. For example, you have
parts with the following directory structure: g:\octo\src\inc\. Because you want the
parts created without the g:\octo structure, you set TC_MAKEIMPORTTOP=g:\octo
before you invoke the make import tool. The parts created in TeamConnection have
the directory structure of src\inc\.

Another environment variable provided by TeamConnection,
TC_MAKEIMPORTVERBOSE, when set causes the -verbose flag to be added to
part commands.

The following is an example of invoking the make import tool:
fhomigmk /m Mymak /w mywork /s /u myrules

In this example, the makefile called mymak is used to create a temporary command
file containing TeamConnection commands. The commands are formed based on
the rules defined in the file myrules. The family and release used in the commands
are those specified in the environment variables TC_FAMILY and TC_RELEASE.
The work area used in the commands is mywork. After the commands are issued,
the resulting build tree is shown using the TeamConnection GUI.

Creating a rules file

The import rules file is a text file that describes how you want TeamConnection to
create and connect parts. In this file you supply a set of rules, one per line, using
the following syntax:

210 uUser's Guide

file mask
The mask specifying the names of the files to which this rule applies. The *
and ? wildcards are supported. For example, you could specify file names
such as *.cbl, abc*.cpp, or foo\src*.obj.

type The type of contents of the files to which the rule applies when they are
stored in TeamConnection as a part. Allowed values are binary, text, none,
or ignore. If you specify ignore as the file type, then all files that match the
file mask are bypassed.

builder
The name of the TeamConnection builder to be associated with the part.
The builder is not created for you. If you specify a builder, it must exist in
TeamConnection before you run fhomigmk. A value of none means that no
builder will be associated with the part.

parser
The name of the TeamConnection parser to be associated with the part.
The parser is not created for you. If you specify a parser, it must exist in
TeamConnection before you run fhomigmk. A value of none means that no
parser will be associated with the part.

connect
How the part will be connected to other parts in TeamConnection. The
following values are allowed:

* input

* output

* dependent
* none

When none is specified, the part is not connected to another part even
though a dependency was found for the part in the make file. For example,
when you indicate none for a file mask of *.h files, the *.h files are created
in TeamConnection, but not connected to the files that include them. The
value you will use most often is input.

content
Where the initial content of the part can be found:

* none indicates that the part is initially created as empty.

* directory\ indicates to concatenate with the name of the file in the
makefile. This is where the contents are expected to be found.

* *indicates to use the name in the makefile, relative to the current
working directory.

For example, if a makefile specifies a file src\abc.cbl and the makefile
specifies f:\mysrc\, the content is expected in f:\mysrc\src\abc.cbl. For a file
of *.cbl, the content is expected in src\abc.chbl relative to the current working
directory.

parameters
The build parameters to be attached to the part. Enclose the parameter in
double quotes if it has spaces. Use the value none to indicate no
parameters.

component
The TeamConnection component that will contain the part. If none is
specified, the value of the TC_COMPONENT environment variable is used.

Appendix B. Importing makefile information into TeamConnection 211

212

User's Guide

As TeamConnection processes each part referenced in the makefile, it looks for a
rule that matches the part name. If a match is found, the rule is used. The rules are
searched from top to bottom. The first matching rule is used.

Comments are denoted by a pound sign (#) in the first column.

Columns are separated by spaces.

A sample rules file, called fhomigmk.rul, is supplied with TeamConnection. Use this
file to help you create a rules file that is appropriate for your development

environment.

The following is a simple example of an import rules file:
<top of file>

*,exe binary Tlinker none input none /Debug ship

*.0bj binary icc none input none /Ti+ objects

*.Cpp text none cplus input * none source

* . h* text none cplus none * none source
<end of file>

If you do not specify a rules file in the /u parameter of the fhomigmk command,
TeamConnection uses the value of the TC_MAKEIMPORTRULES environment
variable. If no rules file is found, TeamConnection uses the following default rules:

<top of file>
file mask type builder parser connect content parameters component

K text none none none none none root

Appendix C. TeamConnection Merge

TeamConnection provides a tool that you can use to merge two or three selected
files together to make one single file. With the TeamConnection VisualMerge tool,
you can select options for viewing differences and collisions, as well as view the

composite output of the merged files. Both a command line and a graphical user
interface are provided.

VisualMerge combines changes made to a part by more than one developer into a
single part. The figure below describes the merge of three files into a single file.
Items one through six represent the main stream of development for a particular
part or file. Item 2 represents the base or common file from which two streams
proceed. At the time of the merge, the most recent version in the two streams are
items 4 and 2.3. In this scenario, the user selects the base or common file, item 2,
as input 1. The user also uses item 4, the latest version in development, as input 2.
The latest version in the branch is represented as item 2.3, or input 3. ltem 5
represents the outcome of the merge.

Navigator

Collisicns

Once the merge is complete a window appears with the three original files and the
final merged file.

© Copyright IBM Corp. 1992, 1995, 1996, 1997 213

214 user's Guide

Appendix D. Enabling a Workframe project for
TeamConnection

TeamConnection lets you create a Workframe version 3 project that has
TeamConnection options as well as a set of TeamConnection actions. For each
project, you specify on the Project Options window the values for these options. By
doing this, you logically connect a Workframe project with a set of TeamConnection
parts. This makes it easier for you to perform TeamConnection actions, such as
checking parts in and out, directly from the Workframe.

Creating a TeamConnection-enabled Workframe project

Follow these steps to create a Workframe project that is enabled for
TeamConnection.

1. On an OS/2 command line, type the following command and press Enter:
fhotcini.cmd

This command creates a TeamConnection Project Smarts catalog on your
desktop. (If you have already created this catalog, there is no need to perform
this step again for additional projects.)

2. Open the TeamConnection Project Smarts catalog. Select the TeamConnection
project, and select the Create pushbutton.

3. Specify the location for the TeamConnection project you want to create; then
select OK.

When the action completes, you will see a TeamConnection Project on your
desktop.

Setting up your project options

Options are provided so that you can set up each TeamConnection Workframe
project. To set the options, do the following:
1. Select Tools Setup from the project’s Views pull-down menu.

2. Select the Project Options or File Options menu from any of the
TeamConnection actions.

The following options are provided:

Family
The TeamConnection family.

Release
The TeamConnection release.

Work area
The TeamConnection work area in which you will perform TeamConnection
actions.

Query mask
Any valid TeamConnection -where clause for parts. Leave blank to see all
parts. (This is used in the project’'s Show Parts action.)

Show filter
Check this if you want to display the PartFull Filter window instead of using
the query mask in the Show Parts action.

© Copyright IBM Corp. 1992, 1995, 1996, 1997 215

Profile
Names the rules file to use for the Import Make action. Specify the fully
qualified name unless you are sure it will be found in your path correctly.
Select the Find push button if you need help.

Using your TeamConnection Workframe project

Project actions

Part actions

216 User's Guide

You can perform a set of TeamConnection actions from within your project:
« FProject actions! lists the actions you can perform without selecting a part.

- [Part actions] lists the actions you can perform against a selected
TeamConnection part.

Extract part
Displays an unprimed Extract Parts window.

Checkout part
Displays an unprimed Check Out Parts window.

Checkin part
Displays an unprimed Check In Parts window.

Unlock part
Displays an unprimed Unlock Parts window.

Lock part
Displays an unprimed Lock Parts window.

Create part
Displays an unprimed Create Parts window.

Build part
Displays an unprimed Build Parts window.

View part contents
Displays an unprimed View Part Contents window.

View part information
Displays an unprimed View Part Information window.

Edit part
Displays an unprimed Edit Part window.

Show parts
If the project attribute Show filter is not set, issues a query based on the
project attribute’s query mask. If the project attribute Show filter is set,
displays the PartFull Filter window.

Extract part
Displays the TeamConnection Extract Parts window to extract the selected
part.

Checkout part
Displays the TeamConnection Check Out Parts window to check out the
selected part to the work area specified in the project options.

Checkin part
Displays the TeamConnection Check In Parts window to check in the
selected part to the work area specified in the project options.

Unlock part
Displays the TeamConnection Unlock Parts window to unlock the selected
part.

Lock part
Displays the TeamConnection Lock Parts window to lock the selected part.

Create part
Displays the unprimed TeamConnection Create Parts window.

Build part
Displays the TeamConnection Build Parts window to start a build of the
selected part.

View part contents
Displays the TeamConnection View Part Contents window for the selected
part.

View part information
Displays the TeamConnection View Part Information window for the
selected part.

Edit part
Displays the TeamConnection Edit Part window for the selected part.

Import makefile
Imports the information contained in the selected makefile into the
TeamConnection database.

The Import makefile action is restricted to files with the extension .mak. The other
actions in this list apply to files of all types.

Using your project: a simple scenario

Suppose you are working on a defect in the family FAMILY1, release REL1_1. You
have created a TeamConnection work area called SANDBOX to work in. You want
to use the Workframe to access your TeamConnection parts. Here is what you
might do.

1. Create a TeamConnection Workframe project called DefectABC.
2. Open the project. Select Tools setup from the View pull-down menu.

3. Select any of the actions. Press mouse button 2 to display the context menu;
then select Project options or File options from the context menu. The result
is a window in which you can specify the TeamConnection information about the
project.

4. Specify the family FAMILY1, the release REL1_1, and the work area
SANDBOX. Check the Show filter check box. Select OK.

5. Specify the general Workframe attributes of the project using the project’s
Settings notebook. These attributes include information such as the location of
the OS/2 files for the project. For example, in this scenario, you specify that you
want this project to contain all files in the directory c:\defect_abc, which is
initially empty.

6. Select TeamConnection -» Show files from the Project context menu. The
PartFull Filter window is displayed. Specify the filter criteria; then select OK. For

Appendix D. Enabling a Workframe project for TeamConnection 217

218

User's Guide

10.

11.

12.

13.

14.

example, specify that you want to see all the parts with extensions .cpp, .exe,
and .hpp. The Parts window is displayed.

Select the parts client.exe, server, client.cpp, client.hpp, server.cpp, and
server.hpp. Select Extract from the context menu.

On the Extract Parts window, type c:\defect_abc in the Target directory field
and select OK. Now you can interact with these parts directly from the
Workframe project.

In the Workframe project, run the ipmd.exe debugger until you determine the
cause of the problem. Suppose you find the bug is in client.cpp.

Go back to the Parts window. Select client.cpp from the list of parts, and
select TeamConnection » Checkout part from the context menu for the
object. The part is checked out to the SANDBOX work area.

Edit the file to fix the problem; then select TeamConnection -+ Checkin part to
check the part back into SANDBOX, the TeamConnection work area from
which it was checked out.

Build the part by selecting TeamConnection = Build part on the context menu
for the file client.exe.

When the build completes, extract the resulting executable by selecting
TeamConnection = Extract part from the file’s context menu.

Run the executable to verify that the problem has been fixed.

Appendix E. Enabling and Using the ENVY/Manager-
TeamConnection Bridge

Overview of the ENVY/Manager-TeamConnection Bridge

ENVY provides a repository with operational support tailored specifically for
highly-interactive, prototyping environments that emphasize iterative development,
such as VisualAge Smalltalk or VisualAge Generator. A bridge from ENVY to
TeamConnection provides access to the powerful software configuration
management (SCM) support provided by ENVY, along with the scalable,
enterprise-level support provided by TeamConnection. TeamConnection’s ability to
manage all development artifacts (not just source code), to share information in a
common model, and to integrate multiple tools and multiple languages across the
enterprise on a single baseline extends the capabilities of software development
groups. The ENVY/Manager-TeamConnection Bridge (also referred to as the
bridge in this documentation) will provide essential integration for VisualAge tools
which use ENVY as their day-to-day operational library.

VisualAge Generator Version 3.0 has access to the TeamConnection-ENVY Bridge
through VisualAge Smalltalk, which can interface directly with ENVY/Manager. The
bridge supports the import and export of VisualAge Generator objects (parts) to and
from TeamConnection.

ENVY/Manager provides a collaborative component development environment for
application development and integration using fine-grained object languages, such
as Smalltalk. The ENVY repository is designed for languages that run on the
universal virtual machine (uVM). The repository includes persistence, versioning,
and configuration management.

TeamConnection can be used to manage artifacts (parts) that need to be shared
with non-uVM based languages or tools for purposes of build management, problem
tracking, and other configuration management functions. These artifacts can be
exported to the TeamConnection server through the ENVY/Manager-
TeamConnection Bridge and stored as TeamConnection parts.

ENVY objects stored in a TeamConnection database can be queried and retrieved
back into the ENVY/Manager development environment as needed. The units of
storage in TeamConnection include exported ENVY components (such as
applications and configuration maps) and large grained objects (files). Small-grained
objects, such as VisualAge Generator data items, are imported and exported as
constituents of applications. The data items in an application are exported to
TeamConnection in an array that makes their definitions available to other tools
through the data model.

Scope of this documentation

This documentation is intended for users and administrators installing and using the
bridge. It is assumed that you familiar with both the VisualAge Smalltalk and
TeamConnection products.

The following subsections describe the mechanics of enabling the
ENVY/Manager-TeamConnection Bridge for VisualAge Smalltalk Pro (Version 4.0 or
later), the process of exporting ENVY components to TeamConnection, and the
process of importing these components back into ENVY/Manager. See the

© Copyright IBM Corp. 1992, 1995, 1996, 1997 219

VisualAge Generator documentation for tool-specific details. TeamConnection
information related to change tracking and build processing are addressed in the
TeamConnection documentation.

Many terms used by VisualAge Smalltalk and TeamConnection are problematic
because the tools may define these terms differently. Release and component are
typical examples. To avoid any ambiguity, such terms may preceded by the name of
the tool they are applied to, such as TeamConnection release.

Description of theENVY/Manager-TeamConnection Bridge

220

User's Guide

Basic functionality

It makes sense to describe the functionality of the bridge from the perspective of a
Smalltalk developer, because it is through the Smalltalk image that the user drives
the bridge. The bridge is an import/export facility for three types of entities:

* Smalltalk configuration maps
» Smalltalk applications

» Files residing on local and networked file systems that are accessible through the
image

The bridge allows a Smalltalk developer to store any of these entities in a
TeamConnection database and retrieve them at a later time. As is the case when
exporting to other ENVY/Manager libraries, configuration maps and applications
must be versioned before they can be exported. This enforces the notion that the
Smalltalk developer uses the bridge and TeamConnection to maintain baselines
rather than for managing work-in-progress.

Developers use ENVY/Manager’s fine-grained support to facilitate the process of
shared development in open editions of components on a daily basis. At appropriate
junctures, components are versioned and promoted to TeamConnection, where
together with other project elements, they form a baseline across an entire project.
The resulting baseline may contain objects such as program elements, file, and
metadata.

From the perspective of the TeamConnection user or administrator, the bridge
allows the Smalltalk image to function as a TeamConnection client, storing and
retrieving parts in a TeamConnection family database.

How the bridge communicates with TeamConnection

The bridge functions are initiated from within the VisualAge Smalltalk environment.
Each operation that interacts with TeamConnection runs for some time in the
Smalltalk image, but at some stage will make use of functions built into an
appropriate version of the TeamConnection client and server. The bridge itself is
implemented in Smalltalk, with the primitive functions provided in one of the DLLs in
TeamConnection.

The unit of transfer used by the bridge for Smalltalk components is an
ENVY/Manager library. Each library stored in TeamConnection contains one of the
following:

* a Smalltalk application and its released subapplications (and their released
subapplications, and so forth)

» a configuration map without any of its released applications

Note: Subapplications cannot be exported through the bridge without an enclosing
application.

ENVY/Manager libraries are stored in TeamConnection databases as
TeamConnection parts. When the bridge exchanges a library with TeamConnection,
the target in a TeamConnection database is specified by a TeamConnection context.
A TeamConnection context is comprised of the following TeamConnection
parameters:

* Family name
* Release name
¢ Work area name

Note: Each TeamConnection context can contain only one version of any named
application or configuration map. This is unlike ENVY/Manager libraries, in
which multiple versions of a named Smalltalk component can co-exist.

The bridge is aware of the various relationships between ENVY/Manager
components. When an application is transferred through the bridge, all of its
released subapplications are transferred with it. When a configuration map is
transferred through the bridge, the bridge will also transfer the released applications
in separate operations. Depending on a user-specified setting, the bridge can also
transfer required maps of configuration maps.

Preparing to use the ENVY/Manager-TeamConnection Bridge

The bridge is delivered as a configuration map suitable for loading into a VisualAge
Smalltalk Version 4.0 (or later) image. The library, TCEMBR.DAT, will contain the
configuration map ENVY/Manager-TeamConnection Bridge and, for VisualAge
Generator build support, VAGen ENVY/TC Bridge .

These configuration maps should be imported into your development library so that
it can be loaded by all of the users sharing that library. The step-by step instructions

are described in llnstalling and activating the ENVY/Manager-TeamConnection
Bridge” an page 222|

Usually, the Library Supervisor or the first user to use the bridge will perform this
operation and then inform other users that the tool is available in the library.

The sections that follow describe the steps necessary to set up the bridge and
verify that it is functional.

Setting up the bridge environment

The following information is especially pertinent to the individual(s) responsible for
bridge setup and administration.

Prerequisites

Before the bridge will work, you must have the following:

* VisualAge Smalltalk Pro Version 4.0 or later installed. See the VisualAge
Smalltalk documentation to confirm that you have the appropriate hardware and
software prerequisites available.

* A TeamConnection server that is running.

Appendix E. Enabling and Using the ENVY/Manager-TeamConnection Bridge 221

* A TeamConnection GUI client installed on the machine where you are running
your Smalltalk image.

Note: This release of the bridge only runs on OS/2 and Windows platforms.

You should verify that you are able to communicate with the relevant
TeamConnection server by using the TeamConnection GUI client. If you cannot
communicate with the TeamConnection server in this manner, the bridge will
definitely not function correctly.

Only certain releases of TeamConnection support the bridge. If you have received
the bridge with your release of TeamConnection, you probably have a matching
version. If not, then you may have to upgrade your release of TeamConnection. The
DLL TCEMBR.DLL should be available to programs in your environment, because
this is the DLL that contains the primitives used by the bridge.

Environment variables

The bridge relies on the user to specify the various parameters that make up the
TeamConnection context. By default, the bridge will query the variables in the
environment that the image is running. These variables, TC_FAMILY ,
TC_RELEASE , and TC_WORKAREA, are used as initial values for the default
TeamConnection context.

There are two additional environment variables that can be defined for the bridge,
as follows:

« TC_COMPONENT is used as the default TeamConnection component for parts
stored in TeamConnection through the bridge. If TC_COMPONENT is not defined
or is empty, the value root is used.

 TC_RELATIVE is used to specify the initial destination path for files retrieved
from TeamConnection through the bridge. If TC_RELATIVE is not defined or is
empty, the current directory according to the image is used.

It is not necessary to define any of these variables for the bridge to work. Defining
them only makes setting up the default bridge configuration in the image easier for
a bridge user.

A system administrator may want to have the environment variables automatically
defined in a network login script. When a user logs into a LAN and then uses the

bridge, the user will be provided with the defined values as hints for setting up the
default TeamConnection configuration.

Installing and activating the ENVY/Manager-TeamConnection Bridge

222

User's Guide

The bridge is loaded into the image like any other configuration map using the
Load option from the Editions menu of the Configuration Maps Browser

Once the bridge is loaded, the submenu TeamConnection Bridge will appear on
the Tools menu of the System Transcript window. This submenu is referred to as
the bridge menu. The bridge menu is the launching point for all of the bridge
operations.

(Loading the ENVY/Manager-TeamConnection Bridge” on page 223 provides

step-by-step instructions for the bridge loading process.

Loading the ENVY/Manager-TeamConnection Bridge

Follow these steps to load the ENVY/Manager-TeamConnection Bridge:

1.
2.

10.

11.

12.

Open the VisualAge for Smalltalk Pro - Client.

Go to the System Transcript window and select Browse Configuration Maps
from the Tools pulldown menu.

In the Configuration Maps Browser window, select Import from the Names
pulldown menu.

A dialog will prompt you to enter the full path name of the library that you want
to import. For purposes of activating the bridge, you will need to supply a
TeamConnection pathname (determined by where you have installed
TeamConnection) for the file called TCEMBR.DAT. Select the OK pushbutton to
continue and display the Selection Required window.

In the Selection Required window, select ENVY/Manager-TeamConnection
Bridge in the Names list, which will prime the Versions list with a version
number.

Select the version in the Versions list and move it to the Selected Versions list
using the right-arrow pushbutton.

For the additional interoperability with VisualAge Generator described in m

Generatar developers” an page 230, you must also import the configuration map

called VAGen ENVY/TC Bridge, as described in the previous steps.

Select the OK pushbutton to initiate the import process. During the process of
importing the TCEMBR.DAT file into the VisualAge Smalltalk Pro manager.dat
file, the System Transcript window will issue a message stream that confirms
the success of the import.

In the Configuration Maps Browser window, select ENVY/Manager-
TeamConnection Bridge from the Names list.
Select the item (there should only be one available) in the Editions and
Versions list.
Select all of the items in the Applications list, click mouse button 2, and select
Load from the pop-up menu.

Note: For the additional interoperability with VisualAge Generator described in

tUsing the FNVY/Manager-TeamConnection Bridge: a simple scenarid
for VisualAge Generator developers” on page 23d, you must also load

VAGen ENVY/TC Bridge, as described in the two previous steps.
ENVY/Manager-TeamConnection Bridge must be loaded first.

After the application loading progress dialog completes without errors, the
ENVY/Manager-TeamConnection Bridge should be functional. You can close
the Configuration Maps Browser window at this time.

Testing the ENVY/Manager-TeamConnection Bridge

To verify that the bridge is active and ready for ENVY component export/import
functions, follow these steps:

1.

2.

Go to the System Transcript window and select the Tools pulldown menu.
Then select Default Properties from the TeamConnection Bridge cascade
menu. This will display the Default Properties notebook.

Verify that the TeamConnection family in the Family field on the Context page
of the Default Properties notebook is appropriate for your project. You may
need to coordinate your access to the family with your family administrator.

Appendix E. Enabling and Using the ENVY/Manager-TeamConnection Bridge 223

3. Select the Test Server pushbutton. If the bridge is properly configured, the
server connection test will return an information window that provides
server-specific information. Select the OK pushbutton to dismiss the server
information window.

You are now ready to export ENVY components to a TeamConnection server.
Note: When exiting VisualAge for Smalltalk Pro - Client, you should save your

image so that the ENVY/Manager-TeamConnection Bridge will be preserved
for future use.

Using the ENVY/Manager-TeamConnection Bridge

You can perform TeamConnection functions on ENVY components, provided that
you supply parameters necessary to identify a bridge configuration. Bridge
configuration parameters are defined by the Default Properties notebook, as

described in ESetting default praperties].

Each time the bridge interacts with TeamConnection, it uses the parameters in a
bridge configuration to ensure that the behavior of the operation is in accordance
with the users’ specifications. Because specifying a configuration for each operation
would be time-consuming and most operations would use the same configuration,
you can specify a default configuration. Each time the user initiates an operation,
you can use the default configuration or modify it.

The default configuration is stored in the image so that once it is setup, it will be
maintained until the bridge is reloaded from the library.

Setting default properties

224

User's Guide

To set properties for import and export actions across the ENVY/Manager-
TeamConnection Bridge, open the Default Properties notebook as described in

[Testing the ENVY/Manager-TeamConnection Bridge” on page 223. The Default

Properties notebook contains four pages of settings, as follows:

Each page of the Default Properties notebook includes the following controls:

Show this dialog when exporting and importing checkbox
The Show this dialog when exporting and importing checkbox specifies
whether the dialog should be shown each time an import/export operation
for the bridge is initiated by the user. If the dialog is shown, it gives the user
the opportunity the default configuration for a particular operation only.

push buttons

OK Saves the current settings as default setting. This option may not
be available if some fields are left incomplete or contain invalid
values.

Cancel
Closes the Default Properties notebook and ignores any changes
made in the dialog.

Defaults
Updates the dialog fields with the values in the current default
bridge configuration.

Reset Updates the dialog fields with the initial values that are set when
the bridge is first loaded into the image.

Context page

The context page is used to specify the TeamConnection family, release, and work
area used as the context for the default bridge configuration.

Family
Use this field to input the name of your TeamConnection family server.
Select the Test Server pushbutton to return an information window that
provides server-specific information. If you cannot successfully
communicate with the TeamConnection server, you may have specified an
invalid family name. Your TeamConnection family administrator may be of
some assistance at this point.

Release
The TeamConnection release. By selecting the Query releases pushbutton,
you can prime the Release field drop-down menu with valid release choices
based on the Family field value.

Work area
The TeamConnection work area in which you will perform TeamConnection
actions. By selecting the Query work areas pushbutton, you can prime
Work area field drop-down menu with valid work area choices based on the
Release field value.

Note: Any communication with a TeamConnection server takes time. Querying the
available releases and work areas typically takes a few seconds, which is
the reason that this data is not automatically used to populate the dialog.

Operations page

The Operations page determines how operations are performed in
TeamConnection, including whether operations are forced and how parts in the
database are locked.

Force The Force and Don't force radio buttons are mutually exclusive.

In TeamConnection terms, force is an indication that changes should be
forced into the TeamConnection repository, possibly breaking links with the
part in other version contexts. Its intent is to indicate that, although the
specified version might not match the current set of versions applicable to
the object in the persistent store, the changes in those versions specified in
the version string are to be made, breaking the links to those current
versions not specified.

The force option is important only if you specify that a part version is to be
locked. If you want to retrieve or store a locked part in a particular release
or work area that is linked to another release or work area, you might want
to specify the force option when you are checking in or checking out the

Appendix E. Enabling and Using the ENVY/Manager-TeamConnection Bridge 225

part, even if someone else might have the part checked out in another
context. See the discussion of locking below for a description of
TeamConnection locking options.

Locking
These mutually-exclusive radio buttons enable you to instruct
TeamConnection cache services (TCCS) on how to manage the locking
behavior for parts that you are exporting to or importing from the
TeamConnection repository.

Obtain and release
Also known as optimistic locking, TCCS will attempt to check out
the part(s) before checking in changes that you have made in the
ENVY environment. If this action is successful, the part(s) will not
be locked in TeamConnection after the export.

Obtain and retain
TCCS will attempt to check out the part(s) before checking in
changes that you have made in the ENVY environment. If this
action is successful, the part(s) will remain locked in
TeamConnection after the export.

Retain
For parts already locked in TeamConnection, after changes are
exported from ENVY the locked parts should remain locked (i.e.,
the lock is retained by the original owner).

Release
For parts already locked in TeamConnection, after changes are
exported from ENVY the locked parts should be unlocked, and
therefore available to other developers in that context.

Import page

The Import page provides default settings options when importing ENVY
components or files previously exported to a TeamConnection database.

Configuration Maps
If the Import all required maps too checkbox is checked, it specifies that
when a configuration map is imported, its required configuration maps
(along with any other required configuration maps, recursively) should be
retrieved from TeamConnection as part of the import action. If this option is
enabled, and a configuration map being imported does have required maps,
the maps can only be imported if they actually exist in the TeamConnection
database.

Note: The checkbox is checked as the default.

Destination for Files
The Destination path for files field identifies the target (base) directory for
imported files.

Replacing Existing Files
These mutually-exclusive radio buttons enable you to select a desired
default method for overwriting files (or not) in your working target directory.

Ask user
This choice enables you to choose which files are to be overwritten.

226 User's Guide

Do not replace existing files
Files that currently exist in the target directory will not be
overwritten.

Replace existing files
Files that currently exist in the target directory are automatically
overwritten.

Export page

The Export page provides default settings options for exporting ENVY components
or files to a TeamConnection database.

Storage in TeamConnection
The Component field identifies the TeamConnection target component for
your export action. This component designation, along with
TeamConnection family, release, and work area values supplied in the
Context page of the Default Properties notebook, is necessary to define
the context for any new TeamConnection parts created by an export action.

Configuration Maps
If the Export all required maps too checkbox is checked, it specifies that
when a configuration map is exported, its required configuration maps
(along with any other required configuration maps, recursively) should be
exported TeamConnection. If this option is enabled, and a configuration
map being exported does have required maps, the maps can only be
exported if they actually exist in the TeamConnection database.

This option is used to prevent version mismatches when a configuration
map requires other configuration maps, as in the following case:

1. For a configuration map that requires other configuration maps, you do
an export with the required maps.

2. At some later time, you export again without the required maps.

3. When you attempt to import with the required maps, the import may fail,
because a configuration map level in TeamConnection does not match
the level previously exported from ENVY.

Note: The checkbox is checked as the default.

Exporting ENVY components to TeamConnection

The TeamConnection Bridge cascade menu provides an Export choice, which
offers the following choices:

» Configuration Maps
» Applications
* Files

Note: You must have the appropriate authority to update all parts associated with
the configuration maps, applications, or files to be exported.

As a general rule, it is advisable to export applications and configuration maps
along with any configuration maps required by these ENVY components to avoid
version mismatches. If you make a change to an application, it is important to
update all the exported configuration maps that contain the application and to
export all of the configuration maps again.

Appendix E. Enabling and Using the ENVY/Manager-TeamConnection Bridge 227

228

User's Guide

Note: The Export all required maps too checkbox located on the Export page of
the Default Properties notebook defaults to this behavior.

The following describes two simple cases in which a mismatch might occur:
1. Export a configuration map that contains several applications.

2. Make a change to one of the contained applications.

3. Export the changed application only.

4. Attempt to import the configuration map.

or
1. Export two configuration maps that contain the same application.

2. Make a change to the common application and export only one of the
configuration maps that contains the application.

3. Attempt to import the second configuration map.

As the number of programmers authorized to version components and the
complexity of your applications increase, so does the possibility for these types of
problem to occur. Therefore, it is important to coordinate update authority in such a
way that all affected parties are notified about configuration changes, and that
someone in the development group has authority over all levels of components. It
may also be advisable to limit export actions to higher levels of authority than you
have previously.

Exporting components is a substantial operation that typically takes at least ten to
twenty seconds (possibly minutes for a large collection of components). Such an
operation begins with the bridge exporting the components to temporary
ENVY/Manager libraries and then generating detailed descriptions of the library
contents for the benefit of TeamConnection. To guarantee atomicity and minimize
the number of times that the bridge must communicate with TeamConnection (thus
avoiding unnecessary overheads), all components are transferred in one primitive
operation.

Even a single configuration map usually counts as more than one component,
because it typically contains at least one release application. Once the primitive
operation is invoked, control of the process is in the TeamConnection client code,
which is effectively blocked against the TeamConnection server. Because the
Smalltalk image is blocked waiting for the primitive to return, the user interface will
not update, and the user cannot halt the operation.

Exporting configuration maps and applications

The process for exporting ENVY-based configuration maps and applications to a
TeamConnection family database includes the following steps:

1. Select Configuration Maps or Applications from the Export cascade menu.
You will be prompted to select an appropriate version of the configuration map
or application that you want to export.

Note: ENVY components must be versioned in ENVY before being exported to
TeamConnection.

2. In the Selection Required window, select the desired configuration map or
application in the Names list, which will prime the Versions list with a version
number.

3. Select the version in the Versions list and move it to the Selected Versions list
using the right-arrow pushbutton. Because only one version of any named

configuration map can exist in a TeamConnection context, it is only possible to
choose one version for any particular name.

4. Select the OK pushbutton to initiate the export process.

5. If the Show this dialog when exporting and importing option has been set in
the default bridge configuration, you will be presented with the Export
Properties notebook, which is primed by values in the Default Properties
notebook. If you are satisfied with the current values in the Export Properties
notebook, select the OK pushbutton to initiate the export process.

If the export succeeds without errors, a message is logged to the System
Transcript window. Users are informed of any errors with a message box.

Exporting files

The process for exporting ENVY-based files to a TeamConnection family database
includes the following steps:

1. Selecting Files from the Export cascade menu.

2. You will be prompted to select the files that you want to export. You can add to
or delete files from the list using the Add, Remove, or Remove All
pushbuttons.

3. Select the OK pushbutton to initiate the export process.

4. If the Show this dialog when exporting and importing option has been set in
the default bridge configuration, you will be presented with the Export
Properties notebook, which is primed by values in the Default Properties
notebook. If you are satisfied with the current values in the Export Properties
notebook, select the OK pushbutton to initiate the export process.

If the export succeeds without errors, a message is logged to the System
Transcript window. Users are informed of any errors with a message box.

Importing ENVY components from TeamConnection

The TeamConnection Bridge cascade menu provides an Import choice, which
offers the following choices:

» Configuration Maps
* Applications
* Files

The process for importing any of these ENVY components is essentially the same,
and includes the following steps:

1. Select Configuration Maps , Applications , or Files from the Import cascade
menu.

2. If the Show this dialog when exporting and importing option has been set in
the default bridge configuration, you will be presented with the Import
Properties notebook, which is primed by values in the Default Properties
notebook.

3. When you are satisfied with the current values in the Import Properties
notebook, select the OK pushbutton.

4. You will be prompted to supply a query pattern to further reduce the number of
candidates for import. Select the OK pushbutton to launch the query of the
TeamConnection context that you have specified up to this point.

Note: Use the wildcard characters (* and ?) as delimiters for your queries.

Appendix E. Enabling and Using the ENVY/Manager-TeamConnection Bridge 229

5. Alist of ENVY components matching your query is returned. Each of these
components exists in a TeamConnection database specified by the
TeamConnection context in the configuration used for this operation. Select the
objects you want to import from this list and select the OK pushbutton to initiate
the import action.

6. In the case of configuration maps and applications, the selected components
will be imported into the default ENVY/Manager library that the image is
connected to. For files, the selected files will be written to the path specified by
the Destination path for files option in the bridge configuration used for this
operation. If any of the files already exist, they may be overwritten, or the user
may be prompted, depending on the value of the Replace existing files option.

If the import succeeds without errors, a message is logged to the System
Transcript window. Users are informed of any errors with a message box.

Using the ENVY/Manager-TeamConnection Bridge: a simple scenario
for VisualAge Generator developers

The following scenario is a generalized case used to illustrate the way that
VisualAge Generator developers might use the ENVY/Manager-TeamConnection
Bridge to accomplish change tracking and build processing. An actual
implementation requires that a Smalltalk development team begin with versioned
ENVY components and a plan for sharing common applications.

After you have installed the ENVY/Manager-TeamConnection Bridge, you can
export a versioned configuration map to a TeamConnection family database. For
VisualAge Generator developers, this means that you can generate programs,
tables, and map groups using the TeamConnection build interface. See the
VisualAge Generator Generator’s Guide and [Part 3_Using TeamConnection ta build
applications” on page 91l in this document for details.

Scenario assumptions

For purposes of describing the scenario, the following assumptions are established:

* A development team using VisualAge Generator wants to perform problem
tracking and build generation.

» A family is created in TeamConnection with a release rl, defined with a
track-driver process (i.e., all part changes are made in reference to work areas).

* A build agent and its corresponding build processor has been started to handle
build requests for generation, and similarly for preparation.

» Data item definitions and records used to access data in a database are kept in
a "common” application, while programs and their other associates are kept in a
separate application.

Note: This assumption enables the scenarios to include application
prerequisites.

Exporting ENVY components to TeamConnection
To prepare for exporting the ENVY components to TeamConnection, perform the

following activities:
1. In TeamConnection:

230 User's Guide

a. Create a feature called f1 and accept the feature.
b. Create a work area called wal for implementation of the feature.
2. In ENVY:
* Create applications for the common data and for other VisualAge Generator
parts.
3. In VisualAge Generator Developer:
* Create programs and their associates.
* Create generation option, linkage table, resource association, link edit, and
bind parts as necessary.
4. In ENVY:
a. Create a configuration map that gathers the common data application and
the application containing all the other parts.
The class developers version their classes.
The class owners release versioned classes into the two applications and
the application managers version the applications.

If more than one developer has been working on the feature, each may
have opened a new edition of a part’s class extension, so a merge of the
method editions will have to be performed.

d. The configuration map manager releases the versioned applications into the
configuration map and versions the configuration map.

e. An administrator uses the ENVY/Manager-TeamConnection Bridge to export
the configuration map to the work area associated with feature f1. See

[Exporting ENVY components to TeamConnection” on page 227 for

ENVY/Manager-TeamConnection Bridge export instructions.

After the ENVY/Manager-TeamConnection Bridge export action is
completed, there will be an EmLibrary part for the configuration map and for
each of its applications, and proxy parts for each entry in each application’s
BOM file. The BOM file for each application contains an entry (at least the
name, edition/timestamp, and TCPart type) for each class and method in
each application.

Object mapping in TeamConnection

After a ENVY/Manager-TeamConnection Bridge export action, the following parts
are created in TeamConnection in wal for f1 in the component and release
specified as context for the export action:

» For each application of the configuration map there will be an application part.

* For each entry in the BOM, a proxy part with a name gqualified by the application
name for uniqueness, as described in

The ENVY/Manager-TeamConnection Bridge must map ENVY components to part
names in TeamConnection in such a way that the parts can be retrieved in a
reusable form when they are imported from TeamConnection back into the ENVY
environment.

Appendix E. Enabling and Using the ENVY/Manager-TeamConnection Bridge 231

Table 2. Name generation mapping for the ENVY/Manager-TeamConnection Bridge

Class Type Naming Convention Mapped Name Example

EmLibrary <class_name_of blob_object>.<name_of blob_object> EmApplication.MyApp,
EmConfigurationMap.MyConfigMap

EmConfigurationMap <config_map_name> MyConfigMap

EmApplication <application_name> MyApp

EmSubapplication <app_name>.<subapp_name> MyApp.MySubapp

EmClass OR <app_name>.<subapp_name>.<class_name> MyApp.MyClass,

EmClassExtension MyApp.MySubapp.MyClass

EminstanceMethod <app_name>.<class_name>.<method_name> OR MyApp.MyClass.MyMethod,

OR EmClassMethod <app_name.subapp_name>.<class_name>.<method_name> MyApp.MySubapp.MyClass.MyMethod

See the VisualAge Generator Generator’'s Guide for additional information related to
generation part output names in TeamConnection.

Build generation

The VisualAge Generator Generator’s Guide provides detailed VisualAge Generator
build generation instructions. The following overview is provided to place these
activities in the context of the ENVY/Manager-TeamConnection Bridge:

1. In VisualAge Generator Developer:

* For each program, the Options Override (OVR) part that has been exported
to TeamConnection creates an initial build tree for VisualAge Generator
applications in TeamConnection.

Refer to the VisualAge Generator Generator’s Guide for more details on the
OVR part.

2. In TeamConnection (build function):

a. The build administrator selects the EZEPREP collector of the initial build
tree of a program proxy in wal for f1, and requests a build.

b. TeamConnection places the generator build event on the build queue, and
the generator build agent detects a new build event that it can service.

c. The build processor invokes the generator build script, which parses the
name of the generation configuration map name from the generated part’s
build parameters.

d. The build script invokes the generator, which imports the configuration map
and its references to the generation ENVY manager. The ENVY manager
used by generation is identified by a VisualAge INI file on the generation
build server.

The ENVY/Manager-TeamConnection Bridge determines whether each
application referenced already exists in the generation Envy manager, and
only imports an application if that version of the application is not already in
the manager.

Note: For VisualAge Generator builds, you can use the environment
variable TC_ENVY_REFRESH to control when VisualAge Generator
builders will import the required configuration map from
TeamConnection. TC_ENVY_REFRESH can be used to affect the
following behaviors:

232 User's Guide

* If TC_ENVY_REFRESH=null, the configuration map will not be
imported from TeamConnection if that version of the configuration
map is already in the connected Envy Manager.

* If TC_ENVY_REFRESH=null, the configuration map will be
imported from TeamConnection if that version of the configuration
map is not already in the connected Envy Manager.

* If TC_ENVY_REFRESH=notnull, the configuration map will always
be imported from TeamConnection. This setting is important if you
use VisualAge DataAtlas to modify data elements that are
dependents of the configuration map. In that case, if the data
elements have been modified since the configuration map was
exported to TeamConnection, the builder will warn you that the
configuration map is not synchronized with its dependent data
elements only if TC_ENVY_REFRESH=notnull. Such a warning
allows you to import the changed data elements into a new edition
of the configuration map and export the resulting new version to
TeamConnection, before trying the build again

Setting TC_ENVY_REFRESH is only relevant in the environment of
the TeamConnection build server that performs the VisualAge
generator builds.

e. The generator uses the ENVY/Manager-TeamConnection Bridge to update
the outputs and dependencies in the build tree.

f. If there are tables and/or map groups used by the program, the generator
determines whether there is already a build tree for them. If not, initial build
trees are added for them using the program’s OVR part.

g. TeamConnection re-examines the build tree of the EZEPREP collector and
determines that new build events have been added to the build scope for

preparation of the generation outputs, and possibly for generation and
preparation of tables and map groups. Build events are started to complete
the preparation of generation outputs, and generation and preparation of
tables and map groups if necessary.

Note: See the VisualAge Generator Generator’'s Guide for greater detail on
this process.
3. In TeamConnection (change control):

* A project administrator completes the fix record(s) for the feature f1 and adds
the work area wal to a system test driver. Eventually the driver is committed
to the release and the feature is completed.

Making a change to a member
1. In TeamConnection:
a. Defect dl is created and accepted in TeamConnection
b. Work area wa2 is created for the implementation of the defect d1.
2. In ENVY:

a. An application manager creates new edition of an application that requires a
change.
A developer makes a change to one or more parts.
The class developer of the changed parts versions the class, the class
owner releases the class into the new edition of the application, and the
application manager versions the application. If more than one defect is in
progress, the class owner must release only the versions that apply for
defect d1.

Appendix E. Enabling and Using the ENVY/Manager-TeamConnection Bridge 233

234

User's Guide

d. The configuration map owner opens a new edition of the configuration map

used to generate the program being changed, and releases the new
application version into the configuration map. The configuration map owner
versions the configuration map.

The administrator uses the ENVY/Manager-TeamConnection Bridge to put
the configuration map back into the work area wa2 for defect d1.

In TeamConnection (build function):
a. Build administrator builds the program(s) affected by the change. This can

be done by selecting the preparation collector for each program and
requesting a build, or by selecting a collector for a subsystem, and building
the subsystem collector. Only programs, tables, or map group affected by
the changes to proxy members will be rebuilt.

The generation process continues as it did for the initial build (see EBuild

beneration” an page 234 for details), except that there should be no need to

add new build trees unless a new table or map group was added to a
program being built

In TeamConnection (change control):
* A project administrator completes the fix record(s) for the defect d1 and adds

the work area wa2 to a system test driver. Eventually the driver is committed
to the release and the feature is completed.

Appendix F. Source Code Control User's Guide

Differences between other source code control providers and
TeamConnection

The purpose of this document is to help Visual Basic, Visual C++, and Power
Builder users, make TeamConnection their Visual environments source code control
provider. This document assumes the reader is a new user of TeamConnection, but
has some familiarity with source code control.

Projects vs Families

Most source code control providers group all code into projects. TeamConnection
uses an object oriented approach that provides much more control over the
software product while allowing greater flexibility. Projects have one dimension of
control. Development environments like Visual Basic group all of their files into
projects. Using projects to group source code has several limitations. First, the
source code control system is limited to providing just version control. While version
control is useful, once the enterprise-size organization is reached, it is often not
sufficient to control just versions of the source code. TeamConnection provides not
only versioning but defect and feature tracking, build and driver management,
access control, and much more. TeamConnection uses families, releases,
components, and work areas for management and control.

TeamConnection uses several layers of control. The highest level is the family. The
family is the name of the data base, where TeamConnection stores all of the code,
the versions, and all other information related to the code. A family represents a
complete and self-contained collection of TeamConnection users and development
data. Data within a family is completely isolated from data in all other families. One
family cannot share data with another. It is important to know the name of the family
where TeamConnection will store your code and associated information.

A part in TeamConnection is a collection of data that is stored by the family server.
This can include files, text, objects, binary objects, or modeled objects. Parts can be
stored by a user, a tool, or generated from other parts, such as when a linker
generates an executable file.

Components are used to organize the data in a family. Components are arranged in
a hierarchical tree structure, with a single top component called root. The
component owns the parts that may be in it, and controls access to the parts. Once
you are given access to a component, you have access to all the parts and
subcomponents in that component. The component also controls the process that
TeamConnection uses, for example, to report and fix a defect. Within each family,
development data is organized into groups called components. The component
hierarchy of each family includes a single top component, initially called root, and
descendants of that root. Each child component has at least one parent component;
a child can have multiple parents.

The release is somewhat analogous to a project. A release is a logical grouping of
the components that make up a product. An application is likely to contain parts
from more than one component. Because you probably want to use some of the
same parts in more than one application, or in more than one version of an
application, TeamConnection groups parts into releases. A release is a logical
organization of all parts that are related to an application; that is, all parts that must

© Copyright IBM Corp. 1992, 1995, 1996, 1997 235

be built, tested, and distributed together. Each time a release is changed, a new
version of the release is created. Each version of the release points to the correct
version of each part in the release. Each part in TeamConnection is managed by at
least one component and contained in at least one release. One release can
contain parts from many components; a component can span several releases.
Each time a new development cycle begins, you can define a separate release.
Each subsequent release of an application can share many of the same parts as its
predecessor. You need to know the name of the release.

A work area is basically a view of a release. For example, a work area can be
opened for each defect that needs to be fixed. More than one programmer can
work in the same work area at the same time. A programmer can have more than
one work area active at a time. A release contains the latest integrated version of
each of its parts. As users check parts out of the releases, update them, and then
check them back in, TeamConnection keeps track of all these changes, even when
more than one user updates the same part at the same time.

You need to know the name of the work area in which you will be working. A good
practice is to create and name a work area after the defect being addressed in the
work area. For example, name work area W1557 for defect 1557. You can create a
work area if you have the authority in TeamConnection, but this must be done
through the TeamConnection GUI.

For more information about families, releases, components, work areas, parts, and
what you can do with them, see your TeamConnection Documentation.

Installing the TeamConnection source code control DLL

Before you can use the integrated support from your development environment you
must install TeamConnection and the TeamConnection Source Code Control DLL. If
you are using TeamConnection Version 2.08 or later, the source code control DLL is
already installed.

Note: If you have not already done so, follow the directions and install the
TeamConnection client for your workstation. The following directions assume
that you have successfully installed the TeamConnection client.

Connecting TeamConnection to Visual Basic 4.0

If you are using TeamConnection Version 2.08 or later, the source code control
add-in for Visual Basic is already included.

Removing the TeamConnection Source Code Control DLL

To change the default source code control system for Visual Basic, change the
value in the ProviderRegKey to the registry key of another provider.

To remove TeamConnection, leave the value in the ProviderRegKey blank.

Using TeamConnection as your source code control provider

Once the installation procedure is complete, starting your development environment
automatically links the TeamConnection Source Code Control DLL.

236 User's Guide

Before you start

There are several things you must know before you can start using
TeamConnection as your source code control provider. If you are not sure of this
information, contact your family administrator. Your family administrator can help
you find the following information:

* Family

* Component
* Release

* WorkArea

You also need to know the project name. The project name is used by your
development tool to relate to the TeamConnection attributes of family, release, work
area, and component by the Source Code Control DLL.

Opening a project

One of the few differences you see when using TeamConnection as your source
code control provider occurs when you open a project. When you open a new
project, the TeamConnection Source Code Control Settings window opens. At the
top of this window is a field with your development project name. In addition to the
project name field, there are fields for family, work area, release, and component. If
this is a new project, these fields are blank. If this is not a new project, the fields
contain the previous values. You can change these values only when this window is
open. If at anytime you decide to change any of these values, you must first close
the project and reopen it.

Once all the fields are filled in, select OK. The project will open. If you select
Cancel, the source code control system disconnects from the development
environment until another project is opened.

Under some versions of Visual Basic, projects automatically close and open after
certain operations. This causes this TeamConnection Source Code Control Settings
window to open at times when it may appear unnecessary. When this occurs, select
OK. If you select Cancel, you will be left in a state that requires shutting down and
restarting Visual Basic to reconnect the source code control system.

Integrated features

Once you open a project you can use the integrated features of the development
environment to access your files in TeamConnection. The development environment
keeps track of the files that are known to TeamConnection, and the checkout status
of each file. For example, the development environment keeps track of files
checked out to other users.

The exact steps necessary to perform each of the following actions depend on the
development environment being used. However, for a given environment, the steps
are the same regardless of the source code control provider. For example, if you
check out a file in the Visual C++ development environment when it is connected to
Visual SourceSafe, the steps you use are exactly the steps you use when C++ is
connected to TeamConnection.

Appendix F. Source Code Control User's Guide 237

Check-in

The steps to check-in a file vary by the development environment. In most cases
pressing mouse button 2 when the mouse pointer is over a file icon of a file
checked out to you, brings up a menu that includes the file check-in option.
Selecting the file checkin option opens the Check-In window. Checking the keep
checked out box on the Check-In window sets the keep locked flag,
TeamConnection saves the file, but keeps it checked out to you. Selecting OK
causes the TeamConnection part check-in function to execute and the file is
checked in.

Check-out

Similar to check-in, the check-out action can be started by pressing mouse button 2
on the file icon of a file not already checked-out. Check-out calls the
TeamConnection Part Check-out function.

Uncheck-out

A checked out file can be unchecked out. Again this action can often be started by
right clicking the file icon of a file that is checked out. Uncheck-out calls the part
unlock function in TeamConnection.

Get Version

Rather than check out a file, you can also get the latest version of the file. Get
Version calls the TeamConnection Part Extract function.

Adding Files to source code control: Adding a file that is not already under
source code control places the selected file into the source code control system.
Add calls the TeamConnection part create function.

Properties

Selecting Properties from a pull-down menu opens the properties GUI. Information
that TeamConnection needs to correctly check out and check in parts is provided
here. For example, the work area field changes each time an existing work area is
integrated and a new work area is created.

Full features of TeamConnection

238

User's Guide

Most development environments allow you to evoke TeamConnection from the
pull-down menus. In Visual Basic, TeamConnection appears as an option in the
Add-Ins pull-down menu. In Visual C++, TeamConnection appears in the Source
Code Control option of the Tools pull-down menu. From the TeamConnection GUI
you can create new work areas (if you have the correct authority), retrieve previous
versions of a part, open or process defects, and perform many other actions against
parts.

Migrating project data bases

One key issue for programmers and project managers moving from another source
code control system to TeamConnection is how to migrate the database of projects.
The following describes one way to bring the current level of code for a small to
medium sized project into TeamConnection.

Migrating an existing project: The following example illustrates the simplest way
to migrate an existing Visual Basic source code control database into
TeamConnection. Lets say we were using the ABC source code control system, and
we are going to migrate our project, Austin, to TeamConnection. The idea is to
extract all the files in Austin using the ABC source code control system, and then
add them as parts in TeamConnection. Follow the steps below to perform this
migration.

1. Make ABC the default source code provider. To do this, set the registry key
ProviderRegKey to point to the registry entry for source code control provider
ABC. See linstalling the TeamConnection source code contral DLL" od
w for more information on how to perform this step. Once you complete
this step, ABC will be the Source Code Control provider when we open Visual
Basic.

Start the Visual Basic development environment.
Open project Austin.

Extract all the files to your system.

Exit the Visual Basic development environment.
Edit the registry key ProviderRegKey to be:
SOFTWARE\IBM\TeamConnection\

See binstalling the TeamCaonnection source code control DI LY on page 2234 for

more information on how to perform this step. TeamConnection is now the
default source code control provider and is attached when the development
environment starts.

o gk wN

7. Restart the Visual Basic development environment.
8. Open project Austin again.

9. When the TeamConnection Source Code Control Settings window opens it will
have Austin listed as the project. Fill in the values for family, release,
component, and work area, then select OK.

10. Add the files to TeamConnection following the steps in the Visual Basic
development environment.

11. Repeat these steps until all of your projects are migrated to TeamConnection.

Starting a new project: Starting a new project in Microsoft Visual Basic or Visual
C++ is essentially the same regardless of the source code provider. The only
operational difference is that the TeamConnection Source Code Control Settings
window opens at some point. When the TeamConnection Source Code Control
Settings window opens, enter the names of your family, component, work area, and
release.

Starting Visual Basic: To create a new project under Visual Basic, do the following:
1. Start Visual Basic
2. Create and save a new project

3. Select the Add Project to TeamConnection option from the TeamConnection
option in the Add-Ins pull-down menu. The TeamConnection Source Code
Control Settings window opens. Fill in the family, release, component, and work
area then selectOK.

4. The Add To TeamConnection window opens. Select the files you want to add.
Type a comment in the comment field. Visual Basic requires that a comment be
entered. Select OK.

Starting Visual C++: To create a new project under Visual C++, do the following:

Appendix F. Source Code Control User's Guide 239

240

User's Guide

M wnbdh R

Start the Visual Developers Studio as normal.
On the File pulldown, select New. A new window will open.
On the New window select Project Workspace, then OK.

The New Project Workspace window will open. On the New Project Workspace
window, do the following:

a. Select the type of project
b. Type a name
c. Select create.

The TeamConnection Source Code Control Settings window will open. On the
TeamConnection Source Code Control Settings window, enter the family name,
release, component, and work area. Then, select OK.

Files can now be added to the project using the Insert menu pull-down.

To place the files under source code control, select the add to source code
control option of the Tools menu pull-down.

Appendix G. Supported keywords

TeamConnection supports keywords in text files. When a file containing keywords is
extracted from TeamConnection, the current value of each keyword is added to the
file. This information can help you identify what version of source code is used for
your deliverables. :p .TeamConnection supports the following keywords.

Keyword Description

$ChkD; The time and date stamp applied during check in.

$FN; The file name complete with its path.

SKW=@(#); The start of keyword expansion.

$EKW; Keyword expansion is ended until the next $KW keyword.

$Own; The user ID of the owner of the component that manages the part.
$Ver; Identification necessary to locate the part in TeamConnection, such as

family, release, or component.

The following examples show lines of code that change in a text file as a user
extracts a part. The text file used in this example is filex.hdr.

#ifndef filex_hdr_
#define_filex_hdr_
static char=_filex_hdr[]="$KW=@(#); $FN=mtdkywds.ide; $Ver=tcid30:1; $ChkD=1997/01/24 11:43:08

#endif

TeamConnection ignores keywords until it finds a $KW keyword. It then expands all
keywords until a $EKW keyword is found. If the semicolon (;) following a keyword is
omitted, the keyword is not expanded.

No change occurs when the part is checked in to TeamConnection. However, when
the part is extracted, the keyword variables are updated. The following example
shows how the keywords are expanded.

#ifndef_filex_hdr_
#define_filex_hdr_

static char=_filex_hdr[]="$KW=@(#) $FN=bin/filex.hdr ; $Ver=V1.1l ;
$ChkD=93/04/06 18:13:19 ;";

#endif

In the previous example, each keyword and its value appears in the output. The
value of the keyword is replaced each time the part is extracted. If you do not want
the keyword to appear in the output, add a minus sign (-) after the dollar sign ($).
For example:

static char=_filex_hdr[]="$KW=@(#); mtdkywds.ide tcid30:1 1997/01/24 11:43:08";
Be aware that if a file is extracted, then locked and checked in, the version

information can no longer be updated because the keyword does not appear in the
output.

© Copyright IBM Corp. 1992, 1995, 1996, 1997 241

242 User's Guide

Appendix H. Authority and notification for TeamConnection

actions

TeamConnection ships with IBM-supplied authority groups, interest groups,
component processes, and release processes. Your family administrator can modify
these preconfigured authority groups, interest groups, and processes to fit the
needs of your organization.

Each authority group consists of actions normally performed by a particular type of
user. Your family administrator can modify these groups or create new ones to
reflect the needs of your organization.

Authority groups provide explicit authority to perform the actions included in each
group. You might also have implicit authority to perform certain actions according to
the objects that you own. Authority groups are defined in a file called authorit.Id.

To determine your authority groups, from the Actions pull-down menu, select Lists -
Access lists » Show authority actions. On the Show authority actions window select
an action.

Each notification group consists of actions normally of interest to a particular type of
user. Your family administrator can modify these groups or create new ones to
reflect the needs of your organization. Interest groups are defined in a file called
interest.Id.

To determine your interest notification groups, from the Actions pull-down menu,
select Lists » Notification lists » Show interest actions. On the Show authority
actions window select an action.

The following table lists all of the TeamConnection actions, the required level of
implicit and explicit authority to perform the action, and the users who are notified
when an action is performed. To explicitly assign authority to a user, add the user’s
ID to a component’s access list.

Note: The user who performs the action is excluded from the naotification that is
sent out after the action is successfully completed.

For this action

These users have authority These users are notified

AccessCreate

User being given new access,

* Component owner .
subscribers

» Explicitly defined for the component where access
is being added

AccessDelete

« Component owner User whose access was deleted,

» Explicitly defined for the component where access subscribers

is being altered

AccessRestrict

+ Component owner User whose access is being

- Explicitly defined for the component where access ~estricted, subscribers

is being restricted

© Copyright IBM Corp. 1992, 1995, 1996, 1997 243

For this action

These users have authority

These users are notified

ApprovalAbstain Approval record owner Approval record owner, subscribers
Explicitly defined for the component that manages
the associated release

ApprovalAccept Approval record owner that manages the Approval record owner, subscribers
associated release

ApprovalAssign Approval record owner New and original approval record
Explicitly defined for the component that manages ~ ©Wners, subscribers
the associated release

ApprovalCreate Work area owner New approval record owner,

Explicitly defined for the component that manages
the associated release

subscribers

ApprovalDelete

Explicitly defined for the component that manages
the associated release

Approval record owner, subscribers

ApprovalReject

Approval record owner

Explicitly defined for the component that manages
the associated release

Approval record owner, subscribers

ApproverCreate

Release owner

Explicitly defined for the component that manages
the associated release

New approver, subscribers

ApproverDelete

Release owner

Explicitly defined for the component that manages
the associated release

Deleted approver, subscribers

BuilderCreate

Explicitly defined for the component that manages
the associated release

Subscribers

BuilderDelete

Explicitly defined for the component that manages
the associated release

Subscribers

BuilderExtract

Explicitly defined for the component that manages
the associated release

Not applicable

BuilderModify

Explicitly defined for the component that manages
the associated release

Subscribers

244 uUser's Guide

For this action

These users have authority These users are notified

BuilderView

« Explicitly defined for the component that manages ~ Not applicable
the associated release

CollisionAccept

« Component owner Release owner, subscribers

» Explicitly defined for the component that manages
the associated release

CollisionReconc

« Component owner Release owner, subscribers

= Explicitly defined for the component that manages
the associated release

CollisionReject

« Component owner Release owner, subscribers

» Explicitly defined for the component that manages
the associated release

CompCreate + Parent component owner New component owner
» Explicitly defined for the parent component
CompDelete « Component owner Component owner, subscribers
» Explicitly defined for the component being removed
CompLink « Component owner of the component being linked ~ Owners of both components,
= Explicitly defined for the component being linked subscribers
CompModify + Component owner New component owner if applicable,
« Explicitly defined for the component being modified SuPscribers
CompRecreate « Parent component owner Owners of both components,
» Explicitly defined for the parent component subscribers
CompUnlink « Component owner of the component being unlinked Owners of both components,
» Explicitly defined for the component being unlinked subscribers
CompView « Component owner Not applicable
» Explicitly defined for the component being viewed
CoreqCreate + Work area owner of all specified work areas Not applicable

» Explicitly defined for the component managing the
associated work area and release

Appendix H. Authority and notification for TeamConnection actions 245

For this action

These users have authority

These users are notified

CoreqDelete

* Work area owner of all specified work areas

» Explicitly defined for the component associated with
the release

Not applicable

DefectAccept « Defect owner for the component associated with Defect owner, defect originator,
the defect duplicate defect originators,
subscribers
DefectAssign » Defect owner, defect originator New owner, defect originator,
- Explicitly defined for the component associated with duplicate defect originators,
the defect subscribers
Note: Originators who do not have DefectAssign
authority can reassign the defect only when it is in the
open state.
DefectCancel Defect owner, defect originator,

» Defect originator

» Explicitly defined for the component associated with
the defect

duplicate defect originators,
subscribers

DefectClose

Automatic action; no authority is required

Defect owner, defect originator,
duplicate defect originators,
subscribers

Not applicable; this is a
base authority that can
be performed by all
users in the family

Defect owner, defect originator, duplicate defect
originators, subscribers

DefectDesign « Defect owner Defect owner, defect originator,
- Explicitly defined for the component associated with duPlicate defect originators,
the defect subscribers
DefectModify + Defect owner can modify: Defect owner, defect originator,

— answer, abstract, environment, driver, prefix,
reference, release, and all configurable fields

Defect originator can modify:

— originator, severity, name, abstract, environment,
driver, prefix, reference, release, and all
configurable fields

» Explicitly defined for the component associated with
the defect, these users can modify:

— abstract, answer, name, environment, driver,
originator, prefix, reference, release, severity,
phaseFound*, phaselnject*, priority*, symptom*,
and target*

*If these fields have been configured by the family
administrator, the field names might differ from
those shown.

duplicate defect originators,
subscribers

246

User's Guide

For this action

These users have authority These users are notified

DefectOpen Not applicable; this is a base authority that can be Component owner, subscribers
performed by all users in the family
DefectReopen « Defect originator Defect owner, defect originator,
» Explicitly defined for the component associated with dupllcgte defect originators,
the defect subscribers
DefectReturn - Defect owner Defect originator, duplicate defect
- Explicitly defined for the component associated with ©r19inators, subscribers
the defect
DefectReview « Defect owner Defect owner, defect originator,
» Explicitly defined for the component associated with dupllcgte defect originators,
the defect subscribers
DefectSize . Defect owner, defect originator,
Defect owner g
- Explicitly defined for the component associated with duPlicate defect originators,
the defect subscribers
DefectVerify - Defect owner Defect owner, defect originator,
- Explicitly defined for the component associated with duPlicate defect originators,
the defect subscribers
DefectView . Not applicable

Defect owner, defect originator

Explicitly defined for the component associated with
the defect

DriverAssign

Driver owner

Explicitly defined for the component associated with
the release

New owner, subscribers

DriverCheck

Driver owner

Explicitly defined for the component associated with
the release

Not applicable

DriverCommit

Explicitly defined for the component associated with
the release

Subscribers

DriverComplete

Explicitly defined for the component associated with
the release

Subscribers

Appendix H. Authority and notification for TeamConnection actions 247

For this action

These users have authority

These users are notified

DriverCreate

Release owner

Explicitly defined for the
the release

component associated with

Subscribers

DriverDelete

Driver owner

Explicitly defined for the
the release

component associated with

Subscribers

DriverExtract

Driver owner

Explicitly defined for the
the release

component associated with

Not applicable

DriverFreeze

Driver owner

Explicitly defined for the
the release

component associated with

Driver owner, subscribers

DriverModify

Driver owner

Explicitly defined for the
the release

component associated with

Driver owner, subscribers

DriverRefresh

Explicitly defined for the
the release

component associated with

Component owner, subscribers

DriverRestrict

Driver owner

Explicitly defined for the
the release

component associated with

Driver owner, subscribers

DriverView

Driver owner

Explicitly defined for the
the release

component associated with

Not applicable

EnvCreate

Release owner

Explicitly defined for the
the release

component associated with

Tester, subscribers

EnvDelete

Release owner

Explicitly defined for the
the release

component associated with

Subscribers

248 User's Guide

For this action

These users have authority

These users are notified

EnvModify « Release owner Tester, subscribers
» Explicitly defined for the component associated with
the release
FeatureAccept « Feature owner Feature owner, feature originator,

» Explicitly defined for the component associated with
the feature

duplicate feature originators,
subscribers

FeatureAssign

* Feature owner

» Explicitly defined for the component associated with
the feature

New owner, feature originator,
duplicate feature originators,
subscribers

FeatureCancel

» Feature originator

» Explicitly defined for the component associated with
the feature

Feature owner, feature originator,
duplicate feature originators,
subscribers

FeatureClose

Occurs automatically; no authority is required

Feature owner, feature originator,
duplicate feature originators,
subscribers

FeatureComment

Not applicable; this is a base authority that can be
performed by all users in the family

Feature owner, feature originator,
duplicate feature originators,
subscribers

FeatureDesign

* Feature owner

» Explicitly defined for the component associated with
the feature

Feature owner, feature originator,
duplicate feature originators,
subscribers

FeatureModify + Feature owner can modify: Feature owner, feature originator,
— abstract, prefix, reference, and all configurable dupllcgte feature originators,
fields subscribers
Feature originator can modify:
— abstract, name, prefix, reference, and all
configurable fields
» Explicitly defined for the component associated with
the feature, these users can modify:
— abstract, name, originator, prefix, reference,
priority*, and target*
*If these fields have been configured by the family
administrator, the field names might differ from
those shown.
FeatureOpen Not applicable; this is a base authority that can be Component owner, subscribers

performed by all users in the family

Appendix H. Authority and notification for TeamConnection actions

249

For this action

These users have authority

These users are notified

FeatureReopen + Feature originator Feature owner, feature originator,
- Explicitly defined for the component associated with duPlicate feature originators,
the feature subscribers
FeatureReturn « Feature owner Feature owner, feature originator,
» Explicitly defined for the component associated with dupllcgte feature originators,
the feature subscribers
FeatureReview « Feature owner Feature owner, feature originator,

Explicitly defined for the component associated with
the feature

duplicate feature originators,
subscribers

FeatureSize

Feature owner

Explicitly defined for the component associated with
the feature

Feature owner, feature originator,
duplicate feature originators,
subscribers

FeatureVerify

Feature owner

Explicitly defined for the component associated with
the feature

Feature owner, feature originator,
duplicate feature originators,
subscribers

FeatureView

Feature owner

Explicitly defined for the component associated with
the feature

Not applicable

FixActive

Fix record owner, component owner, work area
owner

Explicitly defined for the component associated with
the fix record

Subscribers

FixAssign

Fix record owner, component owner, work area
owner

Explicitly defined for the component associated with
the fix record

New fix record owner, subscribers

FixComplete

Fix record owner, component owner, work area
owner

Explicitly defined for the component associated with
the fix record

Subscribers

FixCreate

Defect or feature owner, work area owner

Explicitly defined for the component associated with
the defect or feature

Subscribers

250

User's Guide

For this action

These users have authority

These users are notified

FixDelete

Defect or feature owner, work area owner

Explicitly defined for the component associated with
the defect or feature

Subscribers

HostCreate

Owner of the user ID for which a host list entry is
being created or deleted

Superuser

Not applicable

HostDelete

Owner of the user ID for which a host list entry is
being deleted

Superuser

Not applicable

MemberCreate

Driver owner

Explicitly defined for the component associated with
the release

Driver owner, subscribers

MemberCreateR

Driver owner

Explicitly defined for the component associated with
the release

Driver owner, subscribers

MemberDelete

Driver owner

Explicitly defined for the component associated with
the release

Driver owner, subscribers

MemberDeleteR

Driver owner

Explicitly defined for the component associated with
the release

Driver owner, subscribers

NotifyCreate

Component owner

Explicitly defined for the component associated with
the notification list

Not applicable

NotifyDelete

Component owner

Owner of user ID

Explicitly defined for the component associated with
the notification list

Note: Users can delete themselves from a
notification list without requiring any authority

Not applicable

ParserCreate

Explicitly defined for the component associated with
the release

Subscribers

Appendix H. Authority and notification for TeamConnection actions

251

For this action

These users have authority

These users are notified

ParserDelete

» Explicitly defined for the component associated with
the release

Subscribers

ParserModify + Explicitly defined for the component associated with Subscribers
the release

ParserView + Explicitly defined for the component associated with Not applicable
the release

PartAdd . Component owner Subscribers

» Explicitly defined for the component associated with

the part

PartBuild Subscribers

* Component owner

» Explicitly defined for the component associated with
the part

PartCheckin

» User who checked out or locked the part originally,
component owner

» Explicitly defined for the component associated with
the part

Note: The user who is explicitly given this authority
can check in a part that is checked out by someone
else.

Subscribers

PartCheckOut

» Component owner

» Explicitly defined for the component associated with
the part

Subscribers

PartChildInfo

* Component owner

» Explicitly defined for the component associated with
the part

Not applicable

PartConnect « Component owner Subscribers
» Explicitly defined for the component associated with
the part
PartDelete Subscribers

* Component owner

» Explicitly defined for the component associated with
the part

252

User's Guide

For this action

These users have authority

These users are notified

PartDeleteForce

Component owner

Explicitly defined for the component associated with
the part

Subscribers

PartExtract

Component owner

Explicitly defined for the component associated with
the part

Not applicable

PartForceln

Component owner

Explicitly defined for the component associated with
the part

Subscribers

PartForceOut

Component owner

Explicitly defined for the component associated with
the part

Subscribers

PartLink

Component owner

Explicitly defined for the component associated with
the part

Subscribers

PartLock

Component owner

Explicitly defined for the component associated with
the part

Subscribers

PartLockForce

Component owner

Explicitly defined for the component associated with
the part

Subscribers

PartModify

Component owner

Explicitly defined for the component associated with
the part

Subscribers

PartRecreateForce

Component owner

Explicitly defined for the component associated with
the part

Subscribers

PartRecreate

Component owner

Explicitly defined for the component associated with
the part

Subscribers

Appendix H. Authority and notification for TeamConnection actions

253

For this action These users have authority These users are notified

PartRefresh . Component owner Subscribers

» Explicitly defined for the component associated with
the part

PartRename . Component owner Subscribers

» Explicitly defined for the component associated with
the part

PartRenameForce « Component owner Subscribers

» Explicitly defined for the component associated with
the part

PartResolve Not applicable; this is a base authority that can be Not applicable
performed by all users in the family

PartTouch « Component owner Subscribers

» Explicitly defined for the component associated with
the part

PartUndo . Component owner Subscribers

» Explicitly defined for the component associated with
the part

PartUndoForce « Component owner Subscribers

» Explicitly defined for the component associated with
the part

PartUnlock + User who checked out or locked the part originally, ~Subscribers
component owner

» Explicitly defined for the component associated with
the part

PartView * Component owner Not applicable

» Explicitly defined for the component associated with
the part

PartViewMsg « Component owner Not applicable

» Explicitly defined for the component associated with
the part

PrereqCreate « Work area owner of all specified work areas Not applicable

« Explicitly defined for the component managing the
associated work area and release

254 User's Guide

For this action

These users have authority

These users are notified

PrereqDelete

* Work area owner of all specified work areas
» Explicitly defined for the component managing the

associated work area and release

Not applicable

ReleaseCreate

» Explicitly defined for the component associated with

the new release

New release owner, component
owner, subscribers

ReleaseDelete

* Release owner

» Explicitly defined for the component associated with

the release

Release owner, component owner,
subscribers

ReleaseExtract

* Release owner

» Explicitly defined for the component associated with

the release

Not applicable

ReleaseLink . Release owner Release owner, subscribers
» Explicitly defined for the component associated with
the release
ReleaseModify . Release owner Release owner, subscribers, new

» Explicitly defined for the component associated with

the release

Note: To identify a new component to manage the
release, you must have ReleaseCreate in an
authority group in the component that you are

modifying

owner (if applicable)

ReleasePrune

* Release owner

» Explicitly defined for the component associated with

the release

Subscribers

ReleaseRecreate « Release owner Release owner, component owner,
« Explicitly defined for the component associated with SuPscribers
the release
ReleaseView « Release owner Not applicable
= Explicitly defined for the component associated with
the release
Report Not applicable; this is a base authority that can be Not applicable

performed by all users in the family

Appendix H. Authority and notification for TeamConnection actions 255

For this action

These users have authority

These users are notified

SizeAccept Sizing record owner Subscribers
Explicitly defined for the component associated with
the sizing record
SizeAssign Sizing record owner New sizing record owner,
Explicitly defined for the component associated with defect/feature owner, subscribers
the sizing record
SizeCreate Defect/feature owner Component owner, defect/feature
Explicitly defined for the component associated with ©Wner, subscribers
the defect/feature
SizeDelete Defect/feature owner Subscribers, sizing record owner,
Explicitly defined for the component associated with defect/feature owner
the defect/feature
SiZeRejECt S|Z|ng record owner Subscribers
Explicitly defined for the component associated with
the sizing record
TestAbstain Test record owner Subscribers
Explicitly defined for the component associated with
the test record’s release
TestAccept Test record owner Subscribers
Explicitly defined for the component associated with
the test record’s release
TestAssign Test record owner New test record owner, subscribers
Explicitly defined for the component associated with
the test record’s release
TestReady Test record owner Subscribers
Explicitly defined for the component associated with
the test record’s release
TestReject Test record owner Subscribers
Explicitly defined for the component associated with
the test record’s release
UserCreate Superuser New user
UserDelete Superuser Not applicable

256 User's Guide

For this action

These users have authority

These users are notified

UserModify + Owner of the user object can modify all Not applicable
characteristics except the superuser privilege
* Must be a superuser to grant the superuser
privilege
UserRecreate Superuser Not applicable
UserView Not applicable; this is a base authority that can be Not applicable
performed by all users in the family
VerifyAbstain « Verification record owner Subscribers
» Explicitly defined for the component associated with
the verification record’s defect or feature
VerifyAccept « Verification record owner Subscribers
» Explicitly defined for the component associated with
the verification record’s defect or feature
VerifyAssign « Verification record owner New verification record owner,
» Explicitly defined for the component associated with subscribers
the verification record’s defect or feature
VerifyReady Takes place automatically; no authority is required Verification record owners
VerifyReject « Verification record owner Subscribers
» Explicitly defined for the component associated with
the verification record’s defect or feature
WorkAreaAssign « Work area owner New work area owner, subscribers
» Explicitly defined for the component associated with
the release
WorkAreaCancel « Defect or feature owner Subscribers, owners of approval
- Explicitly defined for the component associated with "€cords for work area being
the defect or feature canceled
WorkAreaCheck o Work area owner Not applicable

Explicitly defined for the component associated with
the release

WorkAreaCommit

Work area owner

Explicitly defined for the component associated with
the release

Subscribers

Appendix H. Authority and notification for TeamConnection actions

257

For this action

These users have authority

These users are notified

WorkAreaComplet

Work area owner

Explicitly defined for the component associated with
the release

Subscribers

WorkAreaCreate

Defect or feature owner

Explicitly defined for the component associated with
the defect or feature

Work area owner, subscribers

WorkAreaFix

Work area owner

Explicitly defined for the component associated with
the release

Subscribers

WorkAreaFreeze

Work area owner

Explicitly defined for the component associated with
the release

Subscribers

WorkArealntegra

Work area owner

Explicitly defined for the component associated with
the release

Subscribers

WorkAreaModify

Work area owner

Explicitly defined for the component associated with
the release

Subscribers

WorkAreaRefresh

Work area owner

Explicitly defined for the component associated with
the release

Work area owner, subscribers

WorkAreaTest

Work area owner

Explicitly defined for the component associated with
the release

Subscribers

WorkAreaUndo

Work area owner

Explicitly defined for the component associated with
the release

WorkAreaView

Work area owner

Explicitly defined for the component associated with
the release

Not applicable

258 User's Guide

Appendix I. Sample REXX execs, build scripts, and parsers

This appendix is composed of the IBM-supplied REXX execs, build scripts, and
parsers. Your family administrator can modify these samples to fit the needs of your
organization.

The samples in this appendix may not be available on all platforms. Refer to the
readme file for a complete list of samples available with TeamConnection. All
samples are provided as-is and any use of or modifications to the samples are the
sole responsibility of the customer.

Sample REXX execs

This section lists the sample REXX execs that are shipped with TeamConnection.
The client.smp file contains this same listing. It is located in the bin subdirectory of
the directory where the TeamConnection client is installed.

Users running these execs must have user and host access to your
TeamConnection family.

Most of the execs require input parameters, and some require that the TC_FAMILY or
TC_RELEASE environment variables be set. If the user who is running the script is
acting for another user, the TC_BECOME environment variable must also be set. These
variables can be set from a command line prompt.

The following convention is used to show the required, optional, and selective input
parameters:

» Brackets ([]) indicate that the input or variable is optional.
* Braces ({}) indicate that one of the inputs is required.
* An input or variable that is not surrounded by brackets or braces is required.

Script name
accComp

compChld

compOwnr
compPrnt
compWalk
defClone
defDrvr
defFfea

defNew

Function Inputs Environment
variables
Lists the explicit access of users in a componentName TC_FAMILY
specified component. [TC_BECOME]
Lists the direct children of a specified componentName TC_FAMILY
component. Also lists the description and [TC_BECOME]
owner of each child component.
Displays a list of component owners’ familyName [TC_BECOME]
addresses in a specified family.
Lists the parent component of a specified componentName TC_FAMILY
component. [TC_BECOME]
Displays the children and grandchildren of a componentName TC_FAMILY
specified component. [TC_BECOME]
Creates a new defect based on values defectNumber TC_FAMILY
contained in a specified defect. [TC_BECOME]
Lists all defects for a specified driver. driverName TC_FAMILY
[TC_BECOME]
Creates a new defect based on values featureNumber TC_FAMILY
contained in a specified feature. [TC_BECOME]
Displays the number of the most recent TC_FAMILY
defect that was entered in the system. [TC_BECOME]

© Copyright IBM Corp. 1992, 1995, 1996, 1997 259

Script name
defReopn

defRept

defState
defStats
defWRef

dfDesc

feaClone
feaDrvr
feaFdef
feaNew
feaReopn

feaRept

feaState
feaStats
drvByDF

drvrMem

mailTo
ownerChg

prtChckin

prtChgDf

prtChgDr

Function

Reopens a previously canceled or returned

defect.

Generates a global defect report showing
work areas, test records, approval records,

and fix records.

Lists the defect number of all defects that are
in a specified state.

Displays total active defect statistics on a
defect owner area basis.

Displays the full details of defects that
contain the specified reference field value.
Displays the full remarks that were entered
when the specified defect or feature was

created.

Creates a new feature based on values
contained in a specified feature.
Lists all features contained in a specified

driver.

Creates a new feature based on the values
contained in the specified defect.

Displays the number of the most recent
feature that was entered in the system.
Reopens a previously canceled or returned

feature.

Generates a global feature report showing
work areas, test records, size records, and fix

records.

Lists the feature number of all features that
are in a specified state.

Displays total active feature statistics on a
feature owner area basis.

Lists the name of the drivers that contain a
specified defect or feature.

Lists the defect and feature members of a
specified driver for a specified release.

Sends a message to the addresses read

through stdin.

Re-assigns all current work and objects
owned by userLoginl to userLogin2.

Checks parts into the TeamConnection family.
When common parts are encountered, the
script requests the releases for which the
part should remain common.

Lists all the parts that were changed for a
specified defect or feature.

Lists the parts that were changed for a

specified driver.

Inputs

defectNumber

stateName
ownerArea
reference

{defectNumber |
featureNumber}

featureNumber
driverName

defectNumber

featureNumber

stateName
ownerArea

{defectNumber |
featureNumber}
driverName
[releaseName]

messagefile subject

Environment
variables
TC_FAMILY
[TC_BECOME]
TC_FAMILY
[TC_BECOME]

TC_FAMILY
[TC_BECOME]
TC_FAMILY
[TC_BECOME]
TC_FAMILY
[TC_BECOME]
TC_FAMILY
[TC_BECOME]

TC_FAMILY
[TC_BECOME]
TC_FAMILY
[TC_BECOME]
TC_FAMILY
[TC_BECOME]
TC_FAMILY
[TC_BECOME]
TC_FAMILY
[TC_BECOME]
TC_FAMILY
[TC_BECOME]

TC_FAMILY
[TC_BECOME]
TC_FAMILY
[TC_BECOME]
TC_FAMILY
[TC_BECOME]
TC_FAMILY
[TC_RELEASE]
[TC_BECOME]

userLoginl userLogin2 TC_FAMILY

partPathName
[releaseName]

{defectNumber |
featureNumber}
driverName

[TC_BECOME]
TC_FAMILY

[TC_RELEASE]
[TC_BECOME]

TC_FAMILY
[TC_BECOME]
TC_FAMILY

[TC_BECOME]

260 User's Guide

Script name

prtComGt

prtComp

prtHist

prtinfo

prtLock

prtLokBy

PrtPath
prtRel

prtwaGt

rByArea
relOwner
showConf
userAuth
userinfo
usersAll

usrAcc

usrRept
verByPrt
waComit

waFix

Function

Extracts all the parts associated with a
specific component. The parts are placed in
a directory that represents the release name
to which the version of the part is associated.
This directory is created relative to the
relativePathName parameter.

Lists all parts related to a specified
component.

Lists all defect and feature numbers and
abstracts that caused a change to a specified
part in a specified release.

Displays information for a specified part.

Lists all parts that a specified user has
locked.

Lists who has a specified part checked out.

Finds and lists all parts that match a partial
part path name.
Lists all parts related to a specified release.

Extracts all the parts associated with a
specific work area and places them in the
path specified by the relativePathName
parameter.

Generates a manager’s report based on the
specified areas or departments of interest.
Displays a list of addresses of all release
owners in a specified TeamConnection family.
Lists the valid values pertaining to a specified
configurable type.

Lists the users who have the authority to give
other users access to a specified component.
Finds user information based on part of the
user's name. A fuzzy search is performed.
Lists the addresses of all users in a specified
TeamConnection family.

Lists the explicit access of a specified user
for the specified component and its
descendant components.

Generates a user’s report based on the
specified user login.

Lists the version numbers, release names,
and path names for the specified part.

Lists the work areas that are in the commit
state for a specified release.

Lists all the work areas that are in the fix
state for a given release.

Inputs
componentName

relativePathName
[committed]

componentName

partName
[releaseName]

partName

userLogin

partName

partPathName
releaseName
releaseName
workareaName
relativePathName
areaName ...
familyName
configType
componentName
userName

familyName

userLogin
componentName

userLogin
partName
releaseName

releaseName

releaseName

Environment
variables
TC_FAMILY
[TC_BECOME]

TC_FAMILY
[TC_BECOME]
TC_FAMILY
[TC_RELEASE]
[TC_BECOME]
TC_FAMILY
[TC_RELEASE]
[TC_BECOME]
TC_FAMILY
[TC_BECOME]
TC_FAMILY
TC_RELEASE
[TC_BECOME]
TC_FAMILY
[TC_BECOME]
TC_FAMILY
[TC_BECOME]
TC_FAMILY
[TC_BECOME]

TC_FAMILY
[TC_BECOME]
[TC_BECOME]

TC_FAMILY
[TC_BECOME]
TC_FAMILY

[TC_BECOME]
TC_FAMILY

[TC_BECOME]
[TC_BECOME]

TC_FAMILY
[TC_BECOME]

TC_FAMILY
[TC_BECOME]
TC_FAMILY
[TC_BECOME]
TC_FAMILY
[TC_BECOME]
TC_FAMILY
[TC_BECOME]

Appendix |. Sample REXX execs, build scripts, and parsers

261

Script name

walnLvl

walnt

waPrdLv

wasStat

waTest

Function

Lists the work areas that are in the integrate
state and are associated with at least one
development driver for the specified release.
Lists the work areas that are in the integrate
state for a specified release.

Lists the work areas that are included in a
production driver and are in the integrate
state for a specified release.

Generates a work area activity statistics
report on a user area basis.

Lists the work areas that are in the test state
for a specified release.

Inputs

releaseName

releaseName

releaseName

userArea

releaseName

Environment

variables
TC_FAMILY
[TC_BECOME]

TC_FAMILY
[TC_BECOME]
TC_FAMILY
[TC_BECOME]

TC_FAMILY
[TC_BECOME]
TC_FAMILY
[TC_BECOME]

Sample build scripts

262 User's Guide

fhbcob2.cmd

Calls the COBOL Visual Set for OS/2 compiler.

fhbcob2l.cmd

Calls the COBOL Visual Set for OS/2 compiler and link editor.

fhbocomp.cmd

Calls the VisualAge for C++ icc compiler.

fhbolib.cmd
Calls the OS/2 implib utility.

fhbolin2.cmd

Calls the VisualAge for C++ icc link editor.

fhbolink.cmd

Calls the 1ink386 link editor.
fhborc.cmd

Calls the OS/2 resource compiler.
fhbplbld.cmd

Calls the OS/2 PL/1 compiler.
fhbplink.cmd

Calls the OS/2 PL/1 link editor.
edcc.jcl

Calls the C/370 JCL procedure.
fhbcobm.jcl

Calls the COBOL for MVS compiler.
fhbm370.jcl

Calls the C/370 compiler.
fhbmasm.jcl

Calls the MVS assembler.
fhbmc.jcl

Calls the C/370 compiler.
fhbmlink

Calls the MVS linkage editor.

fhbmpli.jcl
Calls the PL/1 MVS compiler.

fhbplked.jcl
Calls the C370 prelinker.

fhbtclnk
Calls the TeamConnection pseudo linker.

fhbwcomp.c
Calls the Microsoft Visual C++ compiler

fhbwlink.c
Calls the Microsoft linker

gather.cmd
Calls the Gather tool.

nvbridge.cmd
Calls the NetView bridge tool (NVBridge).

Sample parsers

fhbcbprs.cmd
A parser for COBOL applications.

fhbopars.cmd
A parser for C applications.

fhbplprs.cmd
A parser for PL/1 applications.

Sample package files

gather.pkf
A package file for the Gather tool.

nvbridge.pkf
A package file for the NetView bridge tool (NVBridge).

Appendix I. Sample REXX execs, build scripts, and parsers 263

264 User's Guide

Appendix J. Program specifications for TeamConnection
version 2.0

TeamConnection integrates software configuration management (SCM) function and
object-based repository services to support application development in OS/2,
Windows (3.1, 95, and NT), AlX, and HP-UX client/server team programming
environments. TeamConnection supports the development of OS/2, Windows, AlX,
HP-UX, and MVS client/server and distributed applications.

TeamConnection provides the following SCM services:

Version control
Version control provides the ability to store versions of an entire application
so that the state of the application at a particular point in time can be
re-created. Version control supports both serial and parallel development
and includes a merge tool for reconciling source code changes.

Configuration management
Configuration management provides the ability to identify, organize,
manage, and control access to development data. It also provides a
notification mechanism to facilitate team communications.

Integrated build
Integrated build automates and optimizes the process of building an
application or part of an application. The build process can segment the
build activity so that multiple build processors can be used in parallel to
complete the build faster.

Packaging and distribution support
Packaging and distribution support extends the conventional compile and
link steps of the build function to perform the transformation steps that are
required to prepare the application for use. The packaging and distribution
support enables applications to be distributed electronically using
LAN-based file server technology such as IBM NetView Distribution
Manager/2.

Problem tracking and change control
TeamConnection provides a very strong development model that controls
and tracks changes to development data. It associates identified application
defects and features with the changes. TeamConnection manages the
process of integrating related changes through the ability to build the
application based on defects and features.

© Copyright IBM Corp. 1992, 1995, 1996, 1997 265

266 User's Guide

Customer support

Your options for IBM VisualAge TeamConnection support, as described in your
License Information and Licensed Program Specifications, include electronic
forums. You can use the electronic forums to access IBM VisualAge
TeamConnection technical information, exchange messages with other
TeamConnection users, and receive information regarding the availability of fixes.
The following forums are available.

* IBM Talklink
Use the TEAMC CFORUM. For additional information about TalkLink, call
— United States 1-800-547-1283
— Canada 1-800-465-7999 ext. 228

* CompuServe

From any ! prompt, type GO SOFSOL, then select TeamConnection. For
additional information, call 1-800-848-8199 and ask for representative 239.

* Internet

Go to the IBM homepage, http://www.ibm.com. Use the search function with
keyword TeamConnection to go to the TeamConnection area.

If you cannot access these forums, contact your IBM representative.
There are several other support offerings available after purchasing IBM VisualAge

TeamConnection. For a list of these offerings, please contact your IBM
representative.

© Copyright IBM Corp. 1992, 1995, 1996, 1997 267

268 User's Guide

Bibliography

IBM VisualAge TeamConnection library

The following is a list of the TeamConnection publications.
» License Information (GC34-4497):

Contains license, service, and warranty information.
* Administrator's Guide (GC34-4551):

Lists the hardware and software that are required before you can install and use
the IBM VisualAge TeamConnection product, provides detailed instructions for
installing and configuring the TeamConnection family and build servers, and
provides instructions for administering a TeamConnection family.

» Getting Started with the TeamConnection Clients (SC34-4552):

Tells first-time users how to install the TeamConnection clients on their
workstations, and familiarizes them with the command line and graphical user
interfaces.

» User’'s Guide (SC34-4499):

A comprehensive guide for TeamConnection administrators and client users that
helps them install and use TeamConnection.

* Commands Reference (SC34-4501):

Describes the TeamConnection commands, their syntax, and the authority
required to issue each command. This book also provides examples of how to
use the various commands.

* Quick Commands Reference (GC34-4500):
Lists the TeamConnection commands along with their syntax.
» Staying on Track with TeamConnection Processes (83H9677):

Poster showing how objects flow through the states defined for each
TeamConnection process.

» The following publications can be ordered as a set (SBOF-8560):
Administrator’'s Guide
Getting Started with the TeamConnection Clients
User's Guide
Commands Reference
Quick Commands Reference
Staying on Track with TeamConnection Processes

Tool Builder's Development Kit

The following publications are part of the Tool Builder's Development Kit feature:
* Tool Builder's Development Guide (SC34-4553):

Explains how to create and extend tools for accessing objects in the
TeamConnection database. It contains guideance and reference information.

» Information Model Reference (SC34-4554):

Details the TeamConnection information model. This publication is available in
softcopy only.

© Copyright IBM Corp. 1992, 1995, 1996, 1997 269

TeamConnection Technical reports

29.2147
SCLM Guide to TeamConnection Teminology

29.2196
Using REXX command files with TeamConnection MVS Build Scripts

29.2231
TeamConnection Interoperability with MVS and SCLM

29.2235
Using REXX command files with TeamConnection MVS Build Scripts for
PL/l programs

29.2253
Comparison between CMVC 2.3 and TeamConnection 2

29.2254
Migrating from CMVC 2.3 to TeamConnection 2

29.2267
TeamConnection frequently asked questions: how to do routine operating
system tasks

ObjectStore

270

User's Guide

The following publications are part of the ObjectStore library of documents and are
available for order from Object Design, Inc. To order these documents call (617)
674-5000, Monday through Friday from 8:30 AM to 5:30 PM Eastern Time.

* ObjectStore C ++ Installation:
Contains step-by-step procedures for installing the latest release of ObjectStore
on a specific platform:

310-100-40 |
UNIX

310-310-40 |
Windows

310-320-40 |
0Ss/2

* ObjectStore C ++ API User Guide (310-000-40 U):
Provides information about the application programming interface for application
programmers.

* ObjectStore C ++ API Reference (310-000-40 R):
Describes the API to the features provided by ObjectStore for application
programmers.

* ObjectStore C ++ Building Applications (310-000-40 B):
Provides information and instructions for compiling code, generating schemas,
and linking files using all supported compilers; and provides instructions for
developing ObjectStore client applications for use on multiple platforms.

* ObjectStore Management (310-000-40 M):
Provides information and instructions for perfroming management tasks on

ObjectStore server and client systems. It includes server parameters,
environment variables, and database utilities.

* ObjectStore C ++ Performance (310-000-40 P):

Explains the fundamentals of designing and tuning ObjectStore applications for
optimal performance.

IBM Exchange library

The publications listed below can be ordered as a set (SBOF-6098) or separately
as indicated below. IBM Exchange will be available at a later date.

Licensed Programming Specification (GC34-4525):
Installation Guide (SC34-4509):

Bridge Builder’'s Guide (SC34-4508):

User's Guide 1 (SC34-4506):

User’s Guide 2 (SC34-4507):

Related publications

Transmission Control Protocol/Internet Protocol (TCP/IP)

— TCP/IP 2.0 for OS/2: Installation and Administration (SC31-6075)
— TCP/IP for MVS Planning and Customization (SC31-6085)

MVS

MVS/XA JCL User’s Guide (GC28-1351)

MVS/XA JCL Reference (GC28-1352)

MVS/ESA JCL User's Guide (GC28-1830)

MVS/ESA JCL Reference (GC28-1829)

NLS and DBCS

— AIX 4, General Programming Concepts: Writing and Debugging Programs.
(SC23-2533-02). See chapter 16 "National Language Support” for an updated
contents of the AIX 3 material (see below).

— AIX 4, System Management Guide: Operating System and Devices

(SC23-2525-03). See chapter 10, "National Language Support” for system
tasks.

— AIX Version 3.2 for RISC System/6000, National Language Support
(GG24-3850).

— Internationalization of AIX Software, A Programmer’s Guide (SC23-2431).

— National Language Design Guide Volume 1 (SE09-8001-02). This manual
contains very good information on how to enable an application for NLS.
— National Language Design Guide Volume 2 (SE09-8002-02). This manual

provides information on the IBM language codes (consult the "Language
codes” chapter).

Bibliography 271

272 User's Guide

Glossary

This glossary includes terms and definitions from
the IBM Dictionary of Computing, 10th edition
(New York: McGraw-Hill, 1993). If you do not find
the term you are looking for, refer to this
document’s index or to the IBM Dictionary of
Computing.

This glossary uses the following cross-references:

Compare to
Indicates a term or terms that have a
similar but not identical meaning.

Contrast with
Indicates a term or terms that have an
opposed or substantially different
meaning.

See also
Refers to a term whose meaning bears a
relationship to the current term.

A

absolute path name. A directory or a part expressed
as a sequence of directories followed by a part name
beginning from the root directory.

access list. A set of objects that controls access to
data. Each object consists of a component, a user, and
the authority that the user is granted or is restricted
from in that component. See also authority, granted
authority, and restricted authority.

action. A task performed by the TeamConnection
server and requested by a TeamConnection client. A
TeamConnection action is the same as issuing one
TeamConnection command.

agent. See build agent.

alternate version ID. In collision records, the name of
a version of a driver, release, or work area where the
conflicting version of a part is visible.

approval record. A status record on which an
approver must give an opinion of the proposed part
changes required to resolve a defect or implement a
feature in a release.

approver. A user who has the authority to mark an
approval record with accept, reject, or abstain within a
specific release.

approver list. A list of user IDs attached to a release,
representing the users who must review part changes
that are required to resolve a defect or implement a
feature in that release.

© Copyright IBM Corp. 1992, 1995, 1996, 1997

attribute. Information contained in a field that is
accessible to the user. TeamConnection enables family
administrators to customize defect, feature, user, and
part tables by adding new attributes.

authority. The right to access development objects
and perform TeamConnection commands. See also
access list, base authority, explicit authority, granted
authority, implicit authority, restricted authority, and
superuser privilege.

B

base authority. The set of actions granted to a user
when a user ID is created within a TeamConnection
family. See also authority. Contrast with implicit authority
and explicit authority.

base name. The name assigned to the part outside of
the TeamConnection server environment, excluding any
directory names. See also path name.

base part tree. The base set of parts associated with
a release, to which changes are applied over time. Each
committed driver or work area for a release updates the
base part tree for that release.

build. The process used to create applications within
TeamConnection.

build agent. A program that handles access to
persistent data on behalf of the build processor. Each
build agent is connected to one and only one build
processor, through a TCP/IP connection.

build associate. =~ A TeamConnection part that is not an
input to or an output from a build. An example of such a
part is a read.me file.

build cache. A directory that the build processor uses
to enhance performance.

build dependent. A TeamConnection part that is
needed for the compile operation to complete, but it will
not be passed directly to the compiler. An example of
this is an include file. See also dependencies.

builder. An object that can transform one set of
TeamConnection parts into another by invoking tools
such as compilers and linkers.

build event. An individual step in the build of an
application, such as the compiling of hello.c into
hello.obj.

build input. A TeamConnection part that will be used
as input to the object being built.

273

build output. A TeamConnection part that will be
generated output from a build, such as an .obj or .exe
file.

build pool. A group of build servers that resides in an
environment. The environment in which several build
servers operate. Typically, several servers are set up for
each environment that the enterprise develops
applications for.

build processor. A program that invokes the tools,
such as compilers and linkers, that construct an
application. Each build processor is connected to one
and only one build agent, through a TCP/IP connection.
See also build agent and build cache.

build scope. A collection of build events that
implement a specific build request. See also build event.

build script. An executable or command file that
specifies the steps that should occur during a build
operation. This file can be a compiler, a linker, or the
name of a .cmd file you have written.

build server. The combination of a build processor
and a build agent. See also build agent and build
processor.

build target. The name of the part at the top of the
build tree which is the final output of a build.
TeamConnection uses the build target to determine the
scope of the build. See also build tree.

build tree. A graphical representation of the
dependencies that the parts in an application have on
one another. If you change the relationship of one part
to another, the build tree changes accordingly.

C

change control process. The process of limiting and
auditing changes to parts through the mechanism of
checking parts in and out of a central, controlled,
storage location. Change control for individual releases
can be integrated with problem tracking by specifying a
process for the release that includes the tracking
subprocess.

check in. The return of a TeamConnection part to
version control.

check out. The retrieval of a version of a part under
TeamConnection control. In non-concurrent releases,
the check out operation does not allow a second user to
check out a part until the first user has checked it back
in.

child component. ~ Any component in a
TeamConnection family, except the root component, that
is created in reference to an existing component. The
existing component is the parent component, and the
new component is the child component. A parent

274 User's Guide

component can have more than one child component,
and a child component can have more than one parent
component. See also component and parent
component.

child part. Any part in a build tree that has a parent
defined. A child part can be input, output, or dependent.
See also part and parent part.

client. A functional unit that receives shared services
from a server. Contrast with server.

collision record. A status record associated with a
work area or driver, a part, and one of the following:

* The work area or driver’'s release
* Another work area

TeamConnection generates a collision record when a
user attempts to replace an older version of a part with
a modified version, another user has already modified
that part, and the first user’'s modification is not based
on this latest version of the part.

command. A request to perform an operation or run a
program from the command line interface. In

TeamConnection, a command consists of the command
name, one action flag, and zero or more attribute flags.

command line. (1) An area on the Tasks window or in
the TeamConnection Commands window where a user
can type TeamConnection commands. (2) An area on
an operating system window where you can type
TeamConnection commands.

committed version. The revision of a part that is
visible from the release.

common part. A part that is shared by two or more
releases, and the same version of the part is the current
version for those releases.

comparison operator. An operator used in
comparison expressions. Comparison operators used in
TeamConnection are > (greater than), < (less than), >=
(greater than or equal to), <= (less than or equal to),
and = (equal to).

component. A TeamConnection object that organizes
project data into structured groups, and controls
configuration management properties. Component
owners can control access to data and notification of
TeamConnection actions. Components exist in a
parent-child hierarchy, with descendant components
inheriting access and notification information from
ancestor components. See also access list and
notification list.

concurrent development. Several users can work on
the same part at the same time. TeamConnection
requires these users to reconcile their changes when
they commit or integrate their work areas and drivers
with the release. Contrast with serial development. See
also work area.

configuration management. The process of
identifying, managing, and controlling software modules
as they change over time.

connecting parts. The process of linking parts so that
they are included in a build.

context. The current work area or driver used for part
operations.

corequisite work areas. Two or more work areas
designated as corequisites by a user so that all work
areas in the corequisite group must be included as
members in the same driver, before that driver can be
committed. If the driver process is not used in the
release, then all corequisite work areas must be
integrated by the same command. See also prerequisite
work areas.

current version. The last visible modification of a part
in a driver, release, or work area.

current working directory. (1) The directory that is
the starting point for relative path names. (2) The
directory in which you are working.

D

daemon. A program that runs unattended to perform a
standard service. Some daemons are triggered
automatically to perform their task; others operate
periodically.

database. A collection of data that can be accessed
and operated upon by a data processing system for a
specific purpose.

default. A value that is used when an alternative is not
specified by the user.

default query. A database search, defined for a
specific TeamConnection window, that is issued each
time that TeamConnection window is opened. See also
search.

defect. A TeamConnection object used to formally
report a problem. The user who opens a defect is the
defect originator.

delete. If you delete a development object, such as a
part or a user ID, any reference to that object is
removed from TeamConnection. Certain objects can be
deleted only if certain criteria are met. Most objects that
are deleted can be re-created.

delta part tree. A directory structure representing only
the parts that were changed in a specified place.

dependencies. In TeamConnection builds there are

two types of dependencies:

* automatic . These are build dependencies that a
parser identifies.

e manual . These are build dependencies that a user
explicitly identifies in a build tree.

See also build dependent.

descendant. If you descendant a development object,
such as, a part or a user ID, any reference to that
object is removed from TeamConnection. Certain
objects can be descendant only if certain criteria are
met. Most objects that are descendants can be
re-created.

disconnecting parts. The process of unlinking parts
so that they are not included in a build.

driver. A collection of work areas that represent a set
of changed parts within a release. Drivers are only
associated with releases whose processes include the
track and driver subprocesses.

driver member. A work area that is added to a driver.

E

end user. See user.

environment. (1) A user-defined testing domain for a
particular release. (2) A defect field, in which case it is
the environment where the problem occurred. (3) The
string that matches a build agent with a build event.

environment list. A TeamConnection object used to
specify environments in which a release should be
tested. A list of environment-user ID pairs attached to a
release, representing the user responsible for testing
each environment. Only one tester can be identified for
an environment.

explicit authority. The ability to perform an action
against a TeamConnection object because you have
been granted the authority to perform that action.
Contrast with base authority and implicit authority.

extract. A TeamConnection action you can perform on
a builder, part, driver or release builder. An extraction
results in copying the specified builder, part, or parts
contained in the driver or release to a client workstation.

F

family. A logical organization of related data. A single
TeamConnection server can support multiple families.
The data in one family cannot be accessed from
another family.

family administrator. A user who is responsible for all
nonsystem-related tasks for one or more
TeamConnection families, such as planning, configuring,
and maintaining the TeamConnection environment and
managing user access to those families.

Glossary 275

family server. A workstation running the
TeamConnection server software.

FAT. See file allocation table.

feature. A TeamConnection object used to formally
request and record information about a functional
addition or enhancement. The user who opens a feature
is the feature originator.

file. A collection of data that is stored by the
TeamConnection server and retrieved by a path name.
Any text or binary file used in a development project
can be created as a TeamConnection file. Examples
include source code, executable programs,
documentation, and test cases.

file allocation table (FAT). The DOS- and
0OS/2-compatible file system that manages input, output,
and storage of files on your system. File names can be
up to 8 characters long, followed by a file extension that
can be up to 3 characters.

fix record. A status record that is associated with a
work area and that is used to monitor the phases of

change within each component that is affected by a

defect or feature for a specific release.

freeze. The freeze action saves changed parts to the
work area. Thus, TeamConnection takes a snapshot of
the work area, including all of the current versions of
parts visible from that work area, and saves this image
of the system. The user can always come back to this
stage of development in the work area. Note, however,
that a freeze action does not make the changes visible
to the other people working in the release. Compare
with refresh.

full part tree. A directory structure representing a
complete set of active parts associated with the release.

G

Gather. A tool to organize files for distribution into a
specified directory structure. This tool can be used as a
prelude to further distribution, such as using CD-ROM
or through electronic means like Netview DM/2. It can
also be used by itself for distributing file copies to
network-attached file systems.

GID. A number which uniquely identifies a file’s group
to an AIX system.

granted authority. If an authority is granted on an
access list, then it applies for all objects managed by
this component and any of its descendants for which
the authority is not restricted. See also access list,
authority, and inheritance. Contrast with restricted
authority.

graphical user interface (GUI). A type of computer
interface consisting of a visual metaphor of a real-world

276 User's Guide

scene, often as a desktop. Within that scene are icons,
representing actual objects, that the user can access
and manipulate with a pointing device.

GUI. Graphical user interface.

H

high-performance file system (HPFS). In the OS/2
operating system, an installable file system that uses
high-speed buffer storage, known as a cache, to provide
fast access to large disk volumes. The file system also
supports the existence of multiple, active file systems on
a single personal computer, with the capacity of multiple
and different storage devices. File names used with
HPFS can have as many as 254 characters.

host. A host node, host computer, or host system.

host list. A list associated with each TeamConnection
user ID that indicates the client machine that can
access the family server and act on behalf of the user.
The family server uses the list to authenticate the
identity of a client machine when the family server
receives a command. Each entry consists of a login, a
host name, and a TeamConnection user ID.

host name. The identifier associated with the host
computer.

HPFS. See high-performance file system.

implicit authority. ~ The ability to perform an action on
a TeamConnection object without being granted explicit
authority. This authority is automatically granted through
inheritance or object ownership. Contrast with base
authority and explicit authority.

import. To bring in data. In TeamConnection, to bring
selected items into a field from a matching
TeamConnection object window.

inheritance. The passing of configuration
management properties from parent to child component.
The configuration management properties that are
inherited are access and notification. Inheritance within
each TeamConnection family or component hierarchy is
cumulative.

integrated problem tracking. The process of
integrating problem tracking with change control to track
all reported defects, all proposed features, and all
subsequent changes to parts. See also change control.

interest group. The list of actions that trigger
notification to the user IDs associated with those actions
listed in the notification list.

J

job queue. A queue of build scopes. One job queue
exists for each TeamConnection family.

L

lock. An action that prevents editing access to a part
stored in the TeamConnection development environment
so that only one user can change a part at a time.

login. The name that identifies a user on a multi-user
system, such as AIX or HP-UX. In OS/2 and Windows,
the login value is obtained from the TC_USER
environment variable.

M

map. The process of reassigning the meaning of an
object.

metadata. In databases, data that describe data
objects.

N

name server. In TCP/IP, a server program that
supplies name-to-address translation by mapping
domain names to Internet addresses.

National Language Support (NLS). The modification
or conversion of a United States English product to
conform to the requirements of another language or
country. This can include the enabling or retrofitting of a
product and the translation of nomenclature, MRI, or
documentation of a product.

Network File System (NFS). The Network File
System is a program that enables you to share files with
other computers in networks over a variety of machine
types and operating systems.

notification list. ~ An object that enables component
owners to configure notification. A list attached to a
component that pairs a list of user IDs and a list of
interest groups. It designates the users and the
corresponding notification interest that they are being
granted for all objects managed by this component or
any of its descendants.

notification server. A server that sends notification
messages to the client.

NTFS. NT file system.

NVBridge. A tool for automatic electronic distribution
of TeamConnection software deliverables within a
NetView DM/2 network.

O

operator. A symbol that represents an operation to be
done. See also comparison operators.

originator. The user who opens a defect or feature
and is responsible for verifying the outcome of the
defect or feature on a verification record. This
responsibility can be reassigned.

owner. The user who is responsible for a
TeamConnection object within a TeamConnection family,
either because the user created the object or was
assigned ownership of the object.

P

parent component. All components in each
TeamConnection family, except the root component, are
created in reference to an existing component. The
existing component is the parent component. See also
child component and component.

parent part. Any part in a build tree that has a child
defined. See also part and child part.

parser. A tool that can read a source file and report

back a list of dependencies of that source file. It frees a
developer from knowing the dependencies one part has
on other parts to ensure a complete build is performed.

part. A collection of data that is stored by the family
server and retrieved by a path name. They include text
objects, binary objects, and modeled objects. These
parts can be stored by the user or the tool, or they can
be generated from other parts, such as when a linker
generates an executable file.

path name. The name of the part under
TeamConnection control. A path name can be a
directory structure and a base name or just a base
name. It must be unique within each release. See also
base name.

pool. See build pool.

pop-up menu. A menu that, when requested, appears
next to the object it is associated with.

prerequisite work areas. If a part is changed to
resolve more than one defect or feature, the work area
referenced by the first change is a prerequisite of the
work area referenced by later changes. A work area is a
prerequisite to another work area if:

e Part changes are checked in, but not committed, for
the first work area.

* One or more of the same parts are checked out,
changed, and checked in again for the second work
area.

Glossary 277

problem tracking. The process of tracking all reported
defects through to resolution and all proposed features
through to implementation.

process. A combination of TeamConnection
subprocesses, configured by the family administrator,
that controls the general movement of TeamConnection
objects (defects, features, work areas, and drivers) from
state to state within a component or release. See also
subprocess and state.

Q

query. A request for information from a database, for
example, a search for all defects that are in the open
state. See also default query and search.

R

raw format. Information retrieved on the report
command that has the vertical bar delimiter separating
field information, and each line of output corresponds to
one database record.

refresh. This TeamConnection action updates a work
area with any changes from the release, and it also
freezes the work area, if it is not already frozen.

relative path name. The name of a directory or a part
expressed as a sequence of directories followed by a
part name, beginning from the current directory.

release. A TeamConnection object defined by a user
that contains all the parts that must be built, tested, and
distributed as a single entity.

restricted authority. The limitation on a user’s ability
to perform certain actions at a specific component.
Authority can be restricted by the superuser, the
component owner, or a user with AccessRestrict
authority. See also authority.

root component. The initial component that is created
when a TeamConnection family is configured. All
components in a TeamConnection family are
descendants of the root component. Only the root
component has no parent component. See also
component, child component, and parent component.

S

search. To scan one or more data elements of a set in
a database to find elements that have certain
properties.

serial development. While a user has parts checked
out from a work area, no one else on the team can
check out the part. The user develops new material
without interacting with other developers on the project.
TeamConnection provides the opportunity to hold the
part until the user is sure that it integrates with the rest

278 User's Guide

of the application. Thus, the lock is not released until
the work area as a whole is committed. Contrast with
concurrent development. See also work area.

server. A workstation that performs a service for
another workstation.

shared part.
releases.

A part that is contained in two or more

shell script. A series of commands combined in a file
that carry out a function when the file is run.

SID. The name of a version of a driver, release, or
work area.

sizing record. A status record created for each
component-release pair affected by a proposed defect
or feature. The sizing record owner must indicate
whether the defect or feature affects the specified
component-release pair and the approximate amount of
work needed to resolve the defect or implement the
feature within the specified component-release pair.

stanza format. Data output generated by the Report
command in which each database record is a stanza.
Each stanza line consists of a field and its
corresponding values.

state. Work areas, drivers, features, and defects move
through various states during their life cycles. The state
of an object determines the actions that can be
performed on it. See also process and subprocess.

subprocess. TeamConnection subprocesses govern
the state changes for TeamConnection objects. The
design, size, review (DSR) and verify subprocesses are
configured for component processes. The track,
approve, fix, driver, and test subprocesses are
configured for release processes. See also process and
State.

superuser. This privilege lets a user perform any
action available in the TeamConnection family.

system administrator. A user who is responsible for
all system-related tasks involving the TeamConnection
server, such as installing, maintaining, and backing up
the TeamConnection server and the database it uses.

T

task list. The list of tasks displayed in the Tasks
window. The user can customize this list to issue
requests for information from the server. Tasks can be
added, modified, or deleted from the lists.

TCP/IP. Transmission Control Protocol/Internet
Protocol.

TeamConnection client. A workstation that connects
to the TeamConnection server by a TCP/IP connection
and that is running the TeamConnection client software.

TeamConnection part. A part that is stored by the
TeamConnection server and retrieved by a path name,
release, type, and work area. See also part, common
part, and type.

TeamConnection superuser. See superuser.

tester. A user responsible for testing the resolution of
a defect or the implementation of a feature for a specific
driver of a release and recording the results on a test
record.

test record. A status record used to record the
outcome of an environment test performed for a
resolved defect or an implemented feature in a specific
driver of a release.

track subprocess. An attribute of a TeamConnection
release process that specifies that the change control
process for that release will be integrated with the
problem tracking process.

Transmission Control Protocol/Internet Protocol
(TCP/IP). A set of communications protocols that
support peer-to-peer connectivity functions for both local
and wide area networks.

type. All parts that are created through the
TeamConnection GUI or on the command line will show
up in reports with the type of TCPart as the part type.
The TeamConnection GUI and command line can only
check in, check out, and extract parts of the type
TCPart.

Note: Parts created through an API can have other
specified types. Refer to the Commands
Programming Reference for more information.

U

user exit. A user exit allows TeamConnection to call a
user-defined program during the processing of
TeamConnection transactions. User exits provide a
means by which users can specify additional actions
that should be performed before completing or
proceeding with a TeamConnection action.

user ID. The identifier assigned by the system
administrator to each TeamConnection user.

V

verification record. A status record that the originator
of a defect or a feature must mark before the defect or
feature can move to the closed state. Originators use
verification records to verify the resolution or
implementation of the defect or feature they opened.

version. (1) A specific view of a driver, release, or
work area. (2) A revision of a part.

version control. The storage of multiple versions of a
single part along with information about each version.

view. An alternative and temporary representation of
data from one or more tables.

W

work area. An object in TeamConnection that you
create and associate with a release. When the work
area is created, you see the most current view of the
release and all the parts that it contains. You can check
out the parts in the work area, make modifications, and
check them back into the work area. You can also test
the modifications without integrating them. Other users
are not aware of the changes that you make in the work
area until you integrate the work area to the release.
While you work on files in a work area, you do not see
subsequent part changes in the release until you
integrate or refresh your work area.

working part. The checked-out version of a
TeamConnection part.

Y

year 2000 ready. IBM VisualAge TeamConnection is
Year 2000 ready. When used in accordance with its
associated documentation, TeamConnection is capable
of correctly processing, providing and/or receiving date
data within and between the twentieth and twenty-first
centuries, provided that all products (for example,
hardware, software and firmware) used with the product
properly exchange accurate date data with it.

Glossary 279

280 User's Guide

Index

Special Characters
/Ft(dir) builder parameter 120

A

Accept Defects window 48
Accept Test Records 86
Activate Fix Records 80
Add Driver Members 78
approval command
approving a fix 73
Approval Records window 73
approve state 40
authority
basic 24
build 103, 136
for checking in parts 31
for checking out parts 30
for extracting parts 30

B

build action 6
build administrator 12
build agent
accessing database remotely 102, 107
assigning to build pools 106
at work 151
description of 94
startup file, creating 107
stopping 108
build directory 103
build environment 113
build event
criteria used to determine success 114
defining multiple outputs from one event
definition of 95
determining available agents 106
timeout setting 114
with VisualAge C ++ templates 120
build function
authority 103, 136
building a driver 82
canceling a build 154
collector part 156
concepts of 93
definition of 11

diagram showing physical structure of 93

features of 93
monitoring build progress
using Build Progress window 152
using part -viewmsg command 152
object model 97
startup files, creating 107
testing part updates 74
build mode 148
Build Parts window 54

© Copyright IBM Corp. 1992, 1995, 1996, 1997

build pool

assigning agents to 106
specifying when starting build 148

build processor

at work 151
build directory 103
cache directory 103
description of 94
starting MVS 104
startup file, creating 107
stopping 108
build scope
definition of 95
determining 149
build scripts
at work 151
debug variable 117
definition of 95
for MVS
compile example 129
definition of 121
file name conversions 125
link example 132
steps for working with 111, 121
supported JCL syntax 127, 128
writing 125
for 0S/2 115
modifying contents of 118
samples shipped 262
testing 118
timeout of 114
writing 116
writing an executable file for 117
build server
definition of 94
timeout setting 114
build target 148
build tree
creating 143
diagram showing build times 149
display of 147
example of 98
multiple outputs from single event 155
setting up for packaging
for other distribution tools 163
for the gather tool 160
for the NVBridge tool 162
setting up for packaging 160
versions of 98
working with 98
builder
command
connecting builder to its parts 119
creating a builder 112, 118
extracting a builder 119
modifying builder contents 119
connecting to parts 119, 137
creating a null builder 113, 156

281

builder (continued)
definition 95
for MVS
creating 121
environment supported 123
naming 122

passing parameters to a build script

versions of 122
for OS/2
creating 111
environment supported 113
naming 112

passing parameters to a build script

versions of 112

removing from a part 120

building an application

a build agent at work 151

an example
adding job to job queue 151
build processors at work 151
build scripts at work 151
creating a build tree 143

creating builders and parsers 143

determining the build scope 149

extracting resulting executable 152

list of tasks 141
starting a build on the client 147

starting processors and agents 142

authority 103, 136

building all parts ignoring times 153
canceling a build 154

monitoring progress of build 152
preparing your parts 28, 99

report of which parts will be built 154

running in spite of errors 153
testing part updates 54

126

115

with VisualAge C ++ and templates 120

buildView action 25

C

cache data set
attributes of 104
deleting 105
description of 104
cache directory
controlling size of 103
description of 103
canceled state 39
change control 3
check-in action 6
Check In Parts window 53
check-out action 6
checking in parts
authority needed to 31
example of 53
explanation of 31
checking out parts
an example of 50
authority needed to 30
explanation of 30
Checkout Parts window 50

282 User's Guide

client

definition 5

starting 15

stopping 16
closed state 39
collector part

example of 156

using a null builder 113
collision command

reconciling differences 67
collision record

example of 31

reconciling using command line 66

reconciling using GUI 66

when creating driver members 79
command file

fhbopars.cmd sample shipped 139

specifying 136

writing 139
command line interface

using 19

viewing syntax online 19
commands

becoming familiar with 19

fhomigmk 209

for client

teamc.log file 19
viewing syntax online 19

sendmail 101

tcmerge 67

teamagnt 106

teamcgui 15
Commit Drivers 84
commit state

of drivers 43

of work areas 42
committing

a driver 84

versus integrating 86
common parts

between releases 29

between work areas 29

breaking link 29

definition of 29

locking 29
Complete Drivers 85
Complete Fix Records 77
complete state

moving work area to 86

of drivers 43

of work areas 42
components

definition of 7

displaying structure of 23

example of hierarchy 7

information stored about 7
Components window 23
concepts of

build function 93

TeamConnection 4

concurrent development
definition of 47
example of 31, 63
how to work in 28

reconciling differences in no-track process 65
reconciling differences in tracking process 79

configuration management 3
configuring

processes 86
connect function 28
courier.cmd 195
create action 6
Create Builder 111
Create Parser 135
Create Parts window 143
Create Work Areas window 49

D

DEBUG 117,118
defect command
accepting 48
closing 63
modifying ownership 71
verifying 63
defects
accepting 48, 71
approving the fix 72
closing 62
definition of 9
designing 70
reassigning ownership 70
reviewing 70
sizing 70
states of
canceled state 39
closed state 39
design state 39
open state 39
return state 39
review state 39
size state 39
verify state 39
working state 39
verifying 62
working with 34
delta file tree 43
dependencies on a build
defining through parsers 95

viewing through a build tree 98

dependent part 28

design, size, review process 70
design changes 34

design state 39

development mode 29
differences in parts

reconciling in no-track process 65
reconciling in tracking process 79

driver command
committing a driver 84
completing a driver 85
refreshing driver 82

driver command (continued)
restricting driver 84
driver member 78
driverMember command
adding driver members 79
drivers
building 82

committing changes into release 84

completing 85
definition of 9
preparing for formal test 85
refreshing 81
states of
commit state 43
complete state 43
integrate state 43
restrict state 43, 83
working state 42
versioning 33

E

edit action 6

Edit Task List window 51

editing parts 30

environment variables 203
setting 207

setting before invoking MVS build script
setting before invoking OS/2 build script
setting before invoking Windows NT build script

setting for command line usage 19

setting for GUI usage 17
examples of

build script for an MVS compile 129
build script for an MVS link 132

build tree 98

build tree showing build times 149

building an application 141
client/server network 4
component hierarchy 7
concurrent development 63
display of a build tree 147

executable file for a build script
following a no-track process 47
following a tracking process 69

117

listing work areas in a release 89

retrieving past part versions 87
rules file 212
serial development 47

showing part/release/component relationship 8

starting make import 210
teamcpak command for Gather

167

126
115

teamcpak command for NVBridge 176, 196

writing a build script 116

expand keywords 17
extract action 6
Extract Parts window 56
extracting parts
an example of 55
authority needed 30
previous versions of 89

Index

115

283

extracting parts (continued) freezing work areas (continued)

resulting build executable 152 explanation of 26
versus checking out 30 full part tree 43

F . Gather tool

family 6 explanation of 165

family administrator responsibilities 12

ackaging file
family server 101 packaging

example of syntax 168

featurt_es_ _ keywords for 169
definition of 9 specifying 166, 195
states of syntax rules for 168

canceled state 39 writing 168

closed state 39 teamcpak command 166
design state 39 GUI

open state 39
return state 39
review state 39
size state 39
verify state 39
working state 39
working with 34
fhbbuild, build directory 103
fhbcache, cache directory 103
fhbhag.$$$, listing of files in cache directory 103
fhbopars.cmd, sample command file 139
fhpicat utility 189
fhpiscat utility 189
fhpmcat utility 191
fhpobdel utility 187
fhpobdif utility 188
fhpobmon utility 187
fhprgmon utility 192
fhprgpur utility 192
fhpstat utility 187

fhptrpur utility 194 freezing a work area 58

fhptrver utility 193 integrating a work area, concurrent development
fhpucat utility 190 64

fhpverif utility 191
files
fhbbuild 103
fhbcache 103
fhbhag.$$$ 103

client
accepting a defect 48
accepting fix records 77
accepting test records 85
accessing online help 18
adding driver member 78
approving the fix 73
building a driver 82
building parts 54
checking in part 53
checking out a part 50
closing a defect 62
committing driver changes into release 84
completing a driver 85
connecting builder to its parts 119
connecting parser to parts 137
creating a work area 49
creating parsers 135
extracting parts 55
fast path 17

integrating a work area, serial development 61
moving fix records back to active state 80
reactivating fix records 80

reassigning defect ownership 70

reconciling collisions 66

teamc.log 19 refreshing a driver 81

fi"ef windgws for parts 25 refreshing a work area, concurrent development
finding objects 25 64

fix command
accepting fix records 78
completing fix records 78
reactivate 80

fix records
accepting 77
completing 77
moving back to active state 80

refreshing a work area, serial development 60
removing builder connection from parts 120
removing parser connection from parts 138
restricting a driver 83

returning work area to fix state 79

searching for parts 51

Settings notebook 17

ng 0 starting 15
reactivating 80 stopping 16
when created 72 Tasks window 16

fix state 40 using 15

Fix Work Areas 79
Freeze Work Areas window 59
freezing work areas

examples of 58, 75

verifying a defect 62
family administrator
to start family server 101
to start notification server 101

284 User's Guide

H

help
diagram push button 18
how do | 18
how to access 18
hierarchy

component example 7
displaying component structure 23
how do I help 18

importing makefile information 209
information model 3
input part 28
integrate state
of drivers 43
of work areas 41
Integrate Work Areas window 61
integrating
commit versus integrate 86
interfaces
becoming familiar with 15
description of 5

job queue
adding a job 151
definition of 95
keyword

ATTEMPTS 175, 183
CLIENTINTERVAL 175, 182
CORPID 179

DATA 169, 177, 197

ENTRY 184

EXITPOST 171

EXITPRIOR 171
EXITREPLACE 171

for Gather utility 168, 169

in text files 241

INSTALLDIR 180
INSTALLPGM 180
INSTALLS 175, 176, 184, 196
IPARMS 181

MAIL 174, 178, 195
NVGLOBALS 178, 198, 199, 200
package file 168
PACKAGEFORMAT 169, 178, 197
RULE 169

SENDINTERVAL 175, 183
SENDS 175, 185, 196
SOURCE 170

TARGET 171
TARGETROOT 169
TEAMCSERV 179

TEST 175, 176, 184
UNINSTALLPGM 182

L

LANG 203

M

mail exit routines 101
mail facility 101
makefile

creating rules file 210
example of starting import 210
importing information 209

merging differences 67

Modify Defect Owner window 71
Modify Part Properties 119

MVS

N

build cache data set 104
build script

definition of 121

file name conversions 125

for a compile 129

for alink 132
builder 121
modifying RUNPGM JCL 104
starting build processor 104
stopping build processor 109
supported JCL syntax 127, 128
syntax for builds 127

naming

builders 112
parts 27
work areas 26

network 4

NLSPATH 203

no-track process, scenario 47
notification

setting up malil facility 101

notification server 101
nvbridge.cmd 173
NVBridge tool

checking if object exists in catalog 189
checking install history for object 187

checking status of NetView DM/2 components 187

cross-referencing differences 188
explanation of 173
NetView DM/2 output files 173
packaging file
example of syntax 177
keywords for 177
specifying 174
syntax rules for 177
writing 176
problem determination 185

removing information about a cataloged object

sample build script 173

teamcpak command 174

used as a builder for packaging 173
utilities 186

Index

187

285

O

online help
diagram push button 18
how to access 18
open state 39
OS_AS_SIZE 203
OS_CACHE_SIZE 203
OS_NETWORK 203
OS_ROOTDIR 203
OS_TMPDIR 203
output part 28

P

package file
for Gather tool
keywords for 169
specifying 166, 195
syntax rules for 168
writing 168
for NVBridgetool
example of syntax 177
keywords for 177
specifying 174
syntax rules for 177
writing 176
for Tivoli Courier tool
example of syntax 197
keywords for 197
syntax rules for 197
writing 197
packaging
definition of 11
explanation of Gather tool 165
NVBridge tool 173
sample files shipped 263
setting up build tree
for other distribution tools 163
for the gather tool 160
for the NVBridge tool 162
tasks involved in 159, 195
parameters
passing to a build script 115
where specified
attributes of a builder 115

attributes of part in a build tree 115
parameters of part -build command 116

parser command
connecting parser to parts 138
creating a parser 136

parsers
command file

fhbopars.cmd, sample shipped 139

specifying 136
writing 139
creating 135
definition of 95
explanation of 135
removing from a part 138
samples shipped 263
part command
building a driver 83

286 User's Guide

part command (continued)
building parts 55
canceling a build 154
checking in parts 54
checking out parts 50, 52
extracting build executable 152
extracting parts 56
listing parts that will be built 154
monitoring progress of build 152
removing builder connection 120
removing parser connection 139
starting a build 148
touching a part 150

viewing all version parts in a work area 87

partFull action 25
parts
authority needed to check in 31

authority needed to check out and extract 30

checking in 31
checking in, an example 53
checking in versus integrating 31
checking out, an example 50
checking out versus extracting 30
common
between releases 29
between work areas 29
breaking link 29
definition of 29
connecting builder 119
connecting parser 137
creating 27
definition of 6
dependent 28
editing parts 30
empty 27
extracting 30
extracting, an example 55
finding
using BuildView action 25
using Filter window 25
using PartFull action 25
using Parts action 25
using report command 25
input 28
linking 29
linking between releases 29
linking between work areas 29
locked 28

making changes visible to a release 84
making changes visible without driver subprocess

87
naming 27
preparing for build 28
removing builder from 120
removing parser from 138
retrieving past versions 87, 89
searching for 25
searching for, an example 51
testing updates to 54, 74
versioning 34
viewing versions in a work area 87

parts (continued)
where placed on workstation 30
parts action 25
Parts Filter window 51
PATH 203
placeholder parts 27
problem information, reporting 34
processes
definition of 9
example of using a configured process 86
relating to defects and features 34

R

reassigning ownership of a defect 70
Reconcile Collision Record window 66
reconciling differences 65, 79
Refresh Drivers 82
Refresh Work Areas window 60
refreshing
a driver 81
a work area 59
relative flag 30
release management 3
releases
committing driver changes to 84
common parts 29
definition of 7
example of relationship with other objects 8
linking parts between releases 29
parts common to more than one 29
using a configured process 86
versioning 32
report command
listing work areas in a release 89
searching for parts 52
to find parts 25
used to view differences 66
Restrict Drivers 83
restrict state
of drivers 43, 83
of work areas 42
retrieving past versions of objects 31
return codes 186
return state 39
review state 39
REXX execs 259
rules file
creating 210
example of 212
RUNPGM JCL 104

S

sample files shipped
build script for NVBridge tool 173, 195
build scripts 262
for package function 263
mail exit routines 101
parsers 263
REXX execs 259
Save to Task List push button 51

scenarios
concurrent development 63
no-track process
accepting a defect 48
checking in a part 53
checking out a part 50
closing a defect 62
creating a work area 49
extracting a part 55
freezing the work area 58, 59
integrating a work area 61
reconciling differences 65
searching for a part 51
testing part updates 54
verifying a defect 62
tracking process
accepting a defect 71
accepting fix records 77
accepting test records 85
adding driver member to a driver 78
approving the fix 72
building a driver 82
checking out a part 73
committing driver changes into release 84
completing a driver 85
completing fix records 77
designing a defect 70
freezing the work area 75
reactivating fix record 80
reassigning defect ownership 70
refreshing a driver 81, 83
returning work area to fix state 79
reviewing a defect 70
sizing a defect 70
testing part updates 74
searching for objects 25
sendmail command 101
serial development
definition of 47
example of 47
how to work in 28
servers
definition 5
family server
definition 5
starting 101
notification server 101
Settings notebook
for client 17
list of variables 17
size state 39
sizing records 70
socket port
format for specifying for build agent 106
starting
a build on the client 147
family server 101
GUI client 15
MVS build processor 104
notification server 101
startup files 107

Index

287

states of objects
defects 37
drivers 42
features 37
work areas 40
stopping
build agent 108
MVS build processor 109
OS/2 build processor 108
superuser 6
syntax
for MVS builds 127
how to view online 19
of NVBridge utilities 186
supported JCL syntax for build 127, 128
system administrator, responsibilities 12

T

tasks

authority to perform 24

preparing to build an application 99

understanding the basics 23

when following a no-track process 47, 69
Tasks window 16
TC_BATCH_TXNS 203
TC_BECOME 203, 259
TC_BUILD_AGENT_NOISY 203
TC_BUILD_AGENTS_FILE 107, 203
TC_BUILD_NOKEY 203
TC_BUILD_PROC_NOISY 203
TC_BUILD_PROCESSORS_FILE 107, 203
TC_BUILDPOOL 203
TC_BULKCHUNKSIZE 203
TC_CACHEPRUNEMETHOD 103, 105, 203
TC_CACHESIZELIMIT 103, 105, 203
TC_CASESENSE 203
TC_COMPONENT 19, 203, 211
TC_DBPATH 102, 107, 203
TC_DEADLOCK_DEBUG 203
TC_DEADLOCKBEEP 203
TC_DECACHE_COUNT 203
TC_DECACHE_WINDOW 203
TC_FAMILY 19, 47, 115, 142, 203, 207, 209, 210, 259
TC_FAMILY_SERVER_NOISY 203
TC_INPUT 115, 117, 118
TC_INPUTTYPE 115
TC_JOB_QUEUE_INTERVAL 203
TC_LOCATION 115
TC_MAKEIMPORTRULES 203, 209, 212
TC_MAKEIMPORTTOP 203, 210
TC_MAKEIMPORTVERBOSE 203, 210
TC_MIGRATERULES 203
TC_NOTIFY_DAEMON 203
TC_OUTPUT 117, 118
TC_OUTPUTTYPE 115
TC_RECYCLE_DEADLOCK 203
TC_RECYCLE_SERVICE_COUNT 203
TC_RELATIVE 74
TC_RELEASE 115, 203, 209, 210, 259
TC_STACK_TRACE 203
TC_SYSTEM_LOG 203

288 User's Guide

TC_TMP 203
TC_TOP 30, 203
TC_TRACE 203
TC_TRACEATTEMPTS 203
TC_TRACEDELAY 203
TC_TRACEFILE 203
TC_TRACESIZE 203
TC_USER 203
TC_WORKAREA 115, 203, 209
tclogin command 19
tcmerge 67
TCP/IP
sendmail command 101
specifying socket port for build agent
teamagnt command 106
teamcgui command 15
TeamConnection
concepts of 4
diagram showing physical structure of
introducing 3
the basics of using 23
teamcpak command
for Gather tool
command line flags 166
examples of 167
starting 166
syntax of 166
for NVBridge tool
command line flags 175
examples of 176, 196
starting 174
syntax of 174
using NVBridge utilities instead 186
templates 120
test command
accepting test records 86
test records
accepting 85
when created 85
test state
moving work area to 85
of work areas 42
Tivoli Courier tool
explanation of 195
packaging file
example of syntax 197
keywords for 197
syntax rules for 197
writing 197
problem determination 200
sample build script 195
teamcpak command 195
Tivoli Courier output files 195
used as a builder for packaging 195
TMP 203
touch action 150
tracking
following a no-track process 47
following a tracking process 69

106

93

utilities
NVBridge

displaying syntax of 186

fhpicat 189
fhpiscat 189
fhpmcat 191
fhpobdel 187
fhpobdif 188
fhpobmon 187
fhprgmon 192
fhprgpur 192
fhpstat 187
fhptrpur 194
fhptrver 193
fhpucat 190
fhpverif 191

Vv

verification record 39
Verify Defects window 62
verify state 39
version control 3, 31
versions 31
builders 112
of build trees 98
of drivers 33
of parts 34
of releases 32
of work areas 32

retrieving past part versions 87
viewing all part versions in a work area 87

VisualAge C ++ 120

W

window examples
Accept Defects 48
Accept Test Records 86
Activate Fix Records 80
Add Driver Members 78
Approval Records 73
Build Parts 54
BuildView 25
Check In Parts 53
Check Out Parts 50
Commit Drivers 84
Complete Drivers 85

Complete Fix Records 77

Components window 23
Create Builder 111
Create Parser 135
Create Parts 143
Create Work Areas 49
Edit Task List 51
Extract Parts 56

Fix Work Areas 79
Freeze Work Areas 59

Integrate Work Areas 61
Modify Defect Owner 71

window examples (continued)

Modify Part Properties 119
PartFull 25

Parts Filter 25, 51

Reconcile Collision Record 66
Refresh Drivers 82

Refresh Work Areas 60
Restrict Driver 83

Tasks 16

Verify Defects 62

work area

automatic creation of 26
canceling 26
creating 49
definition of 8
freezing 26
freezing, an example 58, 75
integrating, concurrent development 64
integrating, serial development 61
linking parts between work areas 29
moving to complete state 86
moving to test state 85
naming 26
reactivating to fix state 80
refreshing, concurrent development 63
refreshing, serial development 59
returning to fix state 79
reusing 27
states of

approve state 40

commit state 42

complete state 42

fix state 40

integrate state 41

restrict state 42

test state 42
things you can do with 8
using 26
versioning 32
viewing all version parts 87
when parts become visible to others 26
when to create one 26

workarea command

creating 49

freezing work areas 59

integrating when driver subprocess is not enabled
87

integrating work areas, concurrent development 65

integrating work areas, serial development 62

refreshing work areas, concurrent development 64

refreshing work areas, serial development 60

return work area to fix state 80

working state

of defects and features 39
of drivers 42

Index 289

290 User's Guide

Part Number:

on recycled paper containing 10%

@ Printed in the United States of America
recovered post-consumer fiber.

SC34-4499-02

