<|ll

05/390

C/C++
Compiler and Run-Time Migration Guide

000000000000

<|ll

05/390

C/C++
Compiler and Run-Time Migration Guide

000000000000

Note!
Before using this information and the product it supports be sure to read the general information under Natices” an

Fourth Edition, September 1998

This edition applies to Version 2 Release 6 of OS/390 C/C++ (5647-A01) and to all subsequent releases and
modifications until otherwise indicated in new editions or other updated documentation. Make sure that you use
the correct edition for the level of the program listed above. Also, ensure that you apply all necessary PTFs for the
program.

Technical changes in the text since the last release of this book are indicated by a vertical line (1) to the left of the
change.

Order publications through your IBM representative or the IBM branch office serving your location. Publications are
not stocked at the address below. Note that the OS/390 C/C++ publications are available through the OS/390
Library page at: http://www.s390.1ibm.com/0s390/bkserv.

IBM welcomes your comments. You can send your comments electronically to the network ID listed below. Be sure
to include your entire network address if you wish a reply.

Internet: torrcf@ca.ibm.com
IBMLink: toribm(torrcf)
IBM/PROFS: torolab4(torrcf)
IBMMAIL: ibmmail(caibmwt9)

To send your comments by facsimile (attention: RCF coordinator) use the following FAX numbers:

United States and Canada: 416-448-6161
Other Countries: (+1)-416-448-6161

Alternatively, you can use the Reader’s Comment Form that is provided at the back of this publication, or mail
your comments directly to:

IBM Canada Ltd. Laboratory
Information Development
2G/345/1150/TOR

1150 Eglinton Avenue East

North York, Ontario, Canada. M3C 1H7

If you send comments, include the title and order number of this book, and the page number or topic related to
your comment. When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 1998. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Notices vii
Trademarks. vii
Part 1. Introduction 1
Chapter 1. Locating your Migration
Path. : 3
How This Book Is Organlzed . 4
A History of Compilers and Libraries . 4
Chapter 2. Common Questions about
Migration 7
Will Existing LE Apphcatlons Run w1th OS / 390
V2R6? . . 7
Will Existing C/ 370 Apphcatlons Work w1th
0S/390 V2R6?. . 7
My Application Does Not Run — Now What" 8
I Attempt to Recompile My Apphcatlon and It
Fails — Why? . .o 9
Part 2. From C/370 to OS/390
Version 2 Release 6 Language
Environment 11
Chapter 3. Application Executable
Program Compatibility 13
Input and Output Operations. 13
Differences Between the C/370 V1 and V2
Compilers . . . 13
Executable Programs That Invoke Debug Tool 13
System Programming C Facility (SP C) Executable
Programs . . 14
Executable Programs w1th Interlanguage Calls 14
Initialization Compatibility 15
IBM C/370 Version 1 and Version 2
Initialization 15
0S/390 Language Env1ronment In1t1allzat10n 15
0S/390 LE Initialization of C/370 Executable
Programs . 15
Special Con51deratlons CEEBLHA and
IBMBLIIA 16
Converting Old Executable Programs to New
Executable Programs 16
Considerations for Interlanguage Call (ILC)
Applications . o . 17
Chapter 4. Source Program
Compatibility 21
Input and Output Operatlons 21
Differences Between the C/370 V1 and V2
Compilers . . 21
SIGFPE Exceptions 21

© Copyright IBM Corp. 1996, 1998

Program Mask Manipulations

The release() Function .

The realloc() Function

Fetched Main Programs.

User Exits

#line Directive .

sizeof Operator

System Programming C Apphcatlons Bullt w1th
EDCXSTRX. e
The __librel() Function .

Library Messages .

Prefix of perror() and strerror() Messages
Compiler Messages and Return Codes.
_Packed Structures and Unions .
Alternate Code Points .

Chapter 5. C/370 Version 1 to Version
2 Compiler Changes .
Source Code Incompatibilities
Characters .
The #pragma comment Dlrectlve
Structure Declarations . .
Function Argument Compatlblhty .
Pointer Considerations .
Macro Changes

Chapter 6. Other Migration
Considerations

Changes That Affect User]CL CLISTs and EXECs

Return Codes and Messages .
Changes in Data Set Names
Differences in Standard Streams .
Passing Command-Line Parameters to a
Program .
SYSMSGS ddname

Run-Time Options
Ending the Run-Time Optlons Llst
ISASIZE, ISAINC, STAE/SPIE, LANGUAGE
and REPORT options
STACK Default Size .
STACK parameters
HEAP Default Size
HEAP Parameters

Compile-Time Options . .
DECK Compile-Time Option .
INLINE Compile-Time Option
OPTIMIZE Compile-Time Option

SEARCH and LSEARCH Compile-Time Optlon

TEST Compile-Time Option
Language Environment Run-Time Optlons
Precedence of Language Environment over C/370
for #pragma runopts.

System Programming C Fac1hty Apphcatlons w1th

#pragma runopts .
Decimal Exceptions .

22
22
23
23
23
23
23

24
24
24
24
25
25
25

27
27
27
27
27
28
28
29

31
31
31
31
31

32
32
32
32

32
33
33
33
34
34
34
34
34
34
34
35

35

35
35

iii

Migration and Coexistence Considerations
SIGTERM, SIGINT, SIGUSR1, and SIGUSR2
Exceptions .

Running Different Versmns 0f the L1brar1es under

CICS . . .

CICS Abend Codes and Messages .

CICS Reason Codes .

Standard Stream Support under CICS

stderr Output under CICS . .
Transient Data Queue Names under CICS
HEAP Option Used with the Interface to CICS
COBOL Library Routines .

Passing Control to the Cross System Product
Syntax for the CC Command .

atexit List during abort()

Time Functions

Direction of Compiler Messages to stderr
Compiler Listings.

Chapter 7. Input and Output

35

36

36
36
36
36
37
37
37
38
38
38
39
39
39
39

Operations Compatibility 41
Opening Files . 41
Writing to Files 41
Repositioning within Files 43
Closing and Reopening ASA Files 44
fldata() Return Values . 45
Error Handling 45
Miscellaneous . 46
VSAM I/0O Changes 46
Terminal I/O Changes . 46
Part 3. From Previous Releases of
Language Environment to OS/390
Version 2 Release 6 Language
Environment 49
Chapter 8. Application Executable
Program Compatibility 51
Input and Output Operations. . 51
System Programming C Facility (SP C) Executable
Programs . .o 51
Using the LINK Macro to Initiate a main() . . 51
Inheritance of Run-Time Options with EXEC CICS
LINK. . 52
STAE/NOSPIE and SPIE / NOSTAE Mapplng 52
Class Library Execution Incompatibilities . 52
Chapter 9. Source Program
Compatibility . 53
Input and Output Operations. 53
SIGFPE Exceptions . 53
Program Mask Manlpulatlons 53
#line Directive . 54
sizeof Operator . . 54
_Packed Structures and Unlons . 55
Alternate Code Points . 55
Conformance to the ANSI standard 55
LANGLVL(ANSI). 55

Compiler Messages and Return Codes. 55
Collection Class Library Source Code
Incompatibilities . 56
DSECT Utility . 56
Chapter 10. Other Migration
Considerations . 57
Class Library Object Module Incompatiblhties 57
Removal of Database Access Class Library Utility 57
Changes That Affect User JCL, CLISTs, and EXECs 57
CXX Parameter in JCL Procedures . . 57
SYSMSGS and SYSXMSGS ddnames 58
Compiler Messages and Return Codes. 58
Changes in Data Set Names 58
Decimal Exceptions . 58
Migration and Coex1stence 58
SIGTERM, SIGINT, SIGUSR1, and SIGUSR2
Exceptions . . 58
Compile-Time Options . . 59
OPTIMIZE Compile-Time Option 59
IDL Compile-Time option . 59
INLINE Compile-Time option .59
SEARCH and LSEARCH Compile-Time Option 59
TEST Compile-Time Option 60
HALT Compile-Time Option . 60
Syntax for the CC Command . 60
Time Functions . 60
Abnormal Termination Ex1ts . 61
Standard Stream Support . . . 61
Direction of Compiler Messages to stderr 62
Array new . 62
Compiler Listings. 62
Chapter 11. Input and Output
Operations Compatlblllty 63
Opening Files . 63
Writing to Files 63
Repositioning within Files 65
Closing and Reopening ASA Files 66
fldata() Return Values 67
Error Handling 67
Miscellaneous . . 68
VSAM I/0 Changes . 68
Terminal I/O Changes . 68
Part 4. From Previous Releases of
0S/390 C/C++ to OS/390 Version 2
Release 6 C/C++. 71
Chapter 12. Changes Between
Releases of OS/390 C/C++ 73
IPA Object Module Binary Compatibility . 73
IPA Link Step Defaults . 73
Removal of IDL Compile-Time optlon .73
Removal of Database Access Class Library Utihty 74
OPTIMIZE Compile-Time Option . .74
Name Conflicts with Run-Time Library Functlons 74
Time Functions 76

iV 0S/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

Part 5. Appendixes

Appendix A. Class Library Mlgratlon
Considerations

Appendix B. Year 2000 Support for
C/C++ under MVS & OS/390

Bibliography

0S/390 . .

VS COBOL II Release 4

COBOL FOR MVS & VM Release 2

COBOL for OS/390 & VM Version 2 Release 1

PL/I for MVS & VM Release 1 Modification 1
OS PL/I Version 2 Release 3 . .
VS FORTRAN Version 2 Release 6 .

1

79

81

83
83
83
83
84
84
84
84

CICS/ESA Version 4 Release 1

CICS Transaction Server for OS/390 Release 2

DB2 Version 3 Release 1

DB2 Version 4 Release 1

DB2 Version 5 Release 1
IMS/ESA Version 4 Release 1.
IMS/ESA Version 5 Release 1.
IMS/ESA Version 6 Release 1.
QMEF Version 3 Release 2
VSAM

INDEX .

Readers’ Comments — We'd Like to
Hear from You

Contents

84
84
85
85
85
85
85
85
86
86

87

91

\'%

vi 0S/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

Notices

Any reference to an IBM licensed program in this publication is not intended to
state or imply that only IBM’s licensed program may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM’s
intellectual property rights may be used instead of the IBM product, program, or
service. Evaluation and verification of operation in conjunction with other
products, except those expressly designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY, 10594, USA.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Canada Ltd.,
Department 071, 1150 Eglinton Avenue East, North York, Ontario M3C 1H7,
Canada. Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

This publication documents intended Programming Interfaces that allow the
customer to write OS/390 C/C++ programs.

Any interfaces, including service component interfaces, that are not documented in
the OS5/390 C/C++ publications are not formal interfaces. You should not build
any dependencies on these interfaces, as IBM can change or remove interfaces at
any time, without notice.

Any pointers in this publication to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of these Web
sites. IBM accepts no responsibility for the content or use of non-IBM Web sites
specifically mentioned in this publication or accessed through an IBM Web site that
is mentioned in this publication.

Trademarks

The following terms, which may be denoted by a single asterisk (*), are trademarks
of International Business Machines Corporation in the United States or other
countries or both:

AD/Cycle AFP AIX

AIX/6000 AT AS/400

BookManager C Set ++ C/370

C/MVS C++/MVS Common User Access
CICS CICS/ESA CICSPlex
COBOL/370 CUA CT

DATABASE 2 DB2 DFSMS

DFSMS/MVS DFSMSdfp DRDA

ESCON GDDM Hiperspace

IBM IBMLink IMS

© Copyright IBM Corp. 1996, 1998 vii

IMS/ESA MVS/DFP MVS/ESA

MVS/SP MVS/XA Open Class

OpenEdition Operating System/2 Operating System/400

OS OPEN 0s/2 05/390

0S/400 PROFS PS/2

QMEF RACF RETAIN

S/370 S/390 SAA

SOM SOMobjects SP

SQL/DS System/370 System/390

System Object Model Systems Application VisualAge
Architecture

VM/ESA VSE/ESA VTAM

3090 3890 400

Microsoft, Windows, Windows NT, and the Windows logo are registered
trademarks of Microsoft Corporation.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Other company, product, and service names, which may be denoted by a double
asterisk(**), may be trademarks or service marks of others.

viii 0S8/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

Part 1. Introduction

This part provides answers to some common migration questions.

© Copyright IBM Corp. 1996, 1998

2 0S/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

Chapter 1. Locating your Migration Path

This book discusses the implications of migrating applications from each of the
compilers and libraries listed in [Fable 2 on page d to the OS/390 Version 2 Release
6 C/C++ product. To find the section of the book that applies to your migration,

s . : ”

see

Use this book to help determine what must be done to continue to use existing
source code, object code, and load modules, and to be aware of differences in
behavior between products that may affect your migration. In most situations,
existing well-written applications can continue to work without modification.

This book does not discuss all of the enhancements that have been made to the
0OS/390 Version 2 Release 6 C/C++ compiler and OS/390 Version 2 Release 6
Language Environment. This book does not show how to change an existing C
program so that it can use C++. For a list of books that provide information about
the OS/390 Version 2 Release 6 C/C++ compiler and its class libraries, debugger,
and utilities, refer to U'Bibliography” on page 83. For a description of some of the
differences between C and C++, see OS/390 C/C++ Language Reference.

In this book, references to the products listed in the first column of Mable 1 also
apply to the products in the second column.

Table 1. Product References

References To These Products Also Apply To These Products

LE/370 Release 3 MVS/ESA SP Version 5 Release 1
OpenEdition, AD/Cycle C/370 Language
Support Feature

Language Environment Release 4 MVS/ESA SP Version 5 Release 2
Modification 0 C/C++ Language Support
Feature

Language Environment Release 5 MVS/ESA SP Version 5 Release 2
Modification 2 C/C++ Language Support
Feature

C/MVS Version 3 Release 2 compiler C component of the C/C++ for MVS/ESA
Version 3 Release 2 compiler

C++/MVS Version 3 Release 2 compiler C++ component of the C/C++ for
MVS/ESA Version 3 Release 2 compiler

0S5/390 Release 1 C/C++ for MVS/ESA Version 3 Release 2,
IBM Language Environment for MVS & VM
Release 5

0S5/390 Release 2 C compiler C component of the OS/390 Release 2
C/C++ compiler

0S5/390 Release 2 C++ compiler C++ component of the OS5/390 Release 2
C/C++ compiler

0S/390 Release 3 C compiler C component of the OS/390 Release 3
C/C++ compiler

0S/390 Release 3 C++ compiler C++ component of the OS/390 Release 3

C/C++ compiler

© Copyright IBM Corp. 1996, 1998

Introduction

Table 1. Product References (continued)

References To These Products

Also Apply To These Products

0S/390 Version 2 Release 4 C compiler

C component of the OS/390 Version 2
Release 4 C/C++ compiler

0S/390 Version 2 Release 4 C++ compiler

C++ component of the OS/390 Version 2
Release 4 C/C++ compiler

0S/390 Version 2 Release 5 C compiler

C component of the OS/390 Version 2
Release 5 C/C++ compiler

0S/390 Version 2 Release 5 C++ compiler

C++ component of the OS/390 Version 2
Release 5 C/C++ compiler

0S/390 Version 2 Release 6 C compiler

C component of the OS/390 Version 2
Release 6 C/C++ compiler

0S/390 Version 2 Release 6 C++ compiler

C++ component of the OS/390 Version 2
Release 6 C/C++ compiler

How This Book Is Organized

* Part 1 contains some general answers to common migration questions.

* Part 2 describes the considerations for migrating from one of the following:

— The IBM C/370 Version 1 or Version 2 Release 1 compiler and the IBM C/370

Version 1 or Version 2 Release 1 library
— The IBM SAA AD/Cycle C/370 Version 1 Release 2 compiler and the IBM

C/370 Version 2 Release 2 library

* Part 3 describes the considerations for migrating from one of the following:

— The AD/Cycle C/370 compilers

— The MVS C/C++ Version 3 compilers

— The OS/390 V1R1 C/C++ compiler

and any release of Language Environment

* Part 4 describes the considerations for migrating from one of the following:

0S/390 Release 2 C/C++
0OS/390 Release 3 C/C++

— 0OS/390 Version 2 Release 4 C/C++
0S/390 Version 2 Release 5 C/C++

A History of Compilers and Libraries

[Cable A lists the versions of the C and C++ compilers and run-time libraries in the
order in which they were first released. Use this table to help determine which

changes described in this book apply to your migration.

Table 2. A History of Compilers and Libraries

Description

Service Status

C/370 VIR1 Compiler

C/370 VIR1 Library

end of service

Short Product GA
Name Number Date
C/370 5688-040 1988
VIR1

5688-039 1988
C/370 5688-040 1989
VIR2

5688-039 1989

C/370 VIR2 Compiler

C/370 VIR2 Library

end of service

4 0S/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

Table 2. A History of Compilers and Libraries (continued)

Introduction

Short Product GA Description Service Status
Name Number |Date
C/370 5688-187 | 1991 C/370 V2R1 Compiler
V2R1
5688-188 | 1991 C/370 V2R1 Library
AD VIR1 5688-216 1991 AD/Cycle C/370 V1R1 Compiler, end of service
follow-on to C/370 V2R1 Compiler.
LE VIR1 5688-198 1991 LE/370 V1R1 Library, first release of end of service
Language Environment /370; follow-on
to C/370 V2R1 Library.
LE VIR2 5688-198 | 1992 LE/370 VIR2 Library end of service
AD VIR2 |5688-216 |199%4 AD/Cycle C/370 VIR2 Compiler:
* Runs on either LE V1IR3 or C/370
V2R2
* Generates code for either LE VIR3 or
C/370 V2R2
LE VIR3 5688-198 | 1994 LE/370 V1IR3 Library, also shipped as | end of service
part of MVS/ESA SP 5.1 OpenEdition |as of March
AD/Cycle C/370 Language Support 1997
Feature.
C/370 5688-188 | 1994 C/370 V2R2 Library. Follow-on to the
V2R2 C/370 V2R1 Library, intended to help
customers migrate to LE/370.
C/C++MVS|5655-121 1995 C/C++ for MVS/ESA V3R1 Compilers, |end of service
V3R1 follow-on to AD VIR2 Compiler. First |as of
release of C++ on MVS. December
1996
LE VIR4 5688-198 1995 LE VIR4 Library for MVS & VM, also |end of service
shipped as the MVS/ESA SP 5.2.0 Sept 1997
C/C++ Language Support Feature.
C/C++/ 5655-121 | 1995 C/C++ for MVS/ESA V3R2 Compilers
MVS V3R2
LE VIR5 5688-198 | 1995 LE VIR5 Library for MVS & VM, also
shipped as part of MVS/ESA SP 5.2.2
C/C++ Language Support Feature.
0OS/390 R1 |5645-001 |March |0OS/390 R1 includes the C/C++ for
1996 MVS/ESA V3R2 Compilers and the LE
VIR5 Library.
0S/390 R2 |5645-001 |Sept 0S/390 R2 C/C++ is the follow-on to
1996 0S/390 R1 C/C++, and includes new
optimization options to improve the
execution-time performance of C code.
0S/390 R3 |5645-001 |March |OS/390 R3 C/C++ is the follow-on to
1997 0S/390 R2 C/C++, and includes new

optimization options to improve the
execution-time performance of C++
code.

Chapter 1. Locating your Migration Path 5

Introduction

Table 2. A History of Compilers and Libraries (continued)

Short Product GA Description Service Status

Name Number |Date

0S5/390 5647-A01 |Sept 0S/390 V2R4 C/C++ is the follow-on

V2R4 1997 to OS/390 R3 C/C++, and includes
performance improvements for DLLs,
conversion of character string literals,
and support for the Program
Management Binder.

0S5/390 5647-A01 |March |0OS/390 V2R5 C/C++ is functionally

V2R5 1998 equivalent to OS/390 V2R4 C/C++.

0S5/390 5647-A01 | Sept 0S/390 V2R6 C/C++ is the follow-on

V2R6 1998 to OS/390 V2R5 C/C++, and includes
support for the IEEE binary
floating-point and the Tong Tong
integer data types, and improvements
to the handling and format of packed
decimal numbers in C++.

6 05/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

Chapter 2. Common Questions about Migration

This chapter describes the kind of migration impacts that you may encounter, and
the possible solutions.

Will Existing LE Applications Run with OS/390 V2R6?

Yes, in nearly all situations, an existing, well-behaved Language Environment
application can be run with OS/390 Language Environment without any
modifications. A well-behaved application is one that relies on documented
interfaces only.

For example, the OS/390 C/C++ Run-Time Library Reference states that the remove ()
function returns a nonzero return code when a failure occurs. The following code
fragments show the correct and incorrect ways to call the remove() function and to
check the return code:

Incorrect method

if (remove("my.file") == -1) {
call_err();

Correct method

if (remove("my2.file") != 0) {
call _err();

The value of the return code from the remove() function changed in LE/370
Release 3. If an LE/370 Release 2 program was coded incorrectly, and checked for
a specific value, as in the first code fragment, a source change is required when the
code is migrated. This situation is common when an application relies upon
undocumented interfaces. However, if the program was coded correctly, and it did
not check for a specific nonzero return code, as in the second fragment, no source
changes are required.

Will Existing C/370 Applications Work with OS/390 V2R67?

A C/370 application is created using the IBM C/370 Version 1 or Version 2
compiler and library, or the AD/Cycle C/370 Version 1 Release 2 compiler with
the TARGET (COMPAT) option and the C/370 Version 2 Release 2 library. A well-coded
C/370 application, in most situations, works with OS/390 Language Environment
without any modifications.

Two common migration problems that you may encounter relate to interlanguage
calls:

© Copyright IBM Corp. 1996, 1998 7

Introduction

* You must relink applications that contain interlanguage calls between C/370 and
Fortran before running them with OS/390 Language Environment

* You can only run them with OS/390 Language Environment after they are
relinked. You cannot continue to run them with the C/370 library.

The same rules apply to applications that contain interlanguage calls between
C/370 and COBOL, unless you relink them with the C/370 Version 2 Release 1 or
Release 2 library with the PTF for APAR PN74931 applied. This PTF replaces the
C/370 Version 2 link-edit stubs so that they tolerate Language Environment. After
your application is relinked using the modified C/370 Version 2 stubs, you can run
the application with either the C/370 Version 2 run-time library or with Language
Environment. Refer to L i “

for more information about COBOL and Fortran interlanguage calls.

Though there are other migration items (described in the following chapters) that
may affect your application, these are the most serious ones.

My Application Does Not Run — Now What?

If your application does not run, it may be either a migration problem, or an error
in your program that surfaces as a result of a new design feature in the run-time
library. Do the following:

1. Verify the concatenation order of your libraries.

If you have a load module built with both C/370 library parts and OS/390
Language Environment parts, ensure that you are not accidentally initializing
your environment using the C-PL/I Common Library rather than OS/390
Language Environment. The PDS with the low level qualifier SCEERUN (which
belongs to OS/390 Language Environment), must be concatenated ahead of the
PDS with the low level qualifier SIBMLINK (which belongs to the C-PL/I
Common Library).

Refer to the section IInitialization Compatibility” on page 15 for more

information.

2. Use environment variables to obtain the “Old Behavior”.

Under OS/390 Language Environment, you can use the ENVAR run-time option
to specify the values of environment variables at execution time. With some
environment variables, you can specify the “old behavior” for particular items.
The following setting provides you with “old behavior” for the greatest number
of items:

ENVAR("_EDC_COMPAT=32767")

The value assigned to _EDC_COMPAT is used as a bit mask. If you assign a value
of 32767, the library uses “old behavior” for all of the general compatibility
items currently defined by _EDC_COMPAT. For more information about
_EDC_COMPAT and its possible values, refer to the O5/390 C/C++ Programming
Guide.

If _EDC_COMPAT solves your migration problem, you can use it with the ENVAR
run-time option, as shown above, or in a call to setenv() either in the
CEEBINT High-Level Language exit or in your main() program. Using
CEEBINT only requires you to relink your application, but adding a call to
setenv() in the main() function requires a recompile and obviously a relink.
See the OS/390 C/C++ Run-Time Library Reference, and the OS5/390 C/C++
Programming Guide for more details about the setenv() function.

8 05/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

Introduction

3. Relink your application.

Relinking your application with OS/390 Language Environment ensures that
you did not link in any non-OS/390 Language Environment interfaces. You
must relink your C/370 application before running it with OS/390 Language
Environment, if your application:

e Contains ILCs between C and Fortran, or between C and COBOL.

Refer to I‘Executable Programs with Interlanguage Calls” on page 14 for more

information.

* Is an SP C application that uses the library
* Contains calls to ctest()
4. Review the migration items documented in this book.

If you find a migration item in this manual that you think may affect your
application, use the workaround described in this book. If a relink or a setting
of an environment variable is not suggested, you must change your source, and
then recompile and relink your application.

5. Look for uninitialized storage.

In some cases, applications will run with uninitialized storage, because the
run-time library may inadvertently clear storage, or because the storage
location referenced is set to zero.

Use the STORAGE and HEAP run-time options to find uninitialized storage. We
recommend STORAGE (FE,DE,BE) and HEAP(16,16,ANY,FREE) to determine if your
application is coded correctly. Any uninitialized pointers will fail at first
reference instead of accidentally referencing storage locations at random.

Note: Your program will run slower with these options specified. Do not use
them for production, only development.

6. Look for undocumented interfaces.

It is possible that your application has dependencies on undocumented
interfaces. For example, you may have dependencies on library control blocks,
specific errno values, or specific return values. Alter your code to use only
documented interfaces, and then recompile and relink.

7. Contact your service representative.

If you followed steps 1 to 6, but cannot run your existing load module under
0S/390 Language Environment, contact your System Programmer to verify
whether or not all service has been applied to your system. Often, the problem
you encounter has already been reported to IBM, and a fix is available. If this is
not the case, ask your Service Representative to open a Problem Management
Record (PMR) against the applicable IBM product. See the APAR member in data
set CBC.SCBCDOC (available on the compiler product tape) for information on
how to open a PMR.

| Attempt to Recompile My Application and It Fails — Why?

Changes were made between versions and releases of compilers. Several changes
were made between C/370 Version 1 and C/370 Version 2. In some cases, these
changes were made to ensure compliance with C Language standards such as
ANSI/ISO. This book describes these changes, and the alterations you may need to
make to your code.

Chapter 2. Common Questions about Migration 9

10 0S/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

Part 2. From C/370 to OS/390 Version 2 Release 6 Language
Environment

This part discusses the implications of migrating applications that were created
with one of the following compilers:

e The IBM C/370 Version 1 compiler, 5688-040

* The IBM C/370 Version 2 compiler, 5688-187

* The AD/Cycle C/370 Version 1 Release 2 compiler with the TARGET (COMPAT)
compiler option, 5688-216

and with one of the following libraries:

e The IBM C/370 Version 1 library, 5688-039, and C-PL/1 Common Library,
5688-082

¢ The IBM C/370 Version 2 library, 5688-188, and C-PL/1 Common Library,
5688-082

to the OS/390 Version 2 Release 6 C/C++ product.

In this part, OS/390 Version 2 Release 6 Language Environment may also be
referred to as OS/390 Language Environment, or Language Environment.

© Copyright IBM Corp. 1996, 1998

11

12 0S/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

Chapter 3. Application Executable Program Compatibility

An application executable program is the output of the bind process. The output is
a load module when stored in a PDS and a program object when stored in a PDSE
or HFS. C/370 executable programs can usually be run with OS/390 Version 2
Release 6 Language Environment without modification. This chapter describes the
exceptions and shows how to solve specific compatibility problems.

For purposes of this chapter, C/370 or old executable programs are executable
programs that were built with one of the compilers and one of the libraries listed
in I'Part 2. From C /370 t0 QS /390 Version 2 Release 6 1 anguage Environment” on

. New executable programs are those that were built with the OS/390
Version 2 Release 6 C/C++ or Language Environment products.

Executable program compatibility problems requiring source changes are discussed
iI‘l 7 121 ”

Note: The terms in this section having to do with linking (bind, binding, link,
link-edit) refer to the process of creating an executable program from object
modules.

Input and Output Operations

Programs that ran with the C/370 Version 1 or Version 2 Release 1 library may
have to be changed to run with OS/390 Language Environment if they have
dependencies on any of the input and output behaviors listed in Chapter 7 Tnput

1. 173

Differences Between the C/370 V1 and V2 Compilers

If you have programs that were created with C/370 Version 1, you should be
aware of some changes made in C/370 Version 2 that may affect them. These
differences also exist in the OS/390 Version 2 Release 6 C compiler. See

C/370 Version 1 to Version 2 (’nmpilm‘ Chang@q” on page 27 for more information.

Executable Programs That Invoke Debug Tool

When migrating your application from C/370 to OS/390 Version 2 Release 6
Language Environment, you must relink modules that contain calls to ctest(). The
old library object, @@CTEST, must be replaced as described in L i
” and in
. After you
replace the old objects, the new modules are executable under OS/390 Language
Environment.

” 7

© Copyright IBM Corp. 1996, 1998 13

From C/370 to LE Element of OS/390 V2R6

System Programming C Facility (SP C) Executable Programs

There are two types of SP C programs: the ones that still require the run-time
library, and the ones that do not. With OS/390 Language Environment, only the SP
C executable programs that use the OS/390 C/C++ run-time library need to be
relinked. You can relink applications from executable programs or from text decks
using the OS/390 Language Environment text libraries. If you relink from text
decks, you can use the JCL that originally built the application. However, you must
modify it to point to the OS/390 Language Environment static or resident library
(SCEELKED). If you relink from executable programs, you will need to do a
CSECT replacement for the appropriate part, such as EDCXSTRL, EDCXENVL, and
EDCXHOTL.

If your SP C module has been built with exception handling, automatic library call

is not enabled when you relink, so you must explicitly include the new routine
@@SMASK.

Executable Programs with Interlanguage Calls

You must relink C/370 executable programs that contain interlanguage calls (ILCs)
to or from COBOL to execute them under OS/390 Language Environment. Old
executable programs that contain ILCs to and from assembler or PL/I language
modules do not need to be relinked.

To relink your C/370-COBOL ILC application under the C/370 V2R2 library so
that it can run under either the C/370 Version 2 Release 2 library or Language
Environment, obtain and apply PTF for APAR PN74931 for the Version 2 Release 1
or Release 2 link-edit stubs. This PTF replaces the link-edit stubs so that they
tolerate Language Environment. After your application is relinked using the
modified Version 2, you can run the application with either the Version 2 Release 1
or Release 2 run-time library, or with Language Environment.

To relink your C/370-COBOL ILC application so that it will only run under
0S/390 Language Environment, replace the old library objects @@C2CBL and
@@CBL2C, as described in [i

”

and [i
. After you replace the old objects, the new modules will
be executable only under OS/390 Language Environment.

”

Fortran-C ILC was not supported prior to Language Environment Release 5 and
C/MVS Version 3.1, for Language Environment conforming applications. To use
Fortran and C ILC routines, you must relink all Fortran-C ILC applications
containing pre-Language Environment C or Fortran library routines.

The following table outlines when a relink of ILC applications is required, based
on languages found in the executable program:

Table 3. Migrations requiring relinking

Language Relink required
Assembler No

PL/1 No

Fortran YES

COBOL YES *

14 0S/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

From C/370 to LE Element of OS/390 V2R6

Notes:

1. *If the C/370 ILC application is built (relinked) after the PTF for APAR
PN74931 is applied, no relink is required to run under OS/390 Version 2
Release 6 C/C++. Otherwise a relink is required.

2. If you have multiple languages in the executable program, then the sum of the
restrictions applies. For example: if you have C, PL/I and Fortran in the
executable program, then it should be relinked because Fortran needs to be
relinked.

Refer to OS/390 Language Environment Writing Interlanguage Applications for more
information.

Initialization Compatibility

Both OS/390 Version 2 Release 6 Language Environment and C/370 modules use
static code and dynamic code. Static code sections are emitted or bound with the
main program object. Dynamic code sections are loaded and executed by the static
component.

The sequence of events during initialization for C/370 modules differs from that
for OS/390 Version 2 Release 6 Language Environment modules. The key static
code for both C/370 and OS/390 Language Environment modules is an object
named CEESTART, which controls initialization at execution. Its contents differ
between the products, thus there is an old and a new version of CEESTART. The
key dynamic code for OS/390 Language Environment is CEEBINIT, which is a
0S/390 Language Environment service stored in SCEERUN. The key dynamic
code for IBM C/370 Version 1 and Version 2 is IBMBLIIA, which is a Common
Library part stored in SIBMLINK. The Common Library is used by the C/370
Version 1 and Version 2 libraries.

The following lists describe the initialization schemes:

IBM C/370 Version 1 and Version 2 Initialization
1. Old CEESTART loads IBMBLIIA.
2. IBMBLIIA initializes the Common Library.
3. The Common Library runs C/370-specific initialization.
4. The main program is called.

0S/390 Language Environment Initialization

The new CEESTART loads CEEBINIT.

CEEBINIT initializes OS/390 Language Environment.

0S/390 Language Environment C-specific initialization is run.

P wbdpRE

The main program is called.

0OS/390 LE Initialization of C/370 Executable Programs
Old CEESTART loads CEEBLIIA (as IBMBLIIA).

CEEBLIIA (IBMBLIIA) initializes OS/390 Language Environment.
0S/390 Language Environment C-specific initialization is run.

HwbdpR

The main program is called.

Chapter 3. Application Executable Program Compatibility 15

From C/370 to LE Element of OS/390 V2R6

In the third situation listed above, compatibility with old executable programs
depends upon the program’s ability to intercept the initialization sequence at the
start of the dynamic code and to perform the OS/390 Language Environment
initialization at that point. This interception is done by providing a OS/390
Language Environment part named CEEBLIIA, assigned the alias of IBMBLIIA.
This provides “initialization compatibility”.

Special Considerations: CEEBLIIA and IBMBLIIA

The only way to control which environment is initialized for a given old
executable program (when CEEBLIIA is assigned the alias of IBMBLIIA) is to
correctly arrange the concatenation of libraries.

To initialize the Common Library environment, ensure that SIBMLINK is
concatenated before SCEERUN. To initialize the OS/390 Language Environment
environment, ensure that SCEERUN is concatenated before SIBMLINK. The version
of IBMBLIIA that is found first determines the environment (Language
Environment or Common Library) that is initialized.

Converting Old Executable Programs to New Executable Programs

Many sites will have some old executable programs that will require the C/370
Common Library environment unless they have been converted to use OS/390
Language Environment. These are incompatible modules that, for example, contain
ILCs to COBOL or that use the library function ctest() to invoke the Debug tool.

There are three different methods of converting old modules to new modules, so
that they will run under OS/390 Language Environment:

* Link from original objects using OS/390 Language Environment. EDCSTART
and CEEROOTB must be explicitly included.

* Relink the old executable program with OS/390 Language Environment using
CSECT replacement. EDCSTART and CEEROOTB must be explicitly included.

[Figure 1 on page 14 shows an example of a job that uses this method. The job

converts an old executable program to a new executable program by relinking it
and explicitly including the OS/390 Language Environment CEESTART to
replace the old C/370 CEESTART.

This is a general-purpose job. The comments show the other include statements
that are necessary if certain calls are present in the code. Refer to
EConsiderations for Interlangnage Call (ILC) Applications” on page 17 for the
specific control statements that are necessary for different kinds of ILCs with
COBOL.

16 0S/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

From C/370 to LE Element of OS/390 V2R6

//Jobcard information
//*
//**//
//*RELINK C/370 Version 1 or 2 USER MODULE FOR 0S/390 Language Environment x//
//**//
/1%
/1*
//LINK EXEC PGM=HEWL,PARM="'RMODE=ANY,AMODE=31,MAP,LIST'
//SYSPRINT DD SYSOQUT==
//SYSLIB DD DSN=CEE.SCEELKED,DISP=SHR
//SYSLMOD DD DSN=TSUSER1.A.LOAD,DISP=SHR
//SYSUT1 DD UNIT=VIO,SPACE=(CYL,(10,10))
//SYSLIN DD =*
INCLUDE SYSLIB(EDCSTART) ALWAYS NEEDED
INCLUDE SYSLIB(CEEROOTB) ALWAYS NEEDED
INCLUDE SYSLIB(@G@CTEST) NEEDED ONLY IF CTEST CALLS ARE PRESENT
INCLUDE SYSLIB(@@C2CBL) NEEDED ONLY IF CALLS ARE MADE TO COBOL
INCLUDE SYSLIB(@G@CBL2C) NEEDED ONLY IF CALLS ARE MADE FROM COBOL
INCLUDE SYSLMOD (HELLO)
ENTRY CEESTART
NAME HELLO(R)
/*

Figure 1. Link Job for Converting Executable Programs

* For those modules that have a C main(), replace the old executable program by
recompiling the source (if available). Recompile the source containing the main()
function with the OS/390 Version 2 Release 6 C/C++ compiler, and then relink
the objects with OS/390 Language Environment. By recompiling, you get a
0S/390 Language Environment version of CEESTART. This is an alternative to
explicitly including EDCSTART when linking from objects.

Considerations for Interlanguage Call (ILC) Applications

This section lists the linkage editor control statements required to relink modules
that contain ILCs between C and COBOL, and C and Fortran. The object modules
are compatible with the OS/390 Language Environment; however, the ILC linkage
between the applications and the library has changed. You must relink these
applications using the JCL shown in m and the control statements that fit
your requirements from the following list. The INCLUDE SYSLIB(@@CTDLI) is only
necessary if your program will invoke IMS facilities using the OS/390 C library
function ctd1i () and if the OS/390 C function was called from a COBOL main
program.

Control statements for various combinations of ILCs and compiler options are as
follows. The modules referenced by SYSLMOD contain the routines to be relinked.

1. Cmain() statically calling COBOL routine Bl or dynamically calling the
COBOL routine through the use of fetch(), where B1 was compiled with the
RES option. Relink the C module:

MODE AMODE(31),RMODE (ANY)

INCLUDE SYSLIB(EDCSTART) ALWAYS NEEDED
INCLUDE SYSLIB(CEEROOTB) ALWAYS NEEDED

INCLUDE SYSLIB(@@C2CBL) REQUIRED FOR C CALLING COB OL
INCLUDE SYSLIB(@ECTDLI) REQUIRED FOR ILC & IMS
INCLUDE SYSLMOD(SAMP1)

ENTRY CEESTART MAIN ENTRY POINT

NAME SAMPL(R)

Chapter 3. Application Executable Program Compatibility 17

From C/370 to LE Element of OS/390 V2R6

2. Cmain() statically calling COBOL routine B2 or dynamically calling the
COBOL routine through the use of fetch(), where B2 was compiled with the
NORES option. Relink the C module:

MODE AMODE (24) ,RMODE (24)

INCLUDE SYSLIB(EDCSTART) ALWAYS NEEDED

INCLUDE SYSLIB(CEEROOTB) ALWAYS NEEDED

INCLUDE SYSLIB(@@C2CBL) REQUIRED FOR C CALLING COBOL
INCLUDE SYSLIB(@@CTDLI) REQUIRED FOR ILC & IMS
INCLUDE SYSLIB(IGZENRI) REQUIRED FOR COBOL with NORES
INCLUDE SYSLMOD (SAMP2)

ENTRY CEESTART MAIN ENTRY POINT

NAME SAMP2(R)

3. Cmain() fetches a C1 function that statically calls a COBOL routine Bl
compiled with the RES option. Relink the C module:

MODE AMODE (31) , RMODE (ANY)

INCLUDE SYSLIB(EDCSTART) ALWAYS NEEDED

INCLUDE SYSLIB(CEEROOTB) ALWAYS NEEDED

INCLUDE SYSLIB(@@C2CBL) REQUIRED FOR C CALLING COBOL
INCLUDE SYSLIB(@@CTDLI) REQUIRED FOR ILC & IMS

INCLUDE SYSLMOD (SAMP3)

ENTRY C1 ENTRY POINT TO FETCHED ROUTINE
NAME SAMP3(R)

4. Cmain() fetches a C1 function that statically calls a COBOL routine B1 that is
compiled with the NORES option. Relink the C module:

MODE AMODE(24) ,RMODE (24)

INCLUDE SYSLIB(EDCSTART) ALWAYS NEEDED

INCLUDE SYSLIB(CEEROOTB) ALWAYS NEEDED

INCLUDE SYSLIB(@@C2CBL) REQUIRED FOR C CALLING COBOL
INCLUDE SYSLIB(@RCTDLI) REQUIRED FOR ILC & IMS

INCLUDE SYSLIB(IGZENRI) REQUIRED FOR COBOL with NORES
INCLUDE SYSLMOD (SAMP4)

ENTRY C1 ENTRY POINT TO FETCHED ROUTINE
NAME SAMP4(R)

5. A COBOL main CBLMAIN compiled with the RES option statically or
dynamically calls a C1 function. Relink the COBOL module:

MODE AMODE(31),RMODE (ANY)

INCLUDE SYSLIB(EDCSTART) ALWAYS NEEDED

INCLUDE SYSLIB(CEEROOTB) ALWAYS NEEDED

INCLUDE SYSLIB(IGZEBST)

INCLUDE SYSLIB(@RCBL2C) REQUIRED FOR COBOL CALLING C
INCLUDE SYSLIB(@RCTDLI) REQUIRED FOR ILC & IMS
INCLUDE SYSLMOD (SAMP5)

ENTRY CBLRTN COBOL ENTRY POINT

NAME SAMP5(R)

6. A COBOL main CBLMAIN compiled with the NORES option statically or
dynamically calls a C1 function. Relink the COBOL module:

MODE AMODE (24) ,RMODE (24)

INCLUDE SYSLIB(EDCSTART) ALWAYS NEEDED

INCLUDE SYSLIB(CEEROOTB) ALWAYS NEEDED

INCLUDE SYSLIB(IGZENRI)

INCLUDE SYSLIB(@RCBL2C) REQUIRED FOR COBOL CALLING C
INCLUDE SYSLIB(@RCTDLI) REQUIRED FOR ILC & IMS
INCLUDE SYSLMOD (SAMP6)

ENTRY CBLRTN COBOL ENTRY POINT

NAME SAMP6(R)

7. Cmain() calls a Fortran routine. Relink the C module:

INCLUDE SYSLIB(EDCSTART) ALWAYS NEEDED
INCLUDE SYSLIB(CEEROOTB) ALWAYS NEEDED
INCLUDE SYSLIB(@GCTOF) REQUIRED FOR C CALLING Fortran

18 0S/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

From C/370 to LE Element of OS/390 V2R6

INCLUDE SYSLIB(@@CTDLI) REQUIRED FOR ILC & IMS
INCLUDE SYSLMOD (SAMP7)
ENTRY CEESTART MAIN ENTRY POINT

NAME SAMP7 (R)
8. A Fortran main() calls a C function. Relink the C module:

INCLUDE SYSLIB(EDCSTART) ALWAYS NEEDED
INCLUDE SYSLIB(CEEROOTB) ALWAYS NEEDED

INCLUDE SYSLIB(@@FTOC) REQUIRED FOR Fortran CALLING C
INCLUDE SYSLIB(@@CTDLI) REQUIRED FOR ILC & IMS

INCLUDE SYSLMOD (SAMP8)

ENTRY CEESTART MAIN ENTRY POINT

NAME SAMP8(R)

For other related Fortran considerations, refer to the OS/390 Language
Environment Programming Guide.

Chapter 3. Application Executable Program Compatibility 19

From C/370 to LE Element of OS/390 V2R6

20 0S/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

Chapter 4. Source Program Compatibility

This chapter describes the changes that you may have to make to your source code
when moving applications to the OS/390 Version 2 Release 6 C/C++ product.

It considers programs created with one of the following compilers:

* The IBM C/370 Version 1 compiler, 5688-040

* The IBM C/370 Version 2 compiler, 5688-187

* The AD/Cycle C/370 Version 1 Release 2 compiler with the TARGET (COMPAT)
compiler option, 5688-216

and with one of the following libraries:

¢ The IBM C/370 Version 1 library, 5688-039, and C-PL/1 Common Library,
5688-082

* The IBM C/370 Version 2 library, 5688-188, and C-PL/1 Common Library,
5688-082

C/370 Version 1 modules were created with the C/370 Version 1 library. C/370
Version 2 modules were created with the C/370 Version 2 library.

Chapter 6 Other Migration Cansiderations” an page 31 has information on

run-time options, which may also affect source code compatibility.

Input and Output Operations

You may have to change programs running with the C/370 Version 1 or Version 2
Release 1 library if they have dependencies on any of the input and output
behaviors listed in L i ibili

7

Differences Between the C/370 V1 and V2 Compilers

If you have programs that were created with the C/370 Version 1 compiler, you
should be aware of some changes made in C/370 Version 2 that may affect your
programs. These differences are also in the OS/390 Version 2 Release 6 C compiler.

more information.

SIGFPE Exceptions

Decimal overflow conditions were masked in the C/370 library before Version 2
Release 2. The conditions were enabled when the packed decimal data type was
introduced in the AD/Cycle C/370 Version 1 Release 2 compiler, and continue to
be enabled with OS/390 Version 2 Release 6 Language Environment. If you have
old load modules (created with the C/370 Version 1 or Version 2 Release 1 library)
that accidentally generated decimal overflow conditions, they may behave

© Copyright IBM Corp. 1996, 1998 21

From C/370 to LE Element of OS/390 V2R6

differently with OS/390 Language Environment, by raising unexpected SIGFPE
exceptions. You cannot migrate such modules to the new library without altering
the source, and they are unsupported.

It is unlikely that such modules are present in a C-only environment. These
unexpected exceptions may occur in mixed language modules, particularly those
using C and assembler code where the assembler code explicitly manipulates the
program mask.

Program Mask Manipulations

Programs created with the C/370 Version 1 or Version 2 Release 1 compiler and
library that explicitly manipulated the program mask may require source alteration
to execute correctly under OS/390 Language Environment. Changes are required if
you have one of the following types of programs:

* A C program containing assembler interlanguage calls (ILCs), where the invoked
code uses the S/370 decimal instructions that might generate an unmasked
decimal overflow condition, requires modification for migration. There are two
methods for migrating the code. The first one is preferred:

— Modify the assembler code to save the existing mask, set the new value, and
when finished, restore the saved mask.

— Change the C code so that the produced SIGFPE signal is ignored in the called
code. In the following example, the SIGNAL calls surround the
overflow-producing code. The SIGFPE exception signal is ignored, and then
reenabled:

signal (SIGFPE, SIG_IGN); /* ignore exceptions */
callit(): /* in called routine */

signal (SIGFPE, SIG_DFL); /* restore default handling */

* A C program containing assembler ILCs that explicitly alter the program mask,
and do not explicitly save and restore it, also requires modification for
migration.

If user code explicitly alters the state of the program mask, the value before
modification must be saved, and the value restored to its former value after the
modification. You must ensure that the decimal overflow program mask bit is
enabled during the execution of C code. Failure to preserve the mask may result
in unpredictable behavior.

These changes also apply in a System Programming C environment, and to
Customer Information Control System (CICS) programs in the handling and
management of the PSW mask.

The release() Function

With the OS/390 C compiler and OS/390 Language Environment, you can no
longer issue a release() call against a fetched COBOL, Fortran, or PL/I module. If
you do, release() returns a nonzero return code. You can still use release() with
C modules and non-OS/390 Language Environment enabled assembler modules.

If your application fetches and releases PL/I, Fortran, or COBOL modules, you

must change your source code, then recompile and link it with OS/390 Language
Environment, if you are dependent on the release() return code.

22 0S/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

From C/370 to LE Element of OS/390 V2R6

Although release() could be issued against any assembler routines with IBM
C/370 Version 1 and Version 2, it cannot be issued against OS/390 Language
Environment-enabled assembler routines. These routines, known as ASM15
routines, are assembled with OS/390 Language Environment assembler prologs.
ASM15 routines are coded with the CEEENTRY macro. If any assembler routines
are rewritten as ASM15 routines, ensure that the calling code does not issue a
release() call against them.

The realloc() Function

When the realloc() function is used with OS/390 Language Environment, a new
area is always obtained and the data is copied. This is different from IBM C/370
Version 1 and Version 2, where, if the new size was equal to or less than the
original size, the same area was used.

Programmers may want to ensure that their source code has no dependencies on
the behavior of the old version of the realloc() function, so that their code is
compatible with OS/390 Language Environment.

Fetched Main Programs

C/370 Version 1 and Version 2 programs that are fetched must now be recompiled
without a main entry point. Under OS/390 Language Environment, if you attempt
to fetch a main program it will fail.

User Exits

If both CEEBXITA and IBMBXITA are present in a relinked IBM C/370 Version 1 or
Version 2 module, CEEBXITA will have precedence over IBMBXITA.

#line Directive

The AD/Cycle C/370 Version 1 Release 2 compiler ignored the #1ine directive
when either the EVENTS or the TEST compiler option was in effect. The OS/390 C
compiler, however, provides the correct information for the Debug Tool, and the
compiler does not ignore the #1ine directive.

sizeof Operator

The behavior of sizeof when applied to a function return type was changed in the
C/C++ MVS Version 3 Release 2 compiler. For example:

char foo();

;.= sizeof foo();

If the example is compiled with a compiler prior to C/C++ MVS Version 3 Release
2, char is widened to int in the return type, so sizeof returns s = 4.

If the example is compiled with C/C++ MVS Version 3 Release 2, or with any
05/390 C/C++ compiler, the size of the original char type is retained. In the above
example, sizeof returns s = 1. The size of the original type of other data types
such as short, and float is also retained.

Chapter 4. Source Program Compatibility 23

From C/370 to LE Element of OS/390 V2R6

With the OS/390 Version 2 Release 4 C/C++ and subsequent compilers, you can
use #pragma wsizeof or the WSIZEOF compiler option to get sizeof to return the
widened size for function return types if your code has a dependency on this
behavior. For more information on #pragma wsizeof, see OS/390 C/C++ Language
Reference . For more information on the WSIZEOF compiler option, see OS5/390 C/C++
User’s Guide.

System Programming C Applications Built with EDCXSTRX

If you have SP C applications that are built with EDCXSTRX and that use dynamic
C library functions, note that the name of the C library function module has
changed from EDCXV in C/370 Version 2 to CEEEV003 in OS/390 Language
Environment. Change the name from EDCXV to CEEEV003 in the assembler source
of your program that loads the library, and reassemble.

The __librel() Function

The _ 1ibrel() function is a System/370 extension to SAA C. It returns the release
level of the library that your program is using, in a 32-bit integer. Under OS/390
Language Environment, it has a field containing a number that represents the
library product. IBM C/370 Version 1 and Version 2 libraries are product 0,
Language Environment is Product 1, and OS/390 Language Environment is
product 2.

In IBM C/370 Version 1 and Version 2, the high-order 8 bits were used to return
the version number. Now these 8 bits are divided into 2 fields. The first 4 bits
contain the product number and the second 4 bits contain the version number.

You must modify programs that use the information returned from __ Tibrel(). For
more information on __1ibrel(), see the OS/390 C/C++ Run-Time Library Reference.

Library Messages

There are differences in messages between C/370 and OS/390 Language
Environment. Some run-time messages have been added and some have been
deleted; the contents of others have been changed. Any application that is affected
by the format or contents of these messages must be updated accordingly. Do not
build dependencies on message contents or message numbers.

Refer to the OS/390 Language Environment Debugging Guide and Run-Time Messages
for details on run-time messages and return codes.

Prefix of perror() and strerror() Messages

All perror() and strerror() messages under OS/390 Language Environment
contain a prefix (in IBM C/370 Version 1 and Version 2 there were no prefixes to
these messages). The prefix is EDCxxxxa, where xxxx is a number and the a is either
I, E, or S. See OS/390 Language Environment Debugging Guide and Run-Time
Messages for a list of these messages.

24 0S/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

From C/370 to LE Element of OS/390 V2R6

Compiler Messages and Return Codes

There are differences in messages and return codes between the C/370 compilers
and the OS/390 C compiler. Message contents have changed, and return codes for
some messages have changed (errors have become warnings, and the other way
around). Any application that is affected by message content or return codes must
be updated accordingly. Do not build dependencies on message content, message
numbers, or return codes. See 05/390 C/C++ User’s Guide for a list of messages.

_Packed Structures and Unions

With the OS/390 C compiler, you can no longer do the following:

* Assign _Packed and non-_Packed structures to each other

* Assign _Packed and non-_Packed unions to each other

* Pass a _Packed union or _Packed structure as a function parameter if a
non-_Packed version is expected (or the other way around)

If you attempt to do so, the compiler issues an error message.

Alternate Code Points

The following alternate code points are not supported by the OS/390 C compiler:
* X’8B’ as alternate code point for X'C0’ (the left brace)
* X'9B’ as alternate code point for X’D0’ (the right brace)

These alternate code points were supported by the C/370 and AD/Cycle C/370

compilers (the NOLOCALE option was required if you were using the AD/Cycle
C/370 Version 1 Release 2 compiler).

Chapter 4. Source Program Compatibility 25

26 0S/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

Chapter 5. C/370 Version 1 to Version 2 Compiler Changes

This chapter describes some of the changes made between the C/370 Version 1 and
Version 2 compilers. These changes also appear in the OS/390 C compiler. Read
this section if you are migrating programs from C/370 Version 1.

Source Code Incompatibilities

This section describes the changes you may have to make to your source code
when moving from C/370 Version 1.

Characters

You can no longer assign a char the value ''. A character must be between the
single quotation marks. Under C/370 Version 1, '' was the same as '\0'.

A warning is now issued when the CHECKOUT compile-time option is specified, and
more than 4 bytes are assigned to a char or more than 2 bytes are assigned to a
wchar_t constant. These restrictions did not apply under C/370 Version 1.

Sign extension now occurs when the #pragma chars(signed) directive is used.
Thus the value of '\xff' is -1 when chars are signed. When a signed char literal
is converted to int, the sign extension will occur on the most significant sEecified
byte that is not shifted out. These are changes from C/370 Version 1. See

for examples.

Table 4. Sign Extensions

Value of signed char literal Value of int
"\x80\x00' (int)Oxffff8000
"\x80\x00\x00' (int)0xff800000
"\x80\x00\x00\x00' (int)0x80000000
"\x80\x00\x00\x00\x80" 0x00000080

Note: A hexadecimal escape sequence represents one char of data, so
'\x123456789" is equivalent to '\x89".

The #pragma comment Directive

If you are using the #pragma comment directive, you must now enclose the
characters specified in double quotation marks. In C/370 Version 1, the double
quotation marks were not required.

Structure Declarations

With the OS/390 C compiler, you must declare a struct type before any function
calls that contain the struct as one of its parameters. Otherwise, the struct in the
function call will be incomplete and the parameter passed must be a pointer to
void.

For example, the following program will not compile as desired because struct st
in func_call is an incomplete struct. The call of func_call with a pointer to a
struct will be an incompatible parameter type with the expected pointer to void.

© Copyright IBM Corp. 1996, 1998 27

From C/370 to LE Element of OS/390 V2R6
int func_call (struct st *s); /* incomplete struct */
struct st { int x, y, z; };

int main(void)
{
struct st =*t;
func_call(t); /* pointer to struct st but func_call =/
/* can only accept pointer to void x/
printf("%\n", t—>y);
}

To solve this problem, add a declaration before the function declaration:
struct st;

int func_call (struct st =*s);

struct st { int x, y, z; };

Note: If you have the following declaration,
extern struct S my_struct;

the type must be completed before the —> or . operators can be performed
on my_struct. In C/370 Version 1, the struct S had to be a complete type at
the time this declaration was reached.

Function Argument Compatibility

If you compile the following example under C/370 Version 1, the compiler fails to
notice that the argument funcl is incompatible with the prototype for func2. The
func2() function requires a pointer to a void function with an argument of type
void *, but an argument of type pointer to void function with an argument of type
int * is passed instead. The OS/390 C compiler will generate an error message in
this situation.

void func2(void (*)(void *));
void funcl(int =);

main() {
func2(funcl);
1

Pointer Considerations

According to the ANSI C Standard , pointers to void types and pointers to
functions are incompatible types. The C/370 Version 2, AD/Cycle C/370, C/MVS
Version 3, and OS/390 C compilers perform some type checking, such as in
assignments, argument passing on function calls, and function return codes.

If you are not conforming to ANSI rules for the use of pointer types, your run-time
results may not be as expected, especially when you are using the compile-time
option OPTIMIZE.

With the C/370 Version 2, the AD/Cycle C/370, and the C/MVS Version 3.1, you
could not assign NULL to an integer value. For example, the following was not
allowed:

int i = NULL;

28 0S/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

From C/370 to LE Element of OS/390 V2R6

With the C/MVS V3R2 and OS/390 C compilers, you can assign NULL pointers to
void types if you specify LANGLVL(COMMONC) when you compile your program.

Macro Changes

In stdio.h, the #define macro _ VSAM_OPEN_AIX PATH (a value for the _amrc struct
__last_op field), was replaced in C/370 Version 2 by _ VSAM_OPEN_ESDS_PATH and
__VSAM_OPEN_KSDS_PATH.

Modules compiled with C/370 Version 1 work with OS/390 Language
Environment. However, if you plan to compile your source with the OS/390 C
compiler, you must first change it to use __VSAM_OPEN_ESDS_PATH and
__VSAM_OPEN_KSDS_PATH.

Chapter 5. C/370 Version 1 to Version 2 Compiler Changes 29

30 0S/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

Chapter 6. Other Migration Considerations

This chapter provides additional considerations on migrating applications that
were created with one of the following compilers:

* The IBM C/370 Version 1 compiler, 5688-040

e The IBM C/370 Version 2 compiler, 5688-187

* The AD/Cycle C/370 Version 1 Release 2 compiler with the TARGET (COMPAT)
compiler option, 5688-216

and with one of the following libraries:

* The IBM C/370 Version 1 library, 5688-039, and C-PL/1 Common Library,
5688-082

* The IBM C/370 Version 2 library, 5688-188, and C-PL/1 Common Library,
5688-082

to OS/390 Version 2 Release 6 C/C++.

Changes That Affect User JCL, CLISTs, and EXECs

This section describes changes that may affect your JCL, CLISTS and EXECs.
Return Codes and Messages

Library return codes and messages have been changed, and JCL, CLISTs and
EXECs that are affected by them must be changed accordingly (or else the
CEEBXITA exit must be customized to emulate the old return codes). IBM C/370
Version 1 and Version 2 return codes were from 0 to 999. However, the OS/390
Language Environment return codes have a different range. These return codes are
documented in OS/390 Language Environment Debugging Guide and Run-Time
Messages.

Return codes greater than 4095 are returned as modulo 4095 return codes. The
return code for an abort is now 2000; it was 1000. The return code for an
unhandled SIGFPE, SIGILL, or SIGSEGV condition is now 3000; it was 2000.

Compiler message contents and return codes have changed. You must change JCL,

CLISTs, and EXECs that are affected by them. Refer to [Compiler Messages and
Return Codes” on page 23 for more information.

Changes in Data Set Names

The names of IBM-supplied data sets may change from one release to another. See
the OS/390 Program Directory for more information on data set names.

Differences in Standard Streams

Under OS/390 Language Environment there is no longer an automatic association
of ddnames SYSTERM, SYSERR, SYSPRINT with stderr. Command line redirection of
the type 1>8&2 is necessary in batch to cause stderr and stdout to share a device.

© Copyright IBM Corp. 1996, 1998 31

From C/370 to LE Element of OS/390 V2R6

In IBM C/370 Version 1 and Version 2, you could override the destination of error
messages by redirecting stderr. OS/390 Language Environment determines the
destination of all messages from the MSGFILE run-time option. See the section on
the MSGFILE run-time option in the OS/390 Language Environment Programming Guide
for more information.

Passing Command-Line Parameters to a Program

In IBM C/370 Version 1 or Version 2, if an error was detected with the parameters
being passed to the main program, the program terminated with a return code of 8
and a message indicating the reason why the program was not run. For example, if
there was an error in the redirection parameters, the message would indicate that
the program had terminated because of a redirection error.

Under OS/390 Language Environment, the same message will be displayed, but
the program will also terminate with a 4093 abend, reason code 52 (hexadecimal
34). For more information about the abend codes and messages see O5/390
Language Environment Debugging Guide and Run-Time Messages.

SYSMSGS ddname

The method of specifying the language for compiler messages has changed. Instead
of specifying a messages data set for the SYSMSGS ddname, you must now use the
NATLANG run-time option. If you specify a data set for the SYSMSGS ddname, it will
be ignored.

Run-Time Options
This section describes changes that may affect your run-time options.
Ending the Run-Time Options List

In C/370 Version 1 and Version 2, when passing only run-time options to a C/370
program, you did not have to end the arguments with a slash (/). With OS/390
Language Environment, you must end the arguments with a slash.

With OS/390 Language Environment, if you have no run-time options and the
input arguments passed to main() contains a slash, you must prefix the arguments
with a slash. JCL, CLISTs, and EXECs that are affected by the slash must be
changed accordingly.

ISASIZE, ISAINC, STAE/SPIE, LANGUAGE, and REPORT
options

Use the OS5/390 Language Environment equivalent for the IBM C/370 Version 1
and Version 2 run-time options on the command line and in #pragma runopts.

ISASIZE /ISAINC becomes STACK
LANGUAGE becomes NATLANG
REPORT becomes RPTSTG
SPIE/STAE becomes TRAP

The C/370 run-time options are mapped to OS/390 Language Environment
equivalents. However, if you do not use the OS/390 Language Environment

32 0S/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

From C/370 to LE Element of OS/390 V2R6

options, during execution you will get a warning message which cannot be
suppressed. JCL, CLISTs and EXECs that are affected by these differences must be
changed accordingly.

STACK Default Size

The default size and increment for the STACK run-time option have changed. If you
have not indicated the size and increment, STACK will be allocated differently when
your program is running under OS/390 Language Environment. The defaults in
IBM C/370 Version 1 and Version 2 were 0K size and 0K increment. The defaults
under OS/390 Language Environment without CICS are 128K size and 128K
increment and with CICS are 4K size and 4K increment. The default location has
not changed, and remains BELOW.

To summarize, in OS/390 Language Environment, the IBM-supplied defaults are
STACK (128K, 128K,BELOW,KEEP) without CICS and STACK (4K, 4K,BELOW,KEEP) with
CICS.

STACK parameters

The parameters for the STACK run-time option are all positional in OS/390
Language Environment; in IBM C/370 Version 1 and Version 2, only the first two
were. The keyword parameter could be specified if the first two were omitted.
Now, to specify only ANYWHERE you must enter: STACK(, ,ANYWHERE).

HEAP Default Size

The default size and increment for the HEAP run-time option have changed. If you
have not indicated the size and increment, HEAP will be allocated differently when
running under OS/390 Language Environment. The defaults in IBM C/370 Version
1 and Version 2 were 4K size and 4K increment. The defaults under OS/390
Language Environment without CICS are 32K size and 32K increment and with
CICS are 4K size and 4K increment.

Two new parameters have been added, initsz24 and incrsz24. They determine
how much of the heap is allocated and incremented below the 16M line.

For information about these parameters, see the OS/390 Language Environment
Programming Reference.

To summarize, under OS/390 Language Environment, the IBM-supplied defaults
are HEAP (32K, 32K, ANYWHERE,KEEP, 8K, 4K) without CICS and
HEAP (4K, 4K,ANYWHERE,KEEP, 4K, 4K) with CICS.

Note: If you have installed the C component of OS/390 Language Environment
below the line (that is, if your applications run in RMODE 24 AMODE 24)
you must either:

* Change the HEAP setting to HEAP(, ,BELOW,,,) or

* Specify HEAP(,,BELOW,,,) at run time (either through #pragma runopts or
on the command line).

Chapter 6. Other Migration Considerations 33

From C/370 to LE Element of OS/390 V2R6
HEAP Parameters

In IBM C/370 Version 1 and Version 2, the first two of the four parameters for the
HEAP option were positional. The keyword parameters could be specified if the first
two were omitted. Under OS/390 Language Environment, all parameters are
positional. To specify only KEEP, you must enter HEAP(, , ,KEEP).

Compile-Time Options
This section describes changes that may affect your compile-time options.
DECK Compile-Time Option

In IBM C/370 Version 1, the DECK compiler option directed the object module to
the data set associated with SYSLIN. With the OS/390 C compiler, as with the
AD/Cycle C/370 and IBM C/370 Version 2 compilers, the object module is
directed to the data set associated with SYSPUNCH.

INLINE Compile-Time Option

The defaults for the INLINE compiler option have changed. In the past, the default
for the threshold suboption was 250 ACUs (Abstract Code Units). With the C/MVS
Version 3 and OS/390 C compilers, the default is 100 ACUs.

OPTIMIZE Compile-Time Option

In the C/370 Version 2 Release 1 and subsequent compilers, OPTIMIZE mapped to
OPT(1).

Starting with OS/390 Version 2 Release 6, the C compiler maps both OPTIMIZE and
OPT(1) to OPT(2).

SEARCH and LSEARCH Compile-Time Option

The include file search process has changed. Prior to the C/MVS V3R2 compiler, if
you used the LSEARCH option more than once, the compiler would only search the
libraries specified for the last LSEARCH option. Now the OS/390 C compiler searches
all of the libraries specified for all of the LSEARCH options, from the point of the last
NOLSEARCH option.

Similarly, if you specify the SEARCH option more than once, the OS/390 C compiler
searches all of the libraries specified for all of the SEARCH options, from the point of
the last NOSEARCH option. Previously, only the libraries specified for the last SEARCH
option were searched.

TEST Compile-Time Option

Starting with the OS/390 C/C++ compilers, the default for the PATH suboption of
the TEST option has changed from NOPATH to PATH. Also, the INLINE option is
ignored when the TEST option is in effect at OPT(0), but the INLINE option is no
longer ignored if OPT(1) or OPT(2) is in effect.

34 0S/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

From C/370 to LE Element of OS/390 V2R6

Starting with C/C++ MVS Version 3 Release 2, a restriction applies to the TEST
compiler option if you are using the OS/390 C/C++ compiler. Now, the maximum
number of lines in a single source file cannot exceed 131,072. If you exceed this
limit, the results from the Debug Tool and LE/370 Dump Services are undefined.

Language Environment Run-Time Options

If you have #pragma runopts in your source code, the OS/390 Language
Environment STORAGE option will be set to (NONE,NONE,NONE,8K) at run time. If you
run your C/370 module with the RPTOPTS (ON) run-time option to get a report, your
report will show that the STORAGE option has been set by the programmer and that
the program did not use the installation default. If you do not use #pragma runopts
in your source, the program will use the installation default.

If occurrences of ISASIZE/ISAINC, STAE/SPIE, LANGUAGE, and REPORT runopts are
specified by #pragma runopts in your source code, you may want to change them
to the OS/390 Language Environment equivalent before recompiling. These
options are mapped to the OS/390 Language Environment equivalent, but if you
do not change them, you will get a warning or informational message during
compilation.

Precedence of Language Environment over C/370 for #pragma runopts

If you have #pragma runopts in both a C/370 and a OS/390 Language
Environment object module, and you link the two together, the #pragma runopts
settings in the Language Environment object module will take precedence.

System Programming C Facility Applications with #pragma runopts

If you code a program for use in the SP C environment and you use #pragma
runopts to specify the heap or stack directives, the OS/390 Version 2 Release 6 C
compiler will expand these directives according to the OS/390 Language
Environment defaults and rules. Thus, the program may behave differently under
0S/390 Language Environment.

Decimal Exceptions

0S/390 Language Environment provides support for the packed decimal overflow
exception using native System/370 hardware enablement (as did the C/370 Version
2 Release 2 library).

The value of the program mask in the program status word (PSW) is 4 (decimal
overflow enabled).

Migration and Coexistence Considerations

The following points identify migration and coexistence considerations for user
applications:

* CICS programs running under OS/390 Language Environment are enabled for
decimal exceptions.

* The C packed decimal support routines are not supported in an environment
that exploits asynchronous events.

Chapter 6. Other Migration Considerations 35

From C/370 to LE Element of OS/390 V2R6
SIGTERM, SIGINT, SIGUSR1, and SIGUSR2 Exceptions

There are changes to application/program behavior for SIGTERM, SIGINT, SIGUSRI,
and SIGUSR2 exceptions from C/370 Version 1 and Version 2.

The differences or incompatibilities are:

* The defaults for the SIGINT, SIGTERM, SIGUSR1, and SIGUSR2 signals changed in
LE/370 Release 3, from what they were in C/370 Version 1 and 2 and LE/370
Release 1 and 2. These changes were carried into OS/390 Version 2 Release 6
Language Environment. In the C/370 library and LE/370 Release 1 and Release
2, the defaults for SIGINT, SIGUSR1, and SIGUSR2 were to ignore the signals. As of
LE/370 Release 3, the defaults are to terminate the program and return a return
code of 3000. For SIGTERM, the default has always been to terminate the program,
but the return code is now 3000 whereas before it was 0.

* Applications that terminate abnormally will not drive the atexit list.

Running Different Versions of the Libraries under CICS

You cannot run two different versions of the C/370 run-time libraries within one
CICS region.

Sometimes a C/370 Version 2 CICS interface (EDCCICS) and the OS/390 Language
Environment CICS interface can be present in a CICS system through CEDA /PPT
definitions and inclusion of modules in the APF STEPLIB. Even if both versions are
present, the OS/390 Language Environment version will be initialized by CICS
when the region is initialized.

CICS Abend Codes and Messages

Abend codes such as ACC2 that were used by IBM C/370 Version 1 and Version 2
under CICS are not issued under OS/390 Language Environment. An equivalent
0S/390 Language Environment abend code is issued instead; for example, 4nnn.

CICS Reason Codes

Reason codes that appeared in the CICS message console log have been changed.
The new ones are documented in the OS/390 Language Environment Debugging
Guide and Run-Time Messages.

Standard Stream Support under CICS

Under CICS, with OS/390 Language Environment, records sent to the transient
data queues associated with stdout and stderr with default settings take the form
of a message as follows:

terminal transaction Time Stamp

S| S
ASA id id P 1 vyyymmooHhmuss | P | da@
1 4 4 1 14 1 108
where:
ASA is the carriage-control character
terminal id is a 4-character terminal identifier

36 0S/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

From C/370 to LE Element of OS/390 V2R6

transaction id is a 4-character transaction identifier

sp is a space

Time Stamp is the date and time displayed in the format
YYYYMMDDHHMMSS

data is the data sent to the standard streams stdout and stderr.

C/370 Version 1 and Version 2 used a different format.

stderr Output under CICS

Output from stderr is sent to the CICS transient data queue, CESE. CESE is also
used by OS/390 Language Environment for run-time error messages, dumps, and
storage reports. If you previously used this file exclusively for C/370 stderr
output, you should note that the output may be different.

Transient Data Queue Names under CICS

Transient data queue names are mapped as follows under OS/390 Language

Environment:

OLD NAME NEW NAME
CCsI CESI

CCSO CESO

CCSE CESE

HEAP Option Used with the Interface to CICS

In C/370 Version 1 Release 2 and Version 2, the location of heap storage under
CICS was primarily determined by the residence mode (RMODE) of the program.
The logic for determining the location of heap was as follows:

With OS/390 Language Environment, the location of heap storage is determined

RMODE = 24
below the
line?

A

Is
HEAP(...BELOW)
specified?

Allocate heap
below 16M line

Allocate heap Allocate heap
ANY below 16M line

Figure 2. Heap Location Logic

only by the HEAP(...ANYWHERE|BELOW) options. RMODE does not affect where the
heap is allocated. Where the location of heap storage is important, you may want
to change source accordingly.

Chapter 6. Other Migration Considerations 37

From C/370 to LE Element of OS/390 V2R6

If you have installed the C component of OS/390 Language Environment below
the line (that is, if your applications run in RMODE 24 AMODE 24), see the note
on page B3.

COBOL Library Routines

All of the language libraries in OS/390 Language Environment are packaged as a
single unit in SCEERUN. Because of this packaging, for C-only applications,
0S/390 Version 2 Release 6 Language Environment has the potential to invade the
user’s name space.

For example, OS/390 Language Environment-enabled COBOL is available under
0OS/390 Version 2 Release 6 Language Environment, and the following situations
are possible:

* If there is a user C function name prefixed with IGZ or ILB that happens to
correspond to a COBOL routine, there is the chance of binding in the COBOL
routine at link-edit time.

 If there is a fetch() statement for a routine with a name prefixed with IGZ or
ILB that happens to correspond to a COBOL routine that is dynamically loaded,
it is possible that the COBOL routine will be loaded at run time.

To prevent the first problem, specify the user link libraries ahead of the OS/390
Language Environment link libraries.

To prevent the second problem, specify the user execution libraries ahead of the
0S/390 Language Environment execution libraries.

Passing Control to the Cross System Product

As in IBM C/370 Version 1 and Version 2, control can be passed between Cross
System Product (CSP) and OS/390 Language Environment in three ways: XFER,
DXFR, and CALL.

If you have code that passes control from OS/390 Version 2 Release 6 Language
Environment to CSP, which in turn passes control back to OS/390 Version 2
Release 6 Language Environment, the behavior is undefined. Code that passes
control from CSP to OS/390 Version 2 Release 6 Language Environment, which in
turn passes control back to CSP, is supported. In summary, OS/390 Version 2
Release 6 Language Environment must appear only once in the chain of passed
control.

Syntax for the CC Command

With C/C++ MVS Version 3 Release 2 and subsequent products, the CC command
can be invoked using a new syntax. At customization time, your system
programmer can customize the CC EXEC to accept only the old syntax (the one
supported by compilers prior to C/MVS Version 3 Release 2), only the new syntax,
or both syntaxes.

You should customize the CC EXEC to accept only the new syntax, because the old
syntax may not be supported in the future. If you customize the CC EXEC to
accept only the old syntax, keep in mind that it does not support Hierarchical File
System (HEFS) files. If you customize the CC EXEC to accept both the old and new

38 0S/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

From C/370 to LE Element of OS/390 V2R6

syntaxes, you must invoke it using either the old or the new syntax, not a mixture
of both. If you invoke this EXEC with the old syntax, it will not support HFS files.

Refer to the OS/390 Program Directory for more information about installation and
customization, and to the OS/390 C/C++ User’s Guide for more information about
compiler options.

atexit List during abort()

Unlike under IBM C/370 Version 1 and Version 2, the atexit list is not driven after
a call to abort() under OS/390 Language Environment.

Time Functions

For OS/390 Language Environment, in the absence of customized locale
information, the ctime(), Tocaltime(), and mktime() functions return Coordinated
Universal Time (UTC).

If you were running with the C/370 Version 2 Release 2 library, and applied both
PTF UN61216 and PTF UN77602, or did not apply either one, the functions will
return local time in the absence of customized locale information. Therefore, you
will see a change in behavior when you migrate to OS/390 Version 2 Release 6
Language Environment .

You should customize your locale information. Otherwise, in rare cases, you may
encounter errors. In a POSIX application, you can supply time zone and alternative
time (e.g., daylight) information with the TZ environment variable. In a non-POSIX
application, you can supply this information with the _TZ environment variable. If
no TZ environment variable is defined for a POSIX application or no _TZ
environment variable is defined for a non-POSIX application, any customized
information provided by the LC_TOD locale category is used. By setting the TZ
environment variable for a POSIX application, or the _TZ environment variable for
a non-POSIX application, or by providing customized time zone or daylight
information in an LC_TOD locale category, you allow the time functions to preserve
both time and date, correctly adjusting for alternative time on a given date.

Refer to the OS/390 C/C++ Programming Guide for more information about both
environment variables and customizing a locale.

Direction of Compiler Messages to stderr

All messages generated by the OS/390 C/C++ compiler are sent to stderr. In the
past, some messages were sent to stdout.

Compiler Listings

As of OS/390 C/C++ Version 2 Release 6, OPT(1) maps to OPT(2). The compiler
listing no longer contains the part of the pseudo-assembler listing that was
associated with OPT(1). Listing formats, especially the pseudo-assembler parts, will
continue to change from release to release. Do not build dependencies on the
structure or content of listings. For information about listings for the current
release, refer to the OS/390 C/C++ User’s Guide.

Chapter 6. Other Migration Considerations 39

40 0S/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

Chapter 7. Input and Output Operations Compatibility

Changes were made to input and output support in the C/370 Version 2 Release 2
and LE/370 Release 3 libraries. These changes also apply to OS/390 Version 2
Release 6 Language Environment. If your programs performed input and output
operations with the following products, you should read the changes listed in this
section. These products are:

* The C/370 Version 1 library
* The C/370 Version 2 Release 1 library

References in this chapter to previous releases or previous behavior apply to the
products listed above.

You will generally be able to migrate “well-behaved” programs: programs that do
not rely on undocumented behavior, restrictions, or invalid behaviors of previous
releases. For example, if library documentation only specified that a return code
was a negative value, and your code relies on that value being -3, your code is not
well-behaved and is relying on undocumented behavior.

Another example of a program that is not well-behaved is one that specifies
recfm=F for a terminal file and depends on Language Environment to ignore this
parameter, as it did previously.

However, you may still need to change even well-behaved code under
circumstances described in the following section.

Opening Files

* When you call the fopen() or freopen() library function, you can specify each
parameter only once. If you specify any keyword parameter in the mode string
more than once, the function call fails. Previously, you could specify more than
one instance of a parameter.

* The library no longer supports uppercase open modes on calls to fopen() or
freopen(). You must specify, for example, rb instead of RB, to conform to the
ANSI/ISO standard.

* You cannot open a non-HFS file more than once for a write operation. Previous
releases allowed you, in some cases, to open a file for write more than once. For
example, you could open a file by its data set name and then again by its
ddname. This is no longer possible for non-HFS files, and is not supported.

* Previously, fopen() allowed spaces and commas as delimiters for mode string
parameters. Only commas are allowed now.

* If you are using PDSes or PDSEs, you cannot specify any spaces before the
member name.

Writing to Files

* Write operations to files opened in binary mode are no longer deferred.
Previously, the library did not write a block that held nn bytes out to the system
until the user wrote nn+l bytes to the block. The OS/390 Language Environment
library follows the rules for full buffering, described in the OS/390 C/C++
Programming Guide, and writes data as soon as the block is full. The nn bytes are
still written to the file, the only difference is in the timing of when it is done.

© Copyright IBM Corp. 1996, 1998 41

From C/370 to LE Element of OS/390 V2R6

* For non-terminal files, the backspace character ('\b') is now placed into files as
is. Previously, it backed up the file position to the beginning of the line.

* For all text I/O, truncation for fwrite() is now handled the same way that it is
handled for puts() and fputs(). If you write more data than a record can hold,
and your output data contains any of the terminating control characters, '\n' or
"\r' (or '\f', if you are using ASA), the library still truncates extra data;
however, recognizing that the text line is complete, the library writes subsequent
data to the next record boundary. Previously, fwrite() stopped immediately
after the library began truncating data, so that you had to add a control
character before writing any more data.

* You can now partially update a record in a file opened with type=record.
Previous libraries returned an error if you tried to make a partial update to a
record. Now, a record is updated up to the number of characters you specify,
and the remaining characters are untouched. The next update is to the next
record.

¢ 0S/390 Language Environment blocks files more efficiently than some previous
libraries did. Applications that depend on the creation of short blocks may fail.

* The behavior of ASA files when you close them has changed. In previous
releases, this is what happened:

Written to file Read from file after fclose(), fopen()
abc\n\n\n abc\n\n\n\n

abc\n\n abc\n\n\n

abc\n abc\n

In this release, you read from the file what you wrote to it. For example:

Written to file Read from file after fclose(), fopen()
abc\n\n\n abc\n\n\n

abc\n\n abc\n\n

abc\n abc\n

In previous products, writing a single new-line character to a new file created an
empty file under MVS. OS/390 Language Environment treats a single new-line
characters written to a new file as a special case, because it is the last new-line
character of the file. The library writes a single blank to the file. When you read
this file, you see two new-line characters instead of one. You also see two

new-line characters on a read if you have written two new-line characters to the
file.

The behavior of appending to ASA files has also changed. The following table
shows what you get from an ASA file when you:

Open an ASA file for write.

Write abc.

Close the file.

Append xyz to the ASA file.

Open the same ASA file for read.

agprpwNE

42 0S/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

From C/370 to LE Element of OS/390 V2R6

abc Written to File, fclose()

then append xyz

What You Read from File after fclose(), fopen()

Previous release

New release

abc = xyz \nabc\nxyz\n same as previous release
abc = \nxyz \nabc\nxyz\n \nabc\n\nxyz\n
abc = \rxyz \nabc\rxyz\n \nabc\n\rxyz\n
abc\n = xyz \nabc\nxyz\n same as previous release
abc\n = \nxyz \nabc\nxyz\n \nabc\n\nxyz\n
abc\n = \rxyz \nabc\rxyz\n \nabc\n\rxyz\n
abc\n\n = xyz \nabc\n\n\nxyz\n \nabc\n\nxyz\n
abc\n\n = \nxyz \nabc\n\n\nxyz\n same as previous release
abc\n\n = \rxyz \nabc\n\n\rxyz\n same as previous release

Figure 3. Appending to ASA Files

¢ The behavior of DBCS strings has changed.

1. I/O now checks the value of MB_CUR_MAX to determine whether to interpret
DBCS characters within a file.

2. When MB_CUR_MAX is 4, you can no longer place control characters in the
middle of output DBCS strings for interpretation. Control characters within
DBCS strings are treated as DBCS data. This is true for terminals as well.
Previous products split the DBCS string at the '\n' (new-line) control
character position by adding an SI (Shift In) control character at the new-line
position, displaying the line on the terminal, and then adding an SO (Shift
Out) control character before the data following the new-line character. If
MB_CUR_MAX is 1, the library interprets control characters within any string,
but does not interpret DBCS strings. SO and SI characters are treated as
ordinary characters.

3. When you are writing DBCS data to text files, if there are multiple SO (Shift
Out) control-character write operations with no intervening SI (Shift In)
control character, the library discards the SO characters, and marks that a
truncation error has occurred. Previous products allowed multiple SO
control-character write operations with no intervening SI control character
without issuing an error condition.

4. When you are writing DBCS data to text files and specify an odd number of
DBCS bytes before an SI control character, the last DBCS character is padded
with a X'FE' byte. If a SIGIOERR handler exists, it is triggered. Previous
products allowed incorrectly placed SI control-character write operations to
complete without any indication of an error.

5. Now, when an S0 has been issued to indicate the beginning of a DBCS string
within a text file, the DBCS must terminate within the record. The record will
have both an SO and an SI.

Repositioning within Files

* The behavior of fgetpos(), fseek() and fflush() following a call to ungetc()
has changed. Previously, these functions have all ignored characters pushed back
by ungetc() and have considered the file to be at the position where the first
ungetc() character was pushed back. Also, ftel1() acknowledged characters
pushed back by ungetc() by backing up one position if there was a character
pushed back. Now,

— fgetpos() behaves just as ftell()does.

Chapter 7. Input and Output Operations Compatibility ~ 43

From C/370 to LE Element of OS/390 V2R6

— When a seek from the current position (SEEK_CUR) is performed, fseek()
accounts for any ungetc() character before moving, using the user-supplied
offset.

— fflush() moves the position back one character for every character that was
pushed back.

If you have applications that depend on the previous behavior of fgetpos(),
fseek(), or fflush(), you may use the new _EDC_COMPAT environment variable
so that source code need not change to compensate for the new behavior.
_EDC_COMPAT is described in the OS/390 C/C++ Programming Guide.

* For OS I/O to and from files opened in text mode, the ftell() encoding system
now supports higher blocking factors for smaller block sizes. In general, you
should not rely on ftell() values generated by code you developed using
previous releases of the library. You can try ftel1() values taken in previous
releases for files opened in text or binary format if you set the environment
variable _EDC_COMPAT before you call fopen() or freopen(). Do not rely on
ftel1() values saved across program boundaries. _EDC_COMPAT is described in
the OS/390 C/C++ Programming Guide.

* For record I/0, ftel1() now returns the relative record number instead of an
encoded offset from the beginning of the file. You can supply the relative record
number without acquiring it from ftel1(). You cannot use old ftel1() values
for record I/0, regardless of the setting of _EDC_COMPAT. _EDC_COMPAT is described
in the OS/390 C/C++ Programming Guide .

* If you have used ungetc() to move the file pointer to a position before the
beginning of the file, calls to ftel1() and fgetpos() now fail. Previously,
ftel1() returned the value 0 for such calls, but set errno to a non-zero value.
Previously, fgetpos() did not account for ungetc() calls. See the OS/390 C/C++
Programming Guide for information on how to change fgetpos() behavior by
using _EDC_COMPAT.

For example, suppose that you are at relative position 1 in the file and ungetc()
is performed twice. ftel1() and fgetpos() will now report the relative position
-1, which is before the start of the file, causing both ftel1() and fgetpos() to
fail.

* After you have called ftell(), calls to setbuf() or setvbuf() may fail.
Applications should never call I/O functions between calls to fopen() or
freopen() and calls to the functions that control buffering.

Closing and Reopening ASA Files

The behavior of ASA files when you close and reopen them is now consistent:

44 0S/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

From C/370 to LE Element of OS/390 V2R6

Physical record after close

Written to file Previous behavior New behavior
abc Char abc @ same as previous release
Hex 4888 1)
0123
abc\n Char abc 1) same as previous release
Hex 4888 @
0123
abc\n\n Char abc 1) Char abc (1)
0 () 2)
Hex 4888 1) Hex 4888 (1)
0123 0123
F 2 4 2
0 0
abc\n\n\n Char abc 1) Char abc (1)
- () 2)
Hex 4888 1) Hex 4888 (1)
0123 0123 2)
6 (2) 4
0 0
abc\r Char abc 1) same as previous release
+ ()
Hex 4888 1)
0123
4 2
E
abc\r Char abc 1) same as previous release
1 ()
Hex 4888 1
0123
F 2
1

Figure 4. Closing and Reopening ASA Files

fldata() Return Values

There are minor changes to the values that the fldata() library function returns. It
may now return more specific information in some fields. For more information on
fldata(), see the “Input and Output” section in the OS/390 C/C++ Programming
Guide.

Error Handling

The general return code for errors is now EOF. In previous products, some I/0O
functions returned 1 as an error code to indicate failure. This caused some
confusion, as 1 is a possible errno value as well as a return code. EOF is not a valid
errno value.

Programs that rely on specific values of errno may not run as expected, because
certain errno values have changed. Under OS/390 Language Environment Release

Chapter 7. Input and Output Operations Compatibility 45

From C/370 to LE Element of OS/390 V2R6

5, error messages have the format EDC5xxx. You can find the error message
information for a particular errno value by applying the errno value to EDC5xxx
(for example, 021 becomes EDC5021), and looking up the EDC5xxx message in the
0S5/390 Language Environment Debugging Guide and Run-Time Messages manual.

Miscellaneous

* The inheritance model for standard streams now supports repositioning.
Previously, if you opened stdout or stderr in update mode, and then called
another C program by using the ANSI-style system() function, the program that
you called inherited the standard streams, but moved the file position for stdout
or stderr to the end of the file. Now, the library does not move the file position
to the end of the file. For text files, the position is moved only to the nearest
record boundary not before the current position. This is consistent with the way
stdin behaves for text files.

e The values for L_tmpnam and FILENAME_MAX have been changed:

Constant Old values New values
L_tmpnam 47 1024
FILENAME_MAX 57 1024

* The names produced by the tmpnam() library function are now different. Any
code that depends on the internal structure of these names may fail.

VSAM I/O Changes
* The library no longer appends an index key when you read from an RRDS file
opened in text or binary mode.

* RRDS files opened in text or binary mode no longer support setting the access
direction to BWD.

Terminal /0O Changes

* The library will now use the actual recfm and Trec] specified in the fopen() or
freopen() call that opens a terminal file. Incomplete new records in fixed binary
and record files are padded with blank characters until they are full, and the
_ recfmF flag is set in the fldata() structure.

Previously, MVS terminals unconditionally set recfm=U. Terminal I/O did not
support opening files in fixed format.

* The use of an LRECL value in the fopen() or freopen() call that opens a file sets
the record length to the value specified.
Previous releases unconditionally set the record length to the default values.

» The use of a RECFM value in the fopen() or freopen() call that opens a file sets
the record format to the value specified.

Previous releases unconditionally set the record format to the default values.

* For input text terminals, an input record now has an implicit logical record
boundary at LRECL if the size of the record exceeds LRECL. The character data in
excess of LRECL is discarded, and a '\n' (new-line) character is added at the end
of the record boundary. You can now explicitly set the record length of a file as a
parameter on the fopen() call.

The old behavior was to allow input text records to span multiple LRECL blocks.

* Binary and record input terminals now flag an end-of-file condition with an
empty input record. You can clear the EOF condition by using the rewind() or
clearerr() library function.

46 0S/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

From C/370 to LE Element of OS/390 V2R6

Previous products did not allow these terminal types to signal an end-of-file
condition.

When an input terminal requires input from the system, all output terminals
with unwritten data are flushed in a way that groups the data from the different
open terminals together, each separated from the other with a single blank
character.

The old behavior is equivalent to the new behavior, except that two blank
characters separate the data from each output terminal.

Chapter 7. Input and Output Operations Compatibility ~ 47

From C/370 to LE Element of OS/390 V2R6

48 0S/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

Part 3. From Previous Releases of Language Environment to
0OS/390 Version 2 Release 6 Language Environment

© Copyright IBM Corp. 1996, 1998

This part discusses the implications of migrating applications that were created
with one of the following compilers:

e The AD/Cycle C/370 Version 1 Release 1 compiler, 5688-216

¢ The AD/Cycle C/370 Version 1 Release 2 compiler, 5688-216

e The IBM C/C++ for MVS/ESA Version 3 Release 1 compiler, 5655-121

¢ The IBM C/C++ for MVS/ESA Version 3 Release 2 compiler, 5655-121, also
known as the IBM OS/390 C/C++ Version 1 Release 1 compiler, 5645-001

and with one of the following libraries:

* IBM SAA AD/Cycle Language Environment/370 Version 1 Release 1, 5688-198

» IBM SAA AD/Cycle Language Environment/370 Version 1 Release 2, 5688-198

* IBM SAA AD/Cycle Language Environment/370 Version 1 Release 3, 5688-198

* Language Environment Version 1 Release 4, 5688-198

* Language Environment Version 1 Release 5, 5688-198

¢ The OpenEdition AD/Cycle C/370 Language Support Feature of MVS/ESA SP
Version 5 Release 1, 5655-068 and 5655-069

¢ The C/C++ Language Feature of MVS/ESA SP Version 5 Release 2 Modification
0, 5655-068 and 5655-069

* The C/C++ Language Feature of MVS/ESA SP Version 5 Release 2 Modification
2, 5655-068 and 5655-069

* The Language Environment feature of OS/390 Version 1 Release 1, 5645-001
to the OS/390 Version 2 Release 6 C/C++ product.

This chapter does not discuss converting a C program to C++. The only C++
compiler migration considerations covered are those between different versions of
the C++ component of the IBM C/C++ for MVS/ESA compilers and the OS/390
Version 2 Release 6 C/C++ compiler.

In this part, references to the products in the first column of the following table
also apply to the products in the second column.

References To These Products Also Apply To These Products

LE/370 Release 3 MVS/ESA SP Version 5 Release 1
OpenEdition AD/Cycle C/370 Language
Support Feature

Language Environment Release 4 C/C++ Language Feature of MVS/ESA SP
Version 5 Release 2 Modification 0

Language Environment Release 5 C/C++ Language Feature of MVS/ESA SP
Version 5 Release 2 Modification 2

0S/390 Release 1 IBM C/C++ for MVS Version 3 Release 2
compiler and Language Environment
Release 5

49

50 0S/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

Chapter 8. Application Executable Program Compatibility

This chapter will help application programmers understand the compatibility
considerations of application executable programs. An executable program is the
output of the bind process. The output is a load module when stored in a PDS and
a program object when stored in a PDSE or HFS. Generally, executable programs
linked or bound with previous releases of OS/390 Language Environment
(formerly known as both LE/370 and Language Environment for MVS & VM)
execute successfully with OS/390 Version 2 Release 6 Language Environment,
without source code changes, recompilation, or relinking. This chapter highlights
exceptions and shows how to solve specific problems in compatibility.

Executable program compatibility problems requiring source changes are discussed
A F —

Note: The terms in this section having to do with linking (bind, binding, link,
link-edit) refer to the process of creating an executable program from object
modules.

Input and Output Operations

Programs running with LE/370 Release 1 or Release 2 may not work without
changes if they have dependencies on any of the input and output behavior listed
A F - —

System Programming C Facility (SP C) Executable Programs

If you have an LE/370 Release 1 or Release 2 SP C application that was built with
exception handling (that is linked with EDCXERR, EDCXABRT and EDCXHDLR),
you must relink it with OS/390 Version 2 Release 6 Language Environment using
the SCEESPC dataset.

If your SP C module was built with exception handling, automatic library call is
not enabled when you relink, so you must explicitly include the new routine
@@SMASK.

Using the LINK Macro to Initiate a main()

When the LINK macro was used to initiate one C main() from another in LE/370
Release 1.0, any run-time options specified in calling a child main() were ignored.
The parent run-time options were inherited. The conditions left unhandled in the
child were propagated to the parent. Starting with LE/370 Release 1.1, and
continuing through to OS/390 Version 2 Release 6 Language Environment run-time
options are no longer propagated.

With LE/370 Release 1.0, using LINK to initiate a child main() restricted you from

using standard streams in the child and from using memory files in the child.
Starting with LE/370 Release 1.1 and continuing through to OS/390 Version 2

© Copyright IBM Corp. 1996, 1998 51

From Previous Releases of LE to OS/390 V2R6

Release 6 Language Environment, these restrictions no longer apply. Therefore, the
parent’s standard streams and memory files are shared by the child.

Inheritance of Run-Time Options with EXEC CICS LINK

When an EXEC CICS LINK command was used with LE/370 Release 1, run-time
options were inherited from an ancestor. Users who used STACK and HEAP to tune
C-CICS applications had to take particular note of this. Because of this inheritance,
a large heap or stack size specified in the first run unit of a transaction chain of
run units could cause shortages when it was allocated for each unit. For programs
running under later releases of Language Environment, including OS/390 Version
2 Release 6 Language Environment, run-time options are no longer inherited.

STAE/NOSPIE and SPIE/NOSTAE Mapping

STAE and SPIE options have been replaced with the TRAP option. We recommend
that you use the TRAP option, not STAE and SPIE. However, for ease of migration,
the STAE and SPIE options are supported as long as the TRAP option is not explicitly
specified. If the STAE option and SPIE option are used, they map to TRAP(ON). If
NOSTAE and NOSPIE are used, they map to TRAP(OFF). When the values are mixed,
for example, STAE/NOSPIE, they map to TRAP(ON). In LE/370 1.0, SPIE/NOSTAE and
STAE/NOSPIE are mapped to TRAP(OFF).

Class Library Execution Incompatibilities

There are execution incompatibilities between the class libraries provided with the
C++ Version 3 Release 1.0, 1.1, and the OS/390 Version 2 Release 6 C++ compiler.
You must recompile and relink applications that are dynamically-bound to those
class libraries for the following migration paths:

* Collection Class
— from C++/MVS Version 3 Release 1.1 (non-RRBC version) to OS/390 Version
2 Release 6 C/C++
— from C++/MVS Version 3 Release 1.0 to OS/390 Version 2 Release 6 C/C++

* Application Support Class
— from C++/MVS Version 3 Release 1.1 (non-RRBC version) to OS/390 Version
2 Release 6 C/C++
— from C++/MVS Version 3 Release 1.0 to OS/390 Version 2 Release 6 C/C++

Refer to EAppendix A Class Tibrary Migration Considerations” on page 79 for
some background information about class libraries and compatibility
considerations.

52 0S/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

Chapter 9. Source Program Compatibility

In general, you can use source programs with the OS/390 Version 2 Release 6

C/C++ product without modification, if they were created with one of the

following:

* AD/Cycle C/370 compiler running with Language Environment Version 1
Release 2 or later

* C/MVS Version 3 Release 1 or Release 2 compiler running with Language
Environment Version 1 Release 4 or later

* C++/MVS Version 3 Release 1, and C++/MVS Version 3 Release 2 programs
running with Language Environment Release 4 or 5

This chapter highlights the exceptions and shows how to solve specific problems in
compatibility.

” 17

has information on
run-time options, which may also affect source code compatibility.

Input and Output Operations

You may have to change programs that ran with the LE/370 Release 1 or Release 2
library so that they work with OS/390 Language Environment, if they have
dependencies on any of the input and output behaviors listed in LCba.p.terJ_‘L_Ln.pu.ﬂ

. ”

SIGFPE Exceptions

Decimal overflow conditions were masked in Release 1 and 2 of LE/370. These
conditions were enabled when the packed decimal data type was introduced in the
AD/Cycle C/370 Release 2 compiler, and continue to be enabled with OS/390
Version 2 Release 6 Language Environment.

If you have old load modules that accidentally generated decimal overflow
conditions, they may behave differently with OS/390 Version 2 Release 6 Language
Environment by raising unexpected SIGFPE exceptions. Without source alteration,
such modules cannot be migrated to the new library, and are unsupported. It is
unlikely that such modules will occur in a C-only environment. These unexpected
exceptions may occur in mixed language modules, particularly those using C and
assembler code where the assembler code explicitly manipulates the program
mask.

Program Mask Manipulations

Programs created with LE/370 Release 1 or Release 2 that explicitly manipulated
the program mask may require source alteration to execute correctly under OS/390
Version 2 Release 6 Language Environment. Changes are required if you have one
of the following types of programs:

* A C program containing assembler interlanguage calls (ILC), in which the
invoked code uses the S/370 decimal instructions that might generate an

© Copyright IBM Corp. 1996, 1998 53

From Previous Releases of LE to OS/390 V2R6

unmasked decimal overflow condition, requires modification for migration.
There are two methods for migrating the code. The first one is preferred:

— Modify the assembler code to save the existing mask, set the new value, and
when finished, restore the saved mask.

— Change the C code so that the produced SIGFPE signal is ignored in the called
code. In the following example, the SIGNAL calls surround the
overflow-producing code. The SIGFPE exception signal is ignored, and then
reenabled:

signal (SIGFPE, SIG_IGN); /* ignore exceptions */
callit(): /* in called routine */

signal (SIGFPE, SIG_DFL); /* restore default handling */

* A C program containing assembler ILCs that explicitly alter the program mask,
and do not explicitly save and restore it, also requires modification for
migration.

If user code explicitly alters the state of the program mask, the value before
modification must be saved, and restored to its former value after the
modification. You must ensure that the decimal overflow program mask bit is
enabled during the execution of C code. Failure to preserve the mask may result
in unpredictable behavior.

These changes also apply in a System Programming C environment, and to
Customer Information Control System (CICS) programs in the handling and
management of the PSW mask.

#line Directive

The AD/Cycle C/370 and C/MVS Version 3 Release 1 compilers ignored the #1ine
directive when either the C/MVS EVENTS or the C/C++ MVS TEST compiler option
was in effect. However the C/MVS Version 3 Release 2 and the OS/390 C
compilers provide the correct information for the Debug Tool, and the compiler
does not ignore the #11ine directive.

sizeof Operator

The behavior of sizeof when applied to a function return type was changed in the
C/C++ MVS Version 3 Release 2 compiler. For example:

char foo();

s = sizeof foo();

If the example is compiled with a compiler prior to C/C++ MVS Version 3 Release
2, char is widened to int in the return type, so sizeof returns s = 4.

If the example is compiled with C/C++ MVS Version 3 Release 2, or with any
0S/390 C/C++ compiler, the size of the original char type is retained. In the above
example, sizeof returns s = 1. The size of the original type of other data types
such as short, and float is also retained.

With OS/390 Version 2 Release 4 C/C++ and subsequent compilers, you can use
#pragma wsizeof or the WSIZEOF compiler option to get sizeof to return the
widened size for function return types if your code has a dependency on this

54 0S/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

From Previous Releases of LE to OS/390 V2R6

behavior. For more information on #pragma wsizeof, see OS/390 C/C++ Language
Reference . For more information on the WSIZEOF compiler option, see OS/390 C/C++
User’s Guide.

_Packed Structures and Unions

If you are migrating from an AD/Cycle C/370 compiler to the OS/390 C compiler,
you can no longer do the following:

 assign _Packed and non-_Packed structures to each other

* assign _Packed and non-_Packed unions to each other

* pass a _Packed union or _Packed structure as a function parameter if a
non-_Packed version is expected (or the other way around)

If you attempt to do so, the compiler issues an error message.

Alternate Code Points

The following alternate code points are not supported by the OS/390 C/C++
compilers:

* X'8B' as alternate code point for X'C0' (the left brace)
e X'9B' as alternate code point for X'D0' (the right brace)

These alternate code points were supported by the C/370 and AD/Cycle C/370
compilers (the NOLOCALE option was required if you were using the AD/Cycle
C/370 Version 1 Release 2 compiler).

Conformance to the ANSI standard

The C/C++ MVS Version 3 Release 2 and OS/390 C/C++ compilers conform to the
1992 draft of the ANSI standard, and no longer interpret wide-character constants
that contain escape sequences.

LANGLVL(ANSI)

Starting with the C/C++ MVS Version 3 Release 2 compiler, if you specify
LANGLVL (ANSI), the compiler recognizes char, unsigned char, and signed char as
three distinct types.

Compiler Messages and Return Codes

There are differences in messages and return codes between different versions of
the compiler. Message contents have changed, and return codes for some messages
have changed (some errors have become warning, and in very rare situations,
some warnings have become errors). You must update accordingly any application
that is affected by message contents or return codes. Do not build dependencies
on message content, message numbers, or return codes. See O5/390 C/C++ User’s
Guide for a list of compiler messages.

Chapter 9. Source Program Compatibility 55

From Previous Releases of LE to OS/390 V2R6

Collection Class Library Source Code Incompatibilities

There are source code incompatibilities between the native Collection Class
Libraries available with the C++/MVS Version 3 Release 1.0 and OS/390 Release 3
C++ compilers. You must change your source code if you are migrating to OS/390
Version 2 Release 6 C++ from C++/MVS Version 3 Release 1.0 and your
application makes use of either of the following:

newCursor method
The return type of the newCursor method is now a pointer to the abstract
cursor class [Cursor (*ICursor).

Deriving from Reference Classes
Deriving from Reference Classes without overriding existing Collection
Class member functions is still possible. However, you can no longer
override existing Collection Class functions and use your derived
Collection Class in a polymorphic way without additional effort. Refer to
the chapter about "Polymorphism and the Collections", in the OS5/390
C/C++ IBM Open Class Library User’s Guide for more information.

These changes were made in the Collection Class Library that was available with
the C++/MVS Version 3 Release 1.1 compiler, and do not affect you if you are
migrating from the C++/MVS Version 3 Release 1.1, C++/MVS Version 3 Release
2, or an OS/390 C++ compiler.

Also, the structure of the Collection Classes changed in MVS Version 3 Release 1.1.
All classes, including the concrete classes, are now related in an abstract hierarchy.
The abstract hierarchy makes use of virtual inheritance. When you subclass from a
Collection Class and implement your own copy constructor, you must initialize the
virtual base class IACollection<Element> in your derived classes. Therefore, if you
subclassed from a concrete Collection Class that was shipped with C++/MVS
Version 3 Release 1.0, and are migrating to the Collection Classes that are shipped
with OS/390 Version 2 Release 6 C/C++, you will have to change the
implementation of your copy constructor by adding the virtual base class
initialization.

Refer to I’Appendix A Class library Migration Considerations” on page 79 for
some background information about class libraries and compatibility
considerations.

DSECT Utility

Header files generated by the DSECT utility now use #pragma pack rather than
_Packed for packed structures. In rare cases, you may have to modify and
recompile your code.

56 0S/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

Chapter 10. Other Migration Considerations

the OS/390 Version 2 Release 6 C/C++ product.

Class Library Object Module Incompatibilities

There are object incompatibilities between the class libraries provided with the IBM
C++/MVS Version 3 Release 1.0, 1.1, and OS/390 C++ compilers. You must
recompile and relink applications that are dynamically-bound to those class
libraries, for the following migration paths:

* Collection Class
— from Version 3 Release 1.1 (non-RRBC version) to OS/390 Version 2 Release 6
C/C++
— from Version 3 Release 1.0 to OS/390 Version 2 Release 6 C/C++

* Application Support Class
— from Version 3 Release 1.1 (non-RRBC version) to OS/390 Version 2 Release 6
C/C++
— from Version 3 Release 1.0 to OS/390 Version 2 Release 6 C/C++

Refer to Appendix A Class Tibrary Migration Considerations” on page 79 for

some background information about class libraries and compatibility
considerations.

Removal of Database Access Class Library Utility

Starting with OS/390 Version 2 Release 4 C/C++, the Database Access Class
Library utility is no longer available.

Changes That Affect User JCL, CLISTs, and EXECs

This section describes changes that may affect your JCL, CLISTs, and EXECs.

CXX Parameter in JCL Procedures

With C++/MVS Version 3 Release 2 and OS/390 C++ compilers, the CBCC,
CBCCL, and CBCCLG procedures, which compile C++ code, now include
parameter CXX. You must include this parameter if you have written your own
JCL to compile a C++ program. Otherwise, you invoke the C compiler.

When you pass options to the compiler, you must specify parameter CXX. You
must use the following format to specify options:

run-time options/CXX compile-time options

© Copyright IBM Corp. 1996, 1998 57

From Previous Releases of LE to OS/390 V2R6
SYSMSGS and SYSXMSGS ddnames

With the C/C++ MVS Version 3 Release 2 and OS/390 C/C++ compilers, the
method of specifying the language for compiler messages has changed. At compile
time, instead of specifying message data sets on the SYSMSGS and SYSXMSGS
ddnames, you must now use the NATLANG run-time option. If you specify data sets
for these ddnames, they are ignored.

Compiler Messages and Return Codes

There are differences in messages and return codes between different versions of
the compiler. Message contents have changed, and return codes for some messages
have changed (some errors have become warnings, and in very rare situations,
some warnings have become errors). You must update accordingly any application
that is affected by message contents or return codes. Do not build dependencies
on message content, message numbers, or return codes. See O5/390 C/C++ User’s
Guide for a description of compiler messages and return codes.

Changes in Data Set Names

The names of IBM-supplied data sets may change from one release to another. See
the OS/390 Program Directory for more information on data set names.

Decimal Exceptions

0S5/390 Language Environment provides support for the packed decimal overflow
exception using native System/370 hardware enablement, as did LE/370 Release 3,
Language Environment Release 4 and Release 5.

The value of the program mask in the program status word (PSW) is 4 (decimal
overflow enabled).

Migration and Coexistence

The following points identify migration and coexistence considerations for user
applications:

* As of LE/370 Release 3, CICS programs were enabled for decimal exceptions.

* The C packed decimal support routines are not supported in an environment
that exploits asynchronous events.

SIGTERM, SIGINT, SIGUSR1, and SIGUSR2 Exceptions

As of LE/370 Release 3, there were changes to application/program behavior for
SIGTERM, SIGINT, SIGUSRL, and SIGUSR2 exceptions from previous releases of the
LE/370 product. These changes in behavior carried over into the OS/390 Version 2
Release 6 Language Environment product.

The differences or incompatibilities are:

* The defaults for the SIGINT, SIGTERM, SIGUSR1, and SIGUSR2 signals changed in
LE/370 Release 3, from what they were in C/370 Version 1 and 2 and LE/370
Release 1 and 2. In the C/370 library and LE/370 Release 1 and Release 2, the
defaults for SIGINT, SIGUSR1, and SIGUSR2 were to ignore the signals. As of
LE/370 Release 3, the default is to terminate the program and return a return

58 0S/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

From Previous Releases of LE to OS/390 V2R6

code of 3000. For SIGTERM, the default has always been to terminate the program,
but the return code is now 3000 whereas before it was 0.

* Applications that terminate abnormally will not drive the atexit list.

Compile-Time Options
This section describes changes that may affect your compile-time options.

OPTIMIZE Compile-Time Option

In the AD/Cycle C/370 compilers:

* OPT(0) mapped to NOOPT

* OPT and OPT(1) mapped to OPT(1)
* OPT(2) mapped to OPT(2)

In the C/C++ MVS/ESA Version 3 compilers, and the OS/390 Version 1 Release 1
compiler:

* OPT(0) mapped to NOOPT

* OPT, OPT(1) and OPT(2) mapped to OPT

Starting with the OS/390 Version 2 Release 6 C/C++ compiler:
* OPT(0) maps to NOOPT
* OPT, OPT(1) and OPT(2) map to OPT(2).

IDL Compile-Time option

As of OS/390 Version 2 Release 4 C/C++, the IDL compiler option is no longer
available. If you continue to require IDL for your applications, new IDL or IDL
modifications must be coded by hand. You can then use the IDL compiler to
generate your C/C++ source code.

INLINE Compile-Time option

The defaults for the C compile INLINE compiler option were changed in the
C/MVS Version 3 Release 1 compiler. In the past, the default for the threshold
suboption was 250 ACUs (Abstract Code Units). With the C/MVS Version 3 and
the OS/390 C compilers, the default is 100 ACUs.

SEARCH and LSEARCH Compile-Time Option

The include file search process has changed. Prior to the C/MVS V3R2 compiler, if
you used the LSEARCH option more than once, the compiler searched only the
libraries specified for the last LSEARCH option. Now the OS/390 C compilers search
all of the libraries specified for all of the LSEARCH options, from the point of the last
NOLSEARCH option.

Similarly, if you specify the OS/390 C/C++ SEARCH option more than once, the
0S/390 C++ compilers search all of the libraries specified for all of the SEARCH
options, from the point of the last NOSEARCH option. Previously, only the libraries
specified for the last SEARCH option were searched.

Chapter 10. Other Migration Considerations 59

From Previous Releases of LE to OS/390 V2R6
TEST Compile-Time Option

Starting with the OS/390 C/C++ compilers, the default for the PATH suboption of
the TEST option has changed from NOPATH to PATH. Also, the INLINE option is
ignored when the TEST option is in effect at OPT(0), but the INLINE option is no
longer ignored if OPT(1) or OPT(2) is in effect.

Starting with C/C++ MVS Version 3 Release 2, a restriction applies to the TEST
compiler option. Now, the maximum number of lines in a single source file cannot
exceed 131,072. If you exceed this limit, the results from the Debug Tool and
LE/370 Dump Services are undefined.

HALT Compile-Time Option

The C++/MVS V3R2 and OS/390 C++ compilers do not accept 33 as a valid
parameter for the HALT compile-time option.

Syntax for the CC Command

With the C/C++ MVS V3R2 and OS/390 C/C++ compilers, the CC command can
be invoked using a new syntax. At customization time, your system programmer
can customize the CC EXEC to accept only the old syntax (the one supported by
compilers before C/C++ MVS Version 3 Release 2), only the new syntax, or both
syntaxes.

You should customize the CC EXEC to accept only the new syntax, because the old
syntax may not be supported in the future. If you customize the CC EXEC to
accept only the old syntax, keep in mind that it does not support Hierarchical File
System (HFS) files. If you customize the CC EXEC to accept both the old and new
syntaxes, you must invoke it using either the old or the new syntax, not a mixture
of both. If you invoke this EXEC with the old syntax, it does not support HFS files.

Refer to the OS/390 Program Directory for more information about installation and
customization, and to the OS5/390 C/C++ User’s Guide for more information about
compiler options.

Time Functions

You should customize your locale information. Otherwise, in rare cases, you may
encounter errors. In a POSIX application, you can supply time zone and alternative
time (e.g., daylight) information with the TZ environment variable. In a non-POSIX
application, you can supply this information with the _TZ environment variable. If
no TZ environment variable is defined for a POSIX application or no _TZ
environment variable is defined for a non-POSIX application, any customized
information provided by the LC_TOD locale category is used. By setting the TZ
environment variable for a POSIX application, or the _TZ environment variable for
a non-POSIX application, or by providing customized time zone or daylight
information in an LC_TOD locale category, you allow the time functions to preserve
both time and date, correctly adjusting for alternative time on a given date.

Refer to the OS/390 C/C++ Programming Guide for more information about both
environment variables and customizing a locale.

60 0S/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

From Previous Releases of LE to OS/390 V2R6

Abnormal Termination Exits

The abnormal termination exits CEEBDATX (for batch) and CEECDATX (for CICS)
are now automatically linked at install time for OS/390 Language Environment the
sample exit is no longer required. These exits were only available in the sample
library in LE/370 Release 3. They allow you to automatically produce a system
dump (with abend code 4039), when abnormal termination occurs. In previous
releases of Language Environment, only an LE formatted dump was generated
(which continues to be produced under OS/390 Version 2 Release 6 Language
Environment).

For a non-CICS application, you can trigger the dump by ensuring that
SYSUDUMP is defined in the GO step of the JCL that you are using (for example,
by including the statement SYSUDUMP DD SYSOUT=*). If SYSUDUMP is not
included in your JCL, or is defined as DUMMY, the dump will be suppressed. As
of C/C++ for MVS/ESA Version 3 Release 1, the standard JCL procedures shipped
with the compiler do not include SYSUDUMP.

In a CICS environment, you automatically receive the default transaction dump
unless you disable it by using the CEMT transaction, and by specifying the
dumpcode "4039’.

You may also modify CEEBDATX and CEECDATX to suppress the dumps. The
exits are available in the OS/390 Version 2 Release 6 Language Environment
sample library.

Standard Stream Support

Under CICS, with O5/390 Language Environment, records sent to the transient
data queues associated with stdout and stderr with default settings take the form
of a message as follows:

terminal transaction Time Stam
ASA id id sp YYYYMMDDHHf\)/IMSS P | data
1 4 4 1 14 1 108
where:
ASA is the carriage-control character
terminal id is a 4 character terminal identifier
transaction id is a 4 character transaction identifier
sp is a space
Time Stamp is the date and time displayed in the format
YYYYMMDDHHMMSS

data is the data sent to the standard streams stdout and stderr

This format was associated with stderr for all releases of Language Environment.
However, it has only been used for stdout since LE/370 Release 3; therefore, you
should be aware of this change if you are migrating to OS/390 Version 2 Release 6
Language Environment from LE/370 Release 1 or Release 2.

Chapter 10. Other Migration Considerations 61

From Previous Releases of LE to OS/390 V2R6

Direction of Compiler Messages to stderr

All messages produced by the C/C++ MVS Version 3 Release 2 and OS/390 C++
compilers are sent to stderr. In the past, some messages were sent to stdout.

Array new

In the C++/MVS Version 3 Release 1 compiler, the array version of new was not
supported. It is supported in a PTF (APAR PN72107) available for the C++/MVS
Version 3 Release 1 compiler, and it is also supported in the C++/MVS Version 3
Release 2 and OS/390 C/C++ compilers.

If you are migrating from the base C/C++ MVS Version 3 Release 1 compiler to
0OS/390 Version 2 Release 6 C/C++, and you have written your own global new
operator, it is no longer called when you create an array object. For example:
void*
operator new (MyClass *, size_t sz) { g_new_count++;
return MyMalloc(sz); }

main() {
X new_array[10]; // the global new operator
// shown above will not be called if the fix for
// APAR PN72107 or the Version 3 Release 2
// compiler is installed

}

You have to add an overloadeded operator to new[] if you require this for arrays.

Compiler Listings

As of OS/390 C/C++ Version 2 Release 6, OPT(1) maps to OPT(2). The compiler
listing no longer contains the part of the pseudo-assembler listing that was
associated with OPT(1). Listing formats, especially the pseudo-assembler parts, will
continue to change from release to release. Do not build dependencies on the

structure or content of listings. For information about listings for the current
release, refer to the OS/390 C/C++ User’s Guide.

62 0S/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

Chapter 11. Input and Output Operations Compatibility

Changes were made to input and output support in the C/370 Version 2 Release 2
and LE/370 Release 3 libraries. These changes also apply to OS/390 Version 2
Release 6 Language Environment. If your programs performed input and output
operations with the following products, you should read the changes listed in this
section. These products are:

e LE/370 Release 1
e LE/370 Release 2

References in this chapter to previous releases or previous behavior apply to the
products listed above.

You will generally be able to migrate “well-behaved” programs: programs that do
not rely on undocumented behavior, restrictions, or invalid behaviors of previous
releases. For example, if library documentation only specified that a return code
was a negative value, and your code relies on that value being -3, your code is not
well-behaved and is relying on undocumented behavior.

Another example of a program that is not well-behaved is one that specifies
recfm=F for a terminal file and depends on Language Environment to ignore this
parameter, as it did previously.

However, you may still need to change even well-behaved code under
circumstances described in the following section.

Opening Files

* When you call the fopen() or freopen() library function, you can specify each
parameter only once. If you specify any keyword parameter in the mode string
more than once, the function call fails. Previously, you could specify more than
one instance of a parameter.

* The library no longer supports uppercase open modes on calls to fopen() or
freopen(). You must specify, for example, rb instead of RB, to conform to the
ANSI/ISO standard.

* You cannot open a non-HFS file more than once for a write operation. Previous
releases allowed you, in some cases, to open a file for write more than once. For
example, you could open a file by its data set name and then again by its
ddname. This is no longer possible for non-HFS files, and is not supported.

* Previously, fopen() allowed spaces and commas as delimiters for mode string
parameters. Only commas are allowed now.

* If you are using PDSes or PDSEs, you cannot specify any spaces before the
member name.

Writing to Files

* Write operations to files opened in binary mode are no longer deferred.
Previously, the library did not write a block that held nn bytes out to the system
until the user wrote nn+l bytes to the block. The OS/390 Language Environment
library follows the rules for full buffering, described in the OS/390 C/C++
Programming Guide, and writes data as soon as the block is full. The nn bytes are
still written to the file, the only difference is in the timing of when it is done.

© Copyright IBM Corp. 1996, 1998 63

From Previous Releases of LE to OS/390 V2R6

* For non-terminal files, the backspace character ('\b') is now placed into files as
is. Previously, it backed up the file position to the beginning of the line.

* For all text I/O, truncation for fwrite() is now handled the same way that it is
handled for puts() and fputs(). If you write more data than a record can hold,
and your output data contains any of the terminating control characters, '\n' or
"\r' (or '\f', if you are using ASA), the library still truncates extra data;
however, recognizing that the text line is complete, the library writes subsequent
data to the next record boundary. Previously, fwrite() stopped immediately
after the library began truncating data, so that you had to add a control
character before writing any more data.

* You can now partially update a record in a file opened with type=record.
Previous libraries returned an error if you tried to make a partial update to a
record. Now, a record is updated up to the number of characters you specify,
and the remaining characters are untouched. The next update is to the next
record.

¢ 0S/390 Language Environment blocks files more efficiently than some previous
libraries did. Applications that depend on the creation of short blocks may fail.

* The behavior of ASA files when you close them has changed. In previous
releases, this is what happened:

Written to file Read from file after fclose(), fopen()
abc\n\n\n abc\n\n\n\n

abc\n\n abc\n\n\n

abc\n abc\n

In this release, you read from the file what you wrote to it. For example:

Written to file Read from file after fclose(), fopen()
abc\n\n\n abc\n\n\n

abc\n\n abc\n\n

abc\n abc\n

In previous products, writing a single new-line character to a new file created an
empty file under MVS. OS/390 Language Environment treats a single new-line
characters written to a new file as a special case, because it is the last new-line
character of the file. The library writes a single blank to the file. When you read
this file, you see two new-line characters instead of one. You also see two

new-line characters on a read if you have written two new-line characters to the
file.

The behavior of appending to ASA files has also changed. The following table
shows what you get from an ASA file when you:

Open an ASA file for write.

Write abc.

Close the file.

Append xyz to the ASA file.

Open the same ASA file for read.

agprpwNE

64 0S/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

From Previous Releases of LE to OS/390 V2R6

abc Written to File, fclose()

then append xyz

What You Read from File after fclose(), fopen()

Previous release

New release

abc = xyz \nabc\nxyz\n same as previous release
abc = \nxyz \nabc\nxyz\n \nabc\n\nxyz\n
abc = \rxyz \nabc\rxyz\n \nabc\n\rxyz\n
abc\n = xyz \nabc\nxyz\n same as previous release
abc\n = \nxyz \nabc\nxyz\n \nabc\n\nxyz\n
abc\n = \rxyz \nabc\rxyz\n \nabc\n\rxyz\n
abc\n\n = xyz \nabc\n\n\nxyz\n \nabc\n\nxyz\n
abc\n\n = \nxyz \nabc\n\n\nxyz\n same as previous release
abc\n\n = \rxyz \nabc\n\n\rxyz\n same as previous release

Figure 5. Appending to ASA Files

¢ The behavior of DBCS strings has changed.

1. I/O now checks the value of MB_CUR_MAX to determine whether to interpret
DBCS characters within a file.

2. When MB_CUR_MAX is 4, you can no longer place control characters in the
middle of output DBCS strings for interpretation. Control characters within
DBCS strings are treated as DBCS data. This is true for terminals as well.
Previous products split the DBCS string at the '\n' (new-line) control
character position by adding an SI (Shift In) control character at the new-line
position, displaying the line on the terminal, and then adding an SO (Shift
Out) control character before the data following the new-line character. If
MB_CUR_MAX is 1, the library interprets control characters within any string,
but does not interpret DBCS strings. SO and SI characters are treated as
ordinary characters.

3. When you are writing DBCS data to text files, if there are multiple SO (Shift
Out) control-character write operations with no intervening SI (Shift In)
control character, the library discards the SO characters, and marks that a
truncation error has occurred. Previous products allowed multiple SO
control-character write operations with no intervening SI control character
without issuing an error condition.

4. When you are writing DBCS data to text files and specify an odd number of
DBCS bytes before an SI control character, the last DBCS character is padded
with a X'FE' byte. If a SIGIOERR handler exists, it is triggered. Previous
products allowed incorrectly placed SI control-character write operations to
complete without any indication of an error.

5. Now, when an S0 has been issued to indicate the beginning of a DBCS string
within a text file, the DBCS must terminate within the record. The record will
have both an SO and an SI.

Repositioning within Files

* The behavior of fgetpos(), fseek() and fflush() following a call to ungetc()
has changed. Previously, these functions have all ignored characters pushed back
by ungetc() and have considered the file to be at the position where the first
ungetc() character was pushed back. Also, ftel1() acknowledged characters
pushed back by ungetc() by backing up one position if there was a character
pushed back. Now,

— fgetpos() behaves just as ftell()does

Chapter 11. Input and Output Operations Compatibility 65

From Previous Releases of LE to OS/390 V2R6

— When a seek from the current position (SEEK_CUR) is performed, fseek()
accounts for any ungetc() character before moving, using the user-supplied
offset

— fflush() moves the position back one character for every character that was
pushed back.

If you have applications that depend on the previous behavior of fgetpos(),
fseek(), or fflush(), you may use the new _EDC_COMPAT environment variable
so that source code need not change to compensate for the new behavior.
_EDC_COMPAT is described in the OS/390 C/C++ Programming Guide.

* For OS I/O to and from files opened in text mode, the ftell() encoding system
now supports higher blocking factors for smaller block sizes. In general, you
should not rely on ftell() values generated by code you developed using
previous releases of the library. You can try ftel1() values taken in previous
releases for files opened in text or binary format if you set the environment
variable _EDC_COMPAT before you call fopen() or freopen(). Do not rely on
ftel1() values saved across program boundaries. _EDC_COMPAT is described in
the OS/390 C/C++ Programming Guide.

* For record I/0, ftel1() now returns the relative record number instead of an
encoded offset from the beginning of the file. You can supply the relative record
number without acquiring it from ftel1(). You cannot use old ftel1() values
for record I/0, regardless of the setting of _EDC_COMPAT. _EDC_COMPAT is described
in the OS/390 C/C++ Programming Guide .

* If you have used ungetc() to move the file pointer to a position before the
beginning of the file, calls to ftel1() and fgetpos() now fail. Previously,
ftel1() returned the value 0 for such calls, but set errno to a non-zero value.
Previously, fgetpos() did not account for ungetc() calls. See the OS/390 C/C++
Programming Guide for information on how to change fgetpos() behavior by
using _EDC_COMPAT.

For example, suppose that you are at relative position 1 in the file and ungetc()
is performed twice. ftel1() and fgetpos() will now report the relative position
-1, which is before the start of the file, causing both ftel1() and fgetpos() to
fail.

* After you have called ftell(), calls to setbuf() or setvbuf() may fail.
Applications should never call I/O functions between calls to fopen() or
freopen() and calls to the functions that control buffering.

Closing and Reopening ASA Files

The behavior of ASA files when you close and reopen them is now consistent:

66 0S/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

From Previous Releases of LE to OS/390 V2R6

Physical record after close

Written to file Previous behavior New behavior
abc Char abc @ same as previous release
Hex 4888 1)
0123
abc\n Char abc 1) same as previous release
Hex 4888 @
0123
abc\n\n Char abc 1) Char abc (1)
0 () 2)
Hex 4888 1) Hex 4888 (1)
0123 0123
F 2 4 2
0 0
abc\n\n\n Char abc 1) Char abc (1)
- () 2)
Hex 4888 1) Hex 4888 (1)
0123 0123 2)
6 (2) 4
0 0
abc\r Char abc 1) same as previous release
+ ()
Hex 4888 1)
0123
4 2
E
abc\r Char abc 1) same as previous release
1 ()
Hex 4888 1
0123
F 2
1

Figure 6. Closing and Reopening ASA Files

fldata() Return Values

There are minor changes to the values that the fldata() library function returns. It
may now return more specific information in some fields. For more information on
fldata(), see the “Input and Output” section in the OS/390 C/C++ Programming
Guide.

Error Handling

The general return code for errors is now EOF. In previous products, some I/0O
functions returned 1 as an error code to indicate failure. This caused some
confusion, as 1 is a possible errno value as well as a return code. EOF is not a valid
errno value.

Programs that rely on specific values of errno may not run as expected, because
certain errno values have changed. Under OS/390 Language Environment Release

Chapter 11. Input and Output Operations Compatibility 67

From Previous Releases of LE to OS/390 V2R6

5, error messages have the format EDC5xxx. You can find the error message

i

(

nformation for a particular errno value by applying the errno value to EDC5xxx
for example, 021 becomes EDC5021), and looking up the EDC5xxx message in the

0S5/390 Language Environment Debugging Guide and Run-Time Messages manual.

Miscellaneous

The inheritance model for standard streams now supports repositioning.
Previously, if you opened stdout or stderr in update mode, and then called
another C program by using the ANSI-style system() function, the program that
you called inherited the standard streams, but moved the file position for stdout
or stderr to the end of the file. Now, the library does not move the file position
to the end of the file. For text files, the position is moved only to the nearest
record boundary not before the current position. This is consistent with the way
stdin behaves for text files.

The values for L_tmpnam and FILENAME_MAX have been changed:

Constant Old values New values
L_tmpnam 47 1024
FILENAME_MAX 57 1024

The names produced by the tmpnam() library function are now different. Any
code that depends on the internal structure of these names may fail.

VSAM I/O Changes

The library no longer appends an index key when you read from an RRDS file
opened in text or binary mode.

RRDS files opened in text or binary mode no longer support setting the access
direction to BWD.

Terminal /0O Changes

The library will now use the actual recfm and Trec] specified in the fopen() or
freopen() call that opens a terminal file. Incomplete new records in fixed binary
and record files are padded with blank characters until they are full, and the

_ recfmF flag is set in the fldata() structure.

Previously, MVS terminals unconditionally set recfm=U. Terminal I/O did not
support opening files in fixed format.

The use of an LRECL value in the fopen() or freopen() call that opens a file sets
the record length to the value specified.
Previous releases unconditionally set the record length to the default values.

The use of a RECFM value in the fopen() or freopen() call that opens a file sets
the record format to the value specified.

Previous releases unconditionally set the record format to the default values.

For input text terminals, an input record now has an implicit logical record
boundary at LRECL if the size of the record exceeds LRECL. The character data in
excess of LRECL is discarded, and a '\n' (new-line) character is added at the end
of the record boundary. You can now explicitly set the record length of a file as a
parameter on the fopen() call.

The old behavior was to allow input text records to span multiple LRECL blocks.

Binary and record input terminals now flag an end-of-file condition with an
empty input record. You can clear the EOF condition by using the rewind() or
clearerr() library function.

68 0S/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

From Previous Releases of LE to OS/390 V2R6

Previous products did not allow these terminal types to signal an end-of-file
condition.

When an input terminal requires input from the system, all output terminals
with unwritten data are flushed in a way that groups the data from the different
open terminals together, each separated from the other with a single blank
character.

The old behavior is equivalent to the new behavior, except that two blank
characters separate the data from each output terminal.

Chapter 11. Input and Output Operations Compatibility 69

From Previous Releases of LE to OS/390 V2R6

70 0S/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

Part 4. From Previous Releases of OS/390 C/C++ to OS/390
Version 2 Release 6 C/C++

This part discusses the implications of migrating applications that were created
with one of the following products:

* IBM OS/390 Release 2 C/C++, 5645-001
* IBM OS/390 Release 3 C/C++, 5645-001
* IBM OS/390 Version 2 Release 4 C/C++, 5647-A01
e IBM OS/390 Version 2 Release 5 C/C++, 5647-A01

to the OS/390 Version 2 Release 6 C/C++ product.

© Copyright IBM Corp. 1996, 1998

71

72 0S/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

Chapter 12. Changes Between Releases of OS/390 C/C++

This chapter describes the changes you may need to make if you are migrating
from a previous release of OS/390 C/C++ to OS/390 Version 2 Release 6 C/C++.

IPA Object Module Binary Compatibility

Release-to-release binary compatibility is maintained by the OS/390 C/C++ IPA
Compile and IPA Link as follows:

* An object file produced by an OS/390 C/C++ IPA Compile which contains IPA
Object or combined IPA and conventional object information can be used as
input to the OS5/390 C/C++ IPA Link of the same or later Version/Release.

* An object file produced by an OS/390 C/C++ IPA Compile which contains IPA
Object or combined IPA and conventional object information cannot be used as
input by the OS/390 C/C++ IPA Link of an earlier Version/Release. If this is
attempted, an error diagnostic message will be issued by the IPA Link.

* Note that if the IPA object is recompiled by a later OS/390 C/C++ IPA Compile,
additional optimizations may be performed and the resulting application
program may perform better.

An exception to this is the IPA object files produced by the OS/390 Release 2 C
IPA Compile. These must by recompiled from the program source using an OS/390
Release 3 or later compiler before attempting to process them with the OS/390
Version 2 Release 6 C/C++ IPA Link.

IPA Link Step Defaults

Starting with OS/390 C/C++ Version 1 Release 3, the following IPA Link step
defaults changed:

* The default optimization level is OPT(1)
* The default is INLINE, unless NOOPT, OPT(0) or NOINLINE is specified.

* The default inlining threshold is now 1000 ACUs. With OS/390 C/C++ Release
2, the threshold was 100 ACUs.

* The default expansion threshold is now 8000 ACUs. With OS/390 C/C++
Release 2, the threshold was 1000 ACUs.

Starting with OS/390 C/C++ Version 2 Release 6, the The default optimization
level for the IPA Link step is OPT(2).

Removal of IDL Compile-Time option

As of OS/390 Version 2 Release 4 C/C++, the IDL compiler option is no longer
available. If you continue to require IDL for your applications, new IDL or IDL
modifications must be coded by hand. You can then use the IDL compiler to
generate your C/C++ source code.

© Copyright IBM Corp. 1996, 1998 73

From Previous Releases of OS/390 C/C++ to OS/390 C/C++ V2R4

Removal of Database Access Class Library Utility

Starting with OS/390 Version 2 Release 4 C/C++, the Database Access Class
[Library utility is no longer available.

I
| OPTIMIZE Compile-Time Option

In the OS/390 C/C++ Version 1 Release 2, Version 1 Release 3, Version 2 Release 4
and Version 2 Release 5 compilers:

* OPT(0) mapped to NOOPT
* OPT and OPT(1) mapped to OPT(1)
* OPT(2) mapped to OPT(2)

Starting with the OS/390 Version 2 Release 6 C/C++ compiler:
* OPT(0) maps to NOOPT
* OPT, OPT(1) and OPT(2) map to OPT(2)

Name Conflicts with Run-Time Library Functions

Starting with OS/390 Release 4 you might have a problem with name conflicts if
you did both of the following;:

1. You created functions with the same name as library functions.

2. When linking your application you included the IBM supplied Language
Environment link library before the files that contain your function definitions.

Previous releases of the OS5/390 C/C++ run-time headers used the #pragma map
directive to convert many function names into identifiers prefixed with “@@”. For
example, if you included fcntl.h in your source, a reference to open() in your
source code resulted in an external name @BOPEN in the object code. Starting with
0S/390 Release 4 many pragma maps have been eliminated. If you created
functions with the same name as library functions, you must ensure that the file
containing your version of the function precedes the IBM supplied Language
Environment link library in the search order when linking your application. If you
have object modules containing identifiers like OPEN that you want resolved to your
version of open(), you may need to alter your JCL to ensure that your version
precedes the IBM supplied Language Environment link library in the search order.

Also, if you have multiple, interdependent modules that rely on the name mapping
present in prior releases, you cannot recompile one without recompiling the others.
For example, module A includes fcnt1.h and calls open() resulting in a reference
to GROPEN in the object code. Module B implements your version of open() and also
includes fcntl.h, so that the external name of the called function is mapped to
@ROPEN. You must recompile both modules.

[Cable 3 lists the functions that had pragma maps deleted in OS/390 Release 4.
Table 5. Functions That Had Pragma Maps Deleted

accept() access() alarm() __atoe() __atoe_l()

a64l() basename() bemp() bcopy() bind()

brk() bzero() catclose() catgets|() catopen()

cclass() chaudit() chdir() chmod() chown()

chroot() clearenv() close() closedir() closelog()
| clrmemf() __cnvblk() confstr() connect() creat()

74 0S/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

Table 5. Functions That Had Pragma Maps Deleted (continued)

crypt()
cuserid()
dup2()
endgrent()
execl()
execvp()
fchown()
fetch()
flocate()
fstatvfs()
fupdate()
getdate()
getgrent()
getpass()
getppid()
getsyntx()
glob()
hsearch()
__ipdbes()
__iptepn()
jrand48()
Ifind()
_longjmp()
164a()
mkfifo()
mount()
msgrcv()
nftw()
open()
__opoptf()
poll()
putpmsg()
readlink()
recvfrom()
regex()
rexec()
seed48()
send()
setgid()
setpgid()
setsid()
shmdt()
__sigign()
sigstack()
spawnp()
strdup()
symlink()
t_alloc()
tegetsid()
tempnamy()
t_listen()
t_rcv()
tsetsubt()
tsyncro()
twalk()

csnap()
dirname()
dynalloc()
endpwent()
execle()
fattach()
fentl()
fetchep()
fmtmsg()
fsync()
gesp()
getegid()
getgrgid()
getpgid()
getpwent()
getuid()
globfree()
iconv()
__ipdspx()
isatty()
kill()
link()
Irand48()
maxcoll()
mknod()
mprotect()
msgsnd()
nice()
opendir()
pathconf()
popen()
putw()
readv()
re_exec()
regexec()
rindex()
seekdir()
sendto()
setgrent()
setpgrp()
setstate()
shmget()
sigpause()
sigwait()
srandom()
strfmony()
sync()
t_bind()
t_close()
tfind()
t_look()
t_rcvdis()
t_snd()
tterm()
__tzone()

ctdli()
__dlght()
dynfree()
erand48()
execlp()
fchaudit()
fevt()

ffs()
fnmatch()
ftime()
gevt()
__getipc()
getgrnam()
getpgrp()
getpwnamy()
getutxid()
grantpt()
index()
__iphost()
isblank()
Killpg()
listen()
Isearch()
maxdesc()
mkstemp()
mrand438()
msgxrcv()
nlist()

openlog()

pause()
ptsname()

random()
realpath()
regemp()
regfree()
rmdir()
semctl()
setegid()
_setjmp()
setpwent()
setuid()
shutdown()
__sigpro()
sleep()
srand48()
strptime()
sysconf()
tedrain()
tdelete()
t_free()
_tolower()
t_rcvrel()
t_snddis()
ttyname()
tzset()

Chapter 12. Changes Between Releases of OS/390 C/C++

ctermid()
drand48()
ecvt()
__etoa()
execv()
fchdir()
fdelrec()
fileno()
fork()
ftok()
__gderr()
geteuid()
getmsg()
getpid()
getpwuid()
getw()
hcreate()
insque()
__ipmsgc()
isnan()
Ichown()
lockf()
Iseek()
memccpy()
mktemp()
msgctl()
msync()
nrand48()
__operrf()
pclose()
putenv()
read()
re_comp()
regcomp()
release()
sbrk()
semget()
setenv()
setkey()
setregid()
shmat()
__sigerr()
sigrelse()
socket()
stat()
sve99()
syslog()
teflow()
t_error()
times()
t_open()
truncate()
t_sndrel()
ttyslot()
ualarm()

ctrace()
dup()
encrypt()
__etoa_l()
execve()
fchmod()
fdetach()
fldata()
fstat()
ftw()
getcwd()
getgid()
getopt()
getpmsg()
getsid()
getwd()
hdestroy()
ioctl()
__ipnode()
iswblank()
Icong48()
__locl()
Istat()
mkdir()
mmap()
msgget()
munmap)
__opargf()
__opindf()
pipe()
putmsg()
readdir()
recv()
regerror()
remque()
scalb()
semop()
seteuid()
setpeer()
setreuid()
shmctl()
sighold()
sigset()
spawn()
statvfs()
swab()
t_accept()
teflush()
telldir()
tinit()
_toupper()
tsearch()
t_sync()
t_unbind()
ulimit()

From Previous Releases of OS/390 C/C++ to OS/390 C/C++ V2R4

75

From Previous Releases of OS/390 C/C++ to OS/390 C/C++ V2R4

Table 5. Functions That Had Pragma Maps Deleted (continued)

umask() umount() uname() unlink() unlockpt()
usleep() utime() utimes() valloc() vfork()
wait() waitid() waitpid() wait3() w_ioctl()
wordexp() wordfree() write() writev() __wsinit()
w_statfs()

Time Functions

You should customize your locale information. Otherwise, in rare cases, you may
encounter errors. In a POSIX application, you can supply time zone and alternative
time (e.g., daylight) information with the TZ environment variable. In a non-POSIX
application, you can supply this information with the _TZ environment variable. If
no TZ environment variable is defined for a POSIX application or no _TZ
environment variable is defined for a non-POSIX application, any customized
information provided by the LC_TOD locale category is used. By setting the TZ
environment variable for a POSIX application, or the _TZ environment variable for
a non-POSIX application, or by providing customized time zone or daylight
information in an LC_TOD locale category, you allow the time functions to preserve
both time and date, correctly adjusting for alternative time on a given date.

Refer to the OS5/390 C/C++ Programming Guide for more information about both
environment variables and customizing a locale.

76 0S/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

Part 5. Appendixes

© Copyright IBM Corp. 1996, 1998

77

78 0S/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

Appendix A. Class Library Migration Considerations

This appendix provides some background information on the types of class
libraries that are available with the C++/MVS Version 3 and OS/390 C/C++
compilers.

The following four class libraries, along with the Database Access Class Library
Utility, are available for use with the OS/390 C++ compilers:

¢ the I/O Stream Class Library

¢ the Complex Mathematics Class Library
* the Application Support Class Library

* the Collection Class Library

All four class libraries are available with the C++/MVS Version 3 Release 1.0 and
Release 1.1 compilers. The C++/MVS Version 3 Release 2 compiler includes all
four class libraries and the Database Access Class Library Utility.

The I/0 Stream and Complex Mathematics Class Libraries are offered in native
C++ versions only. With C++/MVS V 3.1.1 and subsequent versions, the
Application Support Class Library is offered in native C++ and C++ SOM versions.
With C++/MVS V3.2, the Collection Class Library is offered in native C++, SOM
and Cross Language SOM versions. All six versions are available in both statically
bindable and dynamically bindable forms.

In native C++ class libraries, references to methods are dependent upon the order
of the method entries in a virtual function table. When new methods are added to
a library, the order of the methods can change, and therefore existing applications
using those methods may no longer work. However, adding new methods to
RRBC-enabled class libraries generally does not cause migration impacts to
applications. Between releases or modification levels, migration impacts may also
occur for both native and RRBC-enabled libraries if there are changes to the
interfaces/semantics of existing functions within a class library.

Whether an application is statically or dynamically bound to a class library will
also determine whether or not there are executable incompatibilities.
Statically-bound applications do not usually encounter release-to-release executable
incompatibilities unless they are recompiled/relinked from source or relinked from
objects with the new release. Dynamically-bound applications, however, may
encounter release-to-release executable incompatibilities. Source and object
incompatibilities may occur regardless of whether an application is statically or
dynamically bound.

As of OS/390 Version 2 Release 4 C/C++, the Database Access Class Library
(DACL) Utility is not available with the OS5/390 C/C++ compiler.

For more information on the topics mentioned above, refer to the following:
* 0S5/390 C/C++ IBM Open Class Library User’s Guide
* 0S5/390 C/C++ IBM Open Class Library Reference

* "The IBM System Object Model" chapter in the OS/390 C/C++ Programming Guide
(for information on Release-to-Release Binary Compatibility)

* The "Building and Using Dynamic Link Libraries" chapter in the O5/390 C/C++
Programming Guide (for information on dynamic linking)

© Copyright IBM Corp. 1996, 1998 79

e 0S5/390 C/C++ User’s Guide (for information on static linking)

80 0S/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

Appendix B. Year 2000 Support for C/C++ under MVS &
0S/390

All releases of C/370, C/C++ for MVS/ESA, and the C/C++ feature of OS/390 are
year 2000 ready.

Language Environment Version 1 Release 5 (program number 5688-198) and all
subsequent releases are part of OS/390, and are year 2000 ready.

Applications that contain date sensitive logic need to be examined and, if
necessary, updated to deal with the century transition.

The date-time output will be correct for all locales in the year 2000, but the date
(only) output will be ambiguous for most locales.

date format
Most OS/390 locales use the two digit year (without century) directive, %y,
for date format, d_fmt. For these locales, the date (only) output will be
ambiguous in the year 2000.

date-time format
All OS/390 locales use the four digit year (with century) directive, %Y, for
date-time format, d_t_fmt. The date-time output will be correct in the year
2000 for all locales.

Listings produced by the C/C++ MVS V3R2 compiler and later compilers display
the 4-digit year format. Listings produced by compilers prior to the C/C++ MVS
V3R2 compiler display the 2-digit year format. Compiler listings must not be used

as programmable interfaces, and so this change should not affect your application.

For further information on Year 2000 Support see:
http://www.software.ibm.com/ad/va2000/y2k

and the migration guides referenced there.

© Copyright IBM Corp. 1996, 1998 81

82 0S/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

Bibliography

This bibliography lists the publications for IBM products that are related to the
0S/390 C/C++ product. It includes publications covering the application

programming task. The bibliography is not a comprehensive list of the publications
for these products, however, it should be adequate for most OS/390 C/C++ users.

Refer to the OS/390 Information Roadmap, GC28-1727, for a complete list of

publications belonging to the OS/390 product.

Related publications not listed in this section can be found on the IBM Online
Library Omnibus Edition: MVS Collection CD-ROM (SK2T-0710), the IBM Online
Library Ommnibus Edition: OS/390 Collection CD-ROM (SK2T-6700), or on a tape

available with OS/390.

0S/390

0S/390 Printing Softcopy BOOKSs, S544-5354
0S/390 Introduction and Release Guide, GC28-1725
0S5/390 Planning for Installation, GC28-1726
0S5/390 Summary of Message Changes, GC28-1499
0S5/390 Information Roadmap, GC28-1727

VS COBOL Il Release 4

General Information, GC26-4042

Migration Guide for MV'S and CMS, GC26-3151

Installation and Customization for MV'S, SC26-4048
Application Programming Guide for MV'S and CMS, SC26-4045
Application Programming Language Reference, GC26-4047
Application Programming Reference Summary, SX26-3721
Application Programming Debugging, SC26-4049

Application Programming Diagnosis Guide, LY27-9523
Application Programming Diagnosis Reference, LY27-9522

COBOL FOR MVS & VM Release 2

Compiler and Run-Time Migration Guide, GC26-4764
Programming Guide, SC26-4767

Language Reference, SC26-4769

Diagnosis Guide, SC26-3138

Licensed Program Specifications, GC26-4761
Installation and Customization under MVS, SC26-4766

© Copyright IBM Corp. 1996, 1998

83

COBOL for OS/390 & VM Version 2 Release 1

* Compiler and Run-Time Migration Guide, GC26-4764

* Programming Guide, SC26-9049

* Language Reference, SC26-9046

* Diagnosis Guide, GC26-9047

* Licensed Program Specifications, GC26-9044

e Installation and Customization under OS/390, GC26-9045
* Program Directory for VM

e Fact Sheet, GC26-9048

PL/l for MVS & VM Release 1 Modification 1

* Language Reference, SC26-3114

* Compiler and Run-Time Migration Guide, SC26-3118

* Programming Guide, SC26-3113

* Compile-Time Messages and Codes, SC26-3229

* Reference Summary, SX26-3821

* Diagnosis Guide, SC26-3149

e [Installation and Customization under MVS, SC26-3119
* Licensed Program Specifications, GC26-3116

OS PL/I Version 2 Release 3

* Programming Guide, SC26-4307
e Programming: Language Reference, SC26-4308
* Programming: Messages and Codes, SC26-4309

VS FORTRAN Version 2 Release 6

* Programming Reference, SC26-4221
* Programming Guide, SC26-4222

CICS/ESA Version 4 Release 1

* Application Programming Reference, SC33-1170
* Application Programming Guide, SC33-1169

e Installation Guide, SC33-1163

* System Definition Guide, SC33-1164

* Resource Definition Guide, SC33-1166

* Messages and Codes, SC33-1177

CICS Transaction Server for OS/390 Release 2

* Application Programming Guide, SC33-1687

* Application Programming Reference, SC33-1688

* System Programming Reference, SC33-1689

e Distributed Transaction Programming Guide, SC33-1691

* Front End Programming Interface User’s Guide, SC33-1692

84 0S/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

DB2 Version 3 Release 1

* SQL Reference, SC26-4890

* Reference Summary, SX26-3801
* Command and Utility Reference, SC26-4891
* Application Programming and SQL Guide, SC26-4889

DB2 Version 4 Release 1

SQL Reference, SC26-3270

Reference Summary, SX26-3829

Command Reference, SC26-3267

Application Programming and SQL Guide, SC26-3266
Utility Guide and Reference, SC26-3395

DB2 Version 5 Release 1

Administration Guide, SC26-8957

Application Programming and SQL Guide, SC26-8958
Call Level Interface Guide and Reference, SC26-8959
Command Reference, SC26-8960

Data Sharing: Planning and Administration, SC26-8961
Installation Guide, GC26-8970

Messages and Codes, GC26-8979

SQL Reference, SC26-8966

Reference for Remote DRDA Requesters and Servers, SC26-8964
Utility Guide and Reference, SC26-8967

IMS/ESA Version

4 Release 1

Application Programming:
Application Programming:
Application Programming:
Application Programming:

Design Guide, SC26-3066

DL/I Calls, SC26-3062

Data Communication, SC26-3058
EXEC DL/I Commands, SC26-3063

IMS/ESA Version

5 Release 1

Application Programming:
Application Programming:
Application Programming:
Application Programming:

Design Guide, SC26-8016

Transaction Manager, SC26-8017

Database Manager, SC26-8015

EXEC DL/I Commands for CICS and IMS, SC26-8018

IMS/ESA Version

6 Release 1

Application Programming:
Application Programming:
Application Programming:
Application Programming:

Design Guide, SC26-8728

Transaction Manager, SC26-8729

Database Manager, SC26-8727

EXEC DL/I Commands for CICS and IMS, SC26-8726

Bibliography

85

QMF Version 3 Release 2

Introducing QMF, GC26-4713

Using QMF, 5C26-8078

Developing QMF Applications, SC26-4722
Reference, SC26-4716

Managing QMF for MVS, SC26-8218
Reference, SC26-4716

Messages and Codes, SC26-4834
Installing on MVS, SC26-4719

VSAM

MVS/ESA VSAM Catalog Administration: Access Method Services Reference,
SC26-4501

MVS/ESA VSAM Administration: Macro Instruction Reference, SC26-4517
MVS/ESA VSAM Administration Guide for MVS/DFP, SC26-4518

MVS/ESA Integrated Catalog Administration: Access Method Services Reference,
SC26-4500

DFSMS/MVS Access Method Services for VSAM, SC26-4905
MVS/DFP Access Method Services for VSAM Catalogs, SC26-4570

MVS/Extended Architecture VSAM Catalog Administration: Access Method Services
Reference (Data Facility Product, Version 2), GC26-4136

86 0S/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

INDEX

Special Characters

__librel() 24
#line directive 23, 54
_packed 56
_Packed structures 25, 55
_Packed unions 25, 55
#pragma comment directive 27
#pragma pack directive 56
#pragma runopts directives

effect upon STORAGE run-time

option 35

isainc 35

isasize 35

language 35

precedence of Language Environment

over C/370 35

report 35

stae/spie 35
#pragma wsizeof 23, 54
_VSAM_OPEN_AIX_PATH macro 29
_VSAM_OPEN_ESDS_PATH macro 29
_VSAM_OPEN_KSDS PATH macro 29

A

abnormal termination 36, 58
abort() function 39
AMODE 24 applications 33, 38
ANSI
LANGLVL(ANSI) 55
standards 55
array new 62
ASA files
closing 42, 64
closing and reopening 44, 66
writing to 42, 64
ASM15 routines 23
Assembler interlanguage calls 14
atexit list during abort() 39

C

C/370 Version 1 to Version 2 compiler
changes 27

CC command 38, 60

CEEBDATX 61

CEEBLIIA 15, 16

CEEBXITA 23

CEECDATX 61

CEEEV003 24

CEESTART 14, 15

char data type 27

CHECKOUT compile-time option 27

CICS
abend codes and messages 36
and versions of C/370 libraries 36
Application Programmer Interface 37
reason codes 36
standard stream support 36, 61
stderr 37

© Copyright IBM Corp. 1996, 1998

CICS (continued)
transient data queue names 37
using HEAP option 37
class library incompatibilities
Application Class
load module 52
object module 57
Collection Class
load module 52
object module 57
source code 56
IO Stream Class
load module 52
CLISTs, changes affecting 31, 57
COBOL
interlanguage calls 14
library routines 38
code points 25, 55
command-line parameters
0S/390 Language Environment error
handling 32
passing to a program 32
compatibility
exception handling
C/370 Version 1 or 2 to OS/390
V2R6 LE 36, 58
function argument 28
input/output
C/370 V1 or V21 to OS/390 V2R6
LE 41
LE/370 Release 1 or 2 to OS/390
V2R6 LE 63
load module
C/370 Version 1 or 2 to OS/390
V2R6 LE 7,13
general information 7
LE Release 1,2, 3,4 or 5 to
0S/390 V2R6 LE 51
other considerations
AD/Cycle C/370 to OS/390 V2R6
C 57,59
C/370 Version 1 or 2 compiler to
0S/390 V2R6 C compiler 31, 34
C/370 Version 1 or 2 to OS/390
V2R6 LE 31
C/MVS Version 3 Release 1 to
0S/390 V2R6 C 59
LE Release 1, 2, 3,4 or 5 to
0S/390 V2R6 LE 57
NOOPTIMIZE 34, 59, 74
OPTIMIZE 34,59, 74
PSW mask
C/370 Version 2 Release 1 to
0S/390 V2R6 LE 35
LE /370 Release 1 or 2 to OS/390
V2R6 LE 58
source program
AD/Cycle C/370 compiler with
0S/390 V2R6 LE 53
C++/MVS compiler with OS/390
V2R6 LE 53

compatibility (continued)
source program (continued)
C/370 V1 or V2 compiler to
05/390 V2R6 C compiler 21
C/370 V1 to OS/390 V2R6 LE 21
C/370 V2 to OS/390 V2R6 LE 21
C/370 Version 1 to OS/390 V2R6
Cc 27
C/MVS compiler with OS/390
V2R6 LE 53
general information 9
System Programming C Facility
C/370 V1 or V2 compiler to
05/390 V2R6 C compiler 21
C/370 Version 1 or 2 to OS/390
Language Environment 35
compile-time options
CHECKOUT 27
DECK 34
HALT 60
IDL 59,73
INLINE 34, 59
IPA 73
LANGLVL(ANSI) 55
LSEARCH 34, 59
SEARCH 34, 59
TEST 34, 60
CSP (Cross System Product)
CALL 38
DXFR 38
XFER 38
ctest() 13
ctime() 39, 60, 76

D

ddnames

SYSERR 31

SYSPRINT 31

SYSTERM 31
Debug Tool 13
decimal overflow exceptions 35, 58
DECK compile-time option 34
DSECT utility 56
dumps 13

E

EDC_COMPAT 8
EDCSTART 14
EDCXV 24
environment variables
_EDC_COMPAT 44, 66
EXECs
CC 38,60
changes affecting 31, 57

87

F

fetch() function 22

fetched main programs 23
fetchep() function 22

fflush() 43, 65

fgetpos() 43, 65

Fortran interlanguage calls 14
fseek() 43, 65

function return type 23, 54

H

HALT compile-time option 60
HEAP run-time option

default size 33

parameters 34

with CICS 37
hexadecimal numbers 27

IBMBLIIA 15, 16
IBMBXITA 23
IDL compile-time option 59, 73
initialization compatibility 15, 16
INLINE compile-time option 34, 59
input/output
ASA files
closing and reopening 44, 66
closing files 42, 64
writing to files 42, 64
closing and reopening files
ASA files 44, 66
closing files
ASA files 42, 64
compatibility 41, 63
error handling 45, 67
file I/O changes 41, 63
FILENAME_MAX 46, 68
fldata() 45, 67
ftell() encoding 44, 66
L_tmpnam 46, 68
opening files 41, 63
repositioning within files 43, 65
standard streams 46, 68
terminal I/O 46, 68
VSAM 1/O 46, 68
writing to files
ASA files 42, 64
other considerations 41, 63
interlanguage calls
Assembler 14
COBOL 14
Fortran 14
PL/I 14
ISAINC run-time option 32
isainc with #pragma runopts 35
ISASIZE run-time option 32
isasize with #pragma runopts 35

J

JCL
changes affecting 31, 57
CXX parameter 57

L

LANGLVL(ANSI) compile-time
option 55
LANGUAGE run-time option 32
language with #pragma runopts 35
library functions
__librel() 24
abort() 39
ctest() 13
ctime() 39, 60, 76
fetch() 22
fetchep() 22
fflush() 43, 65
fgetpos() 43, 65
fseek() 43, 65
librel 24
localtime() 39, 60, 76
mktime() 39, 60, 76
realloc() 23
release() 22
tmpnam() 46, 68
ungetc() 43, 65
librel function 24
line directive 23, 54
LINK macro 51
listings 39, 62
load modules
compatibility
C/370 Version 1 or 2 to OS/390
V2R6 LE 13
initialization 15
LE Release 1, 2, 3,4 or 5 to
0S/390 V2R6 LE 7, 51
converting old executable
programs 16
System Programming C Facility 14,
51
localtime() 39, 60, 76
LSEARCH compile-time option 34, 59

M

macros

_VSAM_OPEN_AIX_PATH macro 29

_VSAM_OPEN_ESDS_PATH
macro 29

_VSAM_OPEN_KSDS_PATH
macro 29

LINK 51

messages

contents 31

differences between C/370 and
AD/Cycle C/370 VIR2 31

differences between C/370 and
Language Environment 31

differences between C/370 and
0S/390 Language Environment 24

differences between C/370 and
0S/390 V2R6 C 25

differences between compilers 55, 58

direction of messages to stderr 39, 62

perror() 24

prefixes 31

strerror() 24
mktime() 39, 60, 76

88 0S/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

N

NOOPTIMIZE compile-time option 34,
59, 74

NOSPIE run-time option 52

NOSTAE run-time option 52

NULL 28

O

OPTIMIZE compile-time option 34, 59,
74

P

packed 56
Packed structures 25, 55
Packed unions 25, 55
PDS 41, 63
PDSE 41, 63
perror() 24
PL/I interlanguage calls 14
pointers 28
pragma

chars(signed) 27
pragma comment 27
pragma pack 56
program mask 22, 53
PSW mask 22, 54

R

realloc() function 23
release() function 22
relink requirements
ctest() 13
interlanguage calls with COBOL 14,
17
SP C exception handling 14, 51
REPORT run-time option 32
report with #pragma runopts 35
return codes differences
between C/370 and Language
Environment 31
between C/370 and OS/390 V2R6
C 25
between compilers 55, 58
RMODE 24 applications 33, 38
Run-time options
ending options list 32
HEAP 33
ISAINC 32
ISASIZE 32
LANGUAGE 32
NOSPIE 52
NOSTAE 52
passing to program 32
REPORT 32
slash (/) 32
SPIE 32,52
STACK 33
STAE 32,52
using with CICS 52

S

SCEERUN 15, 16
SEARCH compile-time option 34, 59
SIBMLINK 15, 16
SIGFPE 53
SIGFPE exceptions 21
SIGINT 36, 58
sign extension 27
SIGTERM 36, 58
SIGUSR1 36, 58
SIGUSR2 36, 58
sizeof() 23, 54
source program

compatibility 9

AD/Cycle C/370 compiler with
0S/390 V2R6 LE 53

C++/MVS compiler with OS/390

V2R6 LE 53
C/MVS compiler with OS/390
V2R6 LE 53
SPIE run-time option 32, 52
spie with #pragma runopts 35
STACK run-time option
default size 33
parameters 33
STAE run-time option 32, 52
stae with #pragma runopts 35
Standards, ANSI 55
stderr 31
strerror() 24
structure declarations used as function
parameters 27
SYSERR ddname 31
SYSPRINT ddname 31
System Programming C Facility
applications built with
EDCXSTRX 24
CEEEV003 24
EDCXV 24
relinking modules 14, 51
source changes 24
with #pragma runopts 35
SYSTERM ddname 31

T

TEST compile-time option 60
PATH suboption 34

U

ungetc()
effect upon behavior of fflush() 43,
65

effect upon behavior of fgetpos() 43,

65

effect upon behavior of fseek() 43, 65

unhandled conditions 36, 58
user exits
CEEBDATX 61
CEEBXITA 23
CEECDATX 61
IBMBXITA 23

W

wchar_t data type 27
WSIZEOF compiler option 23, 54

INDEX 89

90 0S/390 V2R6 C/C++ Compiler and Run-Time Migration Guide

Readers’ Comments — We'd Like to Hear from You

0S/390
C/C++
Compiler and Run-Time Migration Guide

Publication No. SC09-2359-03

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied
Overall satisfaction]]] O O

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied
Accurate] O O]]
Complete O O]]]
Easy to find]]] O]
Easy to understand O O O]]
Well organized]]] O]
Applicable to your tasks O O O] 0 U

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? [] Yes [] No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We'd Like to Hear from You

SC09-2359-03

Fold and Tape

Fold and Tape

SC09-2359-03

Please do not staple

IBM Canada Ltd. Laboratory

Information Development

2G/345/1150/TOR

1150 EGLINTON AVENUE EAST

NORTH YORK ONTARIO CANADA
M3C 1H7

Please do not staple

PLACE
POSTAGE
STAMP
HERE

Cut or Fold
Along Line

Cut or Fold
Along Line

Printed in the United States of America

5C09-2359-03

	Contents
	Notices
	Trademarks

	Part 1. Introduction
	Chapter 1. Locating your Migration Path
	How This Book Is Organized
	A History of Compilers and Libraries

	Chapter 2. Common Questions about Migration
	Will Existing LE Applications Run with OS/390 V2R6?
	Will Existing C/370 Applications Work with OS/390 V2R6?
	My Application Does Not Run — Now What?
	I Attempt to Recompile My Application and It Fails — Why?

	Part 2. From C/370 to OS/390 Version 2 Release 6 LanguageEnvironment
	Chapter 3. Application Executable Program Compatibility
	Input and Output Operations
	Differences Between the C/370 V1 and V2 Compilers
	Executable Programs That Invoke Debug Tool
	System Programming C Facility (SP C) Executable Programs
	Executable Programs with Interlanguage Calls
	Initialization Compatibility
	IBM C/370 Version 1 and Version 2 Initialization
	OS/390 Language Environment Initialization
	OS/390 LE Initialization of C/370 Executable Programs
	Special Considerations: CEEBLIIA and IBMBLIIA

	Converting Old Executable Programs to New Executable Programs
	Considerations for Interlanguage Call (ILC) Applications

	Chapter 4. Source Program Compatibility
	Input and Output Operations
	Differences Between the C/370 V1 and V2 Compilers
	SIGFPE Exceptions
	Program Mask Manipulations
	The release() Function
	The realloc() Function
	Fetched Main Programs
	User Exits
	#line Directive
	sizeof Operator
	System Programming C Applications Built with EDCXSTRX
	The __librel() Function
	Library Messages
	Prefix of perror() and strerror() Messages
	Compiler Messages and Return Codes
	_Packed Structures and Unions
	Alternate Code Points

	Chapter 5. C/370 Version 1 to Version 2 Compiler Changes
	Source Code Incompatibilities
	Characters
	The #pragma comment Directive
	Structure Declarations
	Function Argument Compatibility
	Pointer Considerations
	Macro Changes

	Chapter 6. Other Migration Considerations
	Changes That Affect User JCL, CLISTs, and EXECs
	Return Codes and Messages
	Changes in Data Set Names
	Differences in Standard Streams
	Passing Command-Line Parameters to a Program
	SYSMSGS ddname

	Run-Time Options
	Ending the Run-Time Options List
	ISASIZE, ISAINC, STAE/SPIE, LANGUAGE, and REPORToptions
	STACK Default Size
	STACK parameters
	HEAP Default Size
	HEAP Parameters

	Compile-Time Options
	DECK Compile-Time Option
	INLINE Compile-Time Option
	OPTIMIZE Compile-Time Option
	SEARCH and LSEARCH Compile-Time Option
	TEST Compile-Time Option

	Language Environment Run-Time Options
	Precedence of Language Environment over C/370 for #pragma runopts
	System Programming C Facility Applications with #pragma runopts
	Decimal Exceptions
	Migration and Coexistence Considerations

	SIGTERM, SIGINT, SIGUSR1, and SIGUSR2 Exceptions
	Running Different Versions of the Libraries under CICS
	CICS Abend Codes and Messages
	CICS Reason Codes
	Standard Stream Support under CICS
	stderr Output under CICS
	Transient Data Queue Names under CICS
	HEAP Option Used with the Interface to CICS
	COBOL Library Routines
	Passing Control to the Cross System Product
	Syntax for the CC Command
	atexit List during abort()
	Time Functions
	Direction of Compiler Messages to stderr
	Compiler Listings

	Chapter 7. Input and Output Operations Compatibility
	Opening Files
	Writing to Files
	Repositioning within Files
	Closing and Reopening ASA Files
	fldata() Return Values
	Error Handling
	Miscellaneous
	VSAM I/O Changes
	Terminal I/O Changes

	Part 3. From Previous Releases of Language Environment toOS/390 Version 2 Release 6 Language Environment
	Chapter 8. Application Executable Program Compatibility
	Input and Output Operations
	System Programming C Facility (SP C) Executable Programs
	Using the LINK Macro to Initiate a main()
	Inheritance of Run-Time Options with EXEC CICS LINK
	STAE/NOSPIE and SPIE/NOSTAE Mapping
	Class Library Execution Incompatibilities

	Chapter 9. Source Program Compatibility
	Input and Output Operations
	SIGFPE Exceptions
	Program Mask Manipulations
	#line Directive
	sizeof Operator
	_Packed Structures and Unions
	Alternate Code Points
	Conformance to the ANSI standard
	LANGLVL(ANSI)
	Compiler Messages and Return Codes
	Collection Class Library Source Code Incompatibilities
	DSECT Utility

	Chapter 10. Other Migration Considerations
	Class Library Object Module Incompatibilities
	Removal of Database Access Class Library Utility
	Changes That Affect User JCL, CLISTs, and EXECs
	CXX Parameter in JCL Procedures
	SYSMSGS and SYSXMSGS ddnames
	Compiler Messages and Return Codes
	Changes in Data Set Names

	Decimal Exceptions
	Migration and Coexistence

	SIGTERM, SIGINT, SIGUSR1, and SIGUSR2 Exceptions
	Compile-Time Options
	OPTIMIZE Compile-Time Option
	IDL Compile-Time option
	INLINE Compile-Time option
	SEARCH and LSEARCH Compile-Time Option
	TEST Compile-Time Option
	HALT Compile-Time Option

	Syntax for the CC Command
	Time Functions
	Abnormal Termination Exits
	Standard Stream Support
	Direction of Compiler Messages to stderr
	Array new
	Compiler Listings

	Chapter 11. Input and Output Operations Compatibility
	Opening Files
	Writing to Files
	Repositioning within Files
	Closing and Reopening ASA Files
	fldata() Return Values
	Error Handling
	Miscellaneous
	VSAM I/O Changes
	Terminal I/O Changes

	Part 4. From Previous Releases of OS/390 C/C++ to OS/390Version 2 Release 6 C/C++
	Chapter 12. Changes Between Releases of OS/390 C/C++
	IPA Object Module Binary Compatibility
	IPA Link Step Defaults
	Removal of IDL Compile-Time option
	Removal of Database Access Class Library Utility
	OPTIMIZE Compile-Time Option
	Name Conflicts with Run-Time Library Functions
	Time Functions

	Part 5. Appendixes
	Appendix A. Class Library Migration Considerations
	Appendix B. Year 2000 Support for C/C++ under MVS &OS/390
	Bibliography
	OS/390
	VS COBOL II Release 4
	COBOL FOR MVS & VM Release 2
	COBOL for OS/390 & VM Version 2 Release 1
	PL/I for MVS & VM Release 1 Modification 1
	OS PL/I Version 2 Release 3
	VS FORTRAN Version 2 Release 6
	CICS/ESA Version 4 Release 1
	CICS Transaction Server for OS/390 Release 2
	DB2 Version 3 Release 1
	DB2 Version 4 Release 1
	DB2 Version 5 Release 1
	IMS/ESA Version 4 Release 1
	IMS/ESA Version 5 Release 1
	IMS/ESA Version 6 Release 1
	QMF Version 3 Release 2
	VSAM

	INDEX
	Readers’ Comments — We'd Like to Hear from You

