
OS/390 ÉÂÔ

C/C++
SOM-Enabled Class Library User's Guide
and Reference

 SC09-2366-02

OS/390 ÉÂÔ

C/C++
SOM-Enabled Class Library User's Guide
and Reference

 SC09-2366-02

 Note !

Before using this information and the product it supports, be sure to read the general information under “Notices”
on page ix.

Third Edition, September 1997

This edition applies to Version 2 Release 4 of IBM OS/390 C/C++ (Program 5647-A01) and to all subsequent releases and
modifications until otherwise indicated in new editions or other updated documentation. Make sure that you are using the correct
edition for the level of the product. Also, make sure that you apply all necessary PTFs for the level of the product.

Changes or additions to the text and illustrations are indicated by a vertical line (|) to the left of the change or addition.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address given below.

IBM welcomes your comments. A form for readers’ comments is provided at the back of this publication. If the form has been
removed, address your comments to:

IBM Canada Ltd. Laboratory
Information Development
2G/345/1150/TOR
1150 Eglinton Avenue East
North York, Ontario, Canada. M3C 1H7

You can also send your comments by facsimile (attention: RCF Coordinator) or you can send your comments electronically to IBM.
See “Communicating Your Comments to IBM” for a description of the methods. This information immediately precedes the Readers’
Comment Form at the back of this publication.

If you send comments, include the title and order number of this book, and the page number or topic related to your comment.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1995, 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . ix
Programming Interface Information . ix
Standards . ix
Trademarks . x

About this Book . xiii
IBM OS/390 C/C++ and Related Publications . xiii
Hardcopy Books . xix
Softcopy Books . xix
Softcopy Examples . xx
For Late Breaking C/C++ News... xxi
OS/390 C/C++ on the World Wide Web . xxi

About IBM OS/390 C/C ++ . xxiii
The C/C++ Compilers . xxiii

The C Language . xxiii
The C++ Language . xxiii
Common Features of the OS/390 C and C++ Compilers xxiv
Features Specific to the OS/390 C Compiler xxv
Features Specific to the OS/390 C++ Compiler xxv

Utilities . xxvi
Class Libraries . xxvi

Class Library Source . xxvii
The Debug Tool . xxvii
OS/390 Language Environment . xxviii
OS/390 OpenEdition . xxix

OS/390 OpenEdition Services . xxix
OS/390 C/C++ Applications with OpenEdition C/C++ Functions xxxi

Input and Output . xxxi
I/O Interfaces . xxxi
File Types . xxxii
Additional I/O Features . xxxiii

The System Programming C Facility . xxxiv
Interaction with Other IBM Products . xxxiv
Additional Features of OS/390 C/C++ . xxxv

C++SOM and Cross-language SOM Class Libraries . 3

Chapter 1. C++ SOM and Cross-language SOM Class Libraries 5
SOM-enabled and Not SOM-enabled Versions . 5

Why Multiple Library Versions? . 6
C++ SOM and Cross-language SOM Collection Classes 6
Coding with Class Libraries under OS/390 OpenEdition Services 7
Compiling and Binding with the C++ SOM Libraries 7

Migration Notes . 9
Using the Cross-language SOM Collection Class Library 9

User's Guide: SOM Cross-language Collection Classes 11

 Copyright IBM Corp. 1995, 1997 iii

Chapter 2. Overview of the SOM Cross-language Collection Classes . . . 13
Classes Provided by the Library . 13
Benefits of the SOM Cross-language Collection Classes 17
Types of Classes in the SOM Cross-language Collection Classes 17
Flat Collections . 18

Ordering of Collection Elements . 19
Access by Key . 19
Equality for Keys and Elements . 20
Uniqueness of Entries . 22

Restricted Access . 24
Auxiliary Classes . 24
The Overall Implementation Structure . 24

Abstract Classes . 25

Chapter 3. Using the Collection Classes . 27
Creating an Operations Class Object . 27
Creating Collections . 28
Adding, Removing, and Replacing Elements . 28

Adding Elements . 28
Removing Elements . 29
Replacing Elements . 29

Cursors . 30
Using Cursors for Locating and Accessing Elements 31

Iterating over Collections . 31
Iteration Using Cursors . 32
Iteration Using Applicators . 32

Bounded and Unbounded Collections . 33

Chapter 4. Element Functions and Key-Type Functions 35
Introduction to Element Functions and Key-Type Functions 35

Chapter 5. Polymorphic Use of Collections 37
Introduction to Polymorphism . 37

Chapter 6. Exception Handling . 39
Introduction to Exception Handling . 39

Exceptions Caused by Violated Preconditions 39
Exceptions Caused by System Failures and Restrictions 40

Levels of Exception Checking . 40
List of Exceptions . 40

Reference: SOM Cross-language Collection Classes - Flat Collections 43

Chapter 7. Introduction to Flat Collections 45
Terms Used . 45

Chapter 8. Flat Collection Member Functions 47

Chapter 9. Bag . 73

Chapter 10. Deque . 75

Chapter 11. Equality Sequence . 77

iv OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

Chapter 12. Heap . 79

Chapter 13. Key Bag . 81

Chapter 14. Key Set . 83

Chapter 15. Key Sorted Bag . 85

Chapter 16. Key Sorted Set . 87

Chapter 17. Map . 89

Chapter 18. Priority Queue . 91

Chapter 19. Queue . 93

Chapter 20. Relation . 95

Chapter 21. Sequence . 97

Chapter 22. Set . 99

Chapter 23. Sorted Bag . 101

Chapter 24. Sorted Map . 103

Chapter 25. Sorted Relation . 105

Chapter 26. Sorted Set . 107

Chapter 27. Stack . 109

Reference : SOM Cross-language Collection Classes - Auxiliary Classes 111

Chapter 28. Global . 113

Chapter 29. Cursor . 115
Public Member Functions . 115

Chapter 30. Applicator . 119

Chapter 31. Comparator . 121

Chapter 32. Predicate . 123

Chapter 33. Operations . 125

Reference : SOM Cross-language Collection Classes - Abstract Classes 127

Chapter 34. Collection . 129

Chapter 35. Equality Collection . 131

 Contents v

Chapter 36. Key Collection . 133

Chapter 37. Ordered Collection . 135

Chapter 38. Sorted Collection . 137

Chapter 39. Sequential Collection . 139

Chapter 40. Equality Key Collection . 141

Chapter 41. Key Sorted Collection . 143

Chapter 42. Equality Sorted Collection . 145

Chapter 43. Equality Key Sorted Collection 147

Appendix A. Coding Samples: Source Code and Header Files 149
Coding Example for Deque . 149
Coding Example for Key Bag . 156
Coding Example for Set . 168
Coding Example for Sorted Set . 175
Coding Example for Stack . 186

Index . 193

vi OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Figures

1. Libraries in OS/390 Language Environment xxviii
2. Combination of Flat Collection Properties 19
3. Behavior of add for Unique and Multiple Collections 23
4. Abstract Hierarchy . 26
5. Abstract Hierarchy of Flat Collections with Restricted Access 26

 Copyright IBM Corp. 1995, 1997 vii

viii OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Notices

Any reference to an IBM licensed program in this publication is not intended to
state or imply that only IBM’s licensed program may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM’s
intellectual property rights may be used instead of the IBM product, program, or
service. Evaluation and verification of operation in conjunction with other products,
except those expressly designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY, 10594, USA.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independent created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact IBM Canada Ltd., Department 071,
1150 Eglinton Avenue East, North York, Ontario M3C 1H7, Canada. Such
information may be available, subject to appropriate terms and conditions, including
in some cases, payment of a fee.

This publication contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

Any interfaces, including service component interfaces, that are not documented in
the OS/390 C/C++ publications are not formal interfaces. You should not build any
dependencies on these interfaces, as IBM can change or remove interfaces at any
time, without notice.

Programming Interface Information
This book documents General-Use Programming Interface and associated guidance
information provided by the IBM OS/390 C/C++ and OS/390 Language Environment
products.

General-Use Programming Interfaces allow the customer to write programs that
obtain the services of the IBM OS/390 C/C++ compiler and IBM OS/390 Language
Environment.

 Standards
Extracts are reprinted from IEEE Std 1003.1—1990, IEEE Standard Information
Technology—Portable Operating System Interface (POSIX)—Part 1: System
Application Program Interface (API) [C language], copyright 1990 by the Institute of
Electrical and Electronic Engineers, Inc.

Extracts are reprinted from IEEE P1003.1a Draft 6 July 1991, Draft Revision to
Information Technology—Portable Operating System Interface (POSIX), Part 1:

 Copyright IBM Corp. 1995, 1997 ix

System Application Program Interface (API) [C Language], copyright 1992 by the
Institute of Electrical and Electronic Engineers, Inc.

Extracts are reprinted from IEEE Std 1003.2—1992, IEEE Standard Information
Technology—Portable Operating System Interface (POSIX)—Part 2: Shells and
Utilities, copyright 1990 by the Institute of Electrical and Electronic Engineers, Inc.

Extracts are reprinted from IEEE Std P1003.4a/D6—1992, IEEE Draft Standard
Information Technology—Portable Operating System Interface (POSIX)—Part 1:
System Application Program Interface (API)—Amendment 2: Threads Extension [C
language], copyright 1990 by the Institute of Electrical and Electronic Engineers,
Inc.

Extracts from ISO/IEC 9899:1990 have been reproduced with the permission of the
International Organization for Standardization (ISO) and the International
Electrotechnical Commission (IEC). The complete standard can be obtained from
any ISO or IEC member or from the ISO or IEC Central Offices, Case Postal, 1211
Geneva 20, Switzerland. Copyright remains with ISO and IEC.

Portions of this book are extracted from X/Open Specification, Programming
Languages, Issue 4 Release 2, copyright 1988, 1989, February 1992, by the
X/Open Company Limited, with the permission of X/Open Company Limited. No
further reproduction of this material is permitted without the written notice from the
X/Open Company Ltd, UK.

 Trademarks
The following terms are trademarks of International Business Machines Corporation
in the United States or other countries or both:

Microsoft and Windows are trademarks or registered trademarks of Microsoft
Corporation.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

AD/Cycle AIX AIX/6000
Application System/400 AS/400 BookManager
C Set ++ CICS CICS/ESA
COBOL/370 C/MVS C++/MVS
C/370 Common User Access CUA
DATABASE 2 DB2 DFSMS
DFSMS/MVS ESCON GDDM
IBM Hiperspace IBMLink
IMS IMS/ESA Language Environment
MVS MVS/DFP MVS/ESA
MVS/SP MVS/XA Open Class
OpenEdition OS/2 OS/390
OS/400 PROFS PS/2
QMF RACF SAA
SOM SOMobjects SQL/DS
System/370 System Object Model Systems Application

Architecture
S/370 S/390 VM/ESA
VTAM VisualAge 3090

x OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

Other company, product, and service names, which may be denoted by a double
asterisk(**), may be trademarks or service marks of others.

 Notices xi

xii OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

About this Book

This book provides guidance and reference information for the cross-language
SOM collection classes along with instructions for building applications using these
classes and the C++ SOM classes.

Required skills:

A cross language programmer who uses the SOM Cross-language Collection
Classes should be familiar with programs that are written using the Interface
Definition Language (IDL).

A Note on Samples:

The programming samples presented in this documentation are written in C
language. A general cross language user must map these examples into the
desired language.

IBM OS/390 C/C++ and Related Publications
This section summarizes the content of the IBM OS/390 C/C++ publications and
shows where to find related information in other publications.

 Copyright IBM Corp. 1995, 1997 xiii

Table 1 (Page 1 of 3). OS/390 C/C++ Publications

Book Title and Number Key Sections/Chapters in the Book

 OS/390 C/C++ Programming Guide (1),
SC09-2362

¹ C/C++ input and output
¹ Debugging OS/390 C programs that use input/output
¹ Using linkage specifications in C++
¹ Combining C and assembler
¹ Creating and using DLLs
¹ Using threads in an OS/390 OpenEdition application

 ¹ Reentrancy
¹ Using the decimal data type in C
¹ Handling exceptions, error conditions and signals

 ¹ Optimizing code
¹ Optimizing your C/C++ code with Interprocedural Analysis
¹ Network communications under OS/390 OpenEdition
¹ Interprocess communications using OpenEdition Services
¹ Structuring a program that uses C++ templates
¹ Using environment variables
¹ Using System Programming C facilities
¹ Library functions for the System Programming C facilities
¹ Using runtime user exits
¹ Using the OS/390 C multitasking facility
¹ Using other IBM products with OS/390 C/C++ (CICS, CSP,

DWS, DB2, GDDM, IMS, ISPF, QMF)
¹ Direct-to-SOM support under OS/390 C/C++
¹ Internationalization: locales and character sets, code set

conversion utilities, mapping variant characters
¹ POSIX character set
¹ Code point mappings
¹ Locales supplied with OS/390 C/C++
¹ Charmap files supplied with OS/390 C/C++
¹ Examples of charmap and locale definition source files
¹ Converting code from code character set IBM-1047
¹ Using built-in functions
¹ Programming considerations for OS/390 OpenEdition C/C++

 OS/390 C/C++ User’s Guide (1),
SC09-2361

¹ OS/390 C/C++ examples
 ¹ Compiler options
¹ Binder options and control statements
¹ Specifying OS/390 Language Environment runtime options
¹ Compiling, IPA Linking, binding, and running OS/390 C/C++

programs
¹ Using precompiled headers
¹ Utilities (Object Library, DLL Rename, CXXFILT, DSECT

Conversion, Code Set and Locale, ar and make, BPXBATCH)
 ¹ Diagnosing problems
¹ Cataloged procedures and REXX EXECs supplied by IBM
¹ Error messages and return codes

 OS/390 C/C++ Language Reference,
SC09-2360

¹ Introduction to the C and C++ Languages
¹ Lexical elements of OS/390 C and OS/390 C++
¹ Declarations, expressions and operators
¹ Implicit type conversions
¹ Functions and statements

 ¹ Preprocessor directives
¹ C++ classes, class members, and friends
¹ C++ overloading, special member functions, and inheritance
¹ C++ templates and exception handling
¹ OS/390 C and OS/390 C++ compatibility

xiv OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

Table 1 (Page 2 of 3). OS/390 C/C++ Publications

Book Title and Number Key Sections/Chapters in the Book

 OS/390 C/C++ Run-Time Library Reference,
SC28-1663

 ¹ Header files
 ¹ Library functions

 OS/390 C Curses,
SC28-1907

¹ Overview of Curses
– Key data types
– General rules for characters, renditions, and window

properties
– General rules of operations and operating modes
– Use of macros
– Restrictions on block-mode terminals
– Curses functional interface
– Contents of headers
– The terminfo database

 OS/390 C/C++ Compiler and Run-Time
Migration Guide,
SC09-2359

¹ Common migration questions
¹ Application executable program compatibility
¹ Source program compatibility
¹ Input and output operations compatibility
¹ Class library migration considerations
¹ Changes between releases of OS/390
¹ C/370 V1 to V2 compiler changes
¹ Other migration considerations

OS/390 C/C++ Reference Summary,
SX09-1313

¹ Summary tables of:
– Character set, trigraphs, digraphs, and keywords
– Escape sequences, storage classes
– Predefined and derived types, type qualifiers
– Operator precedence, redirection symbols
– fprintf format, type characters, and flag characters
– fscanf format and type characters

 – __amrc structure
– Hardware exceptions and signals
– Compiler return codes

 – Compiler options
 – #pragma directives
 – Library functions
 – Utilities

 OS/390 C/C++ IBM Open Class Library
User’s Guide,
SC09-2363

¹ Using the Complex Mathematics Class Library
¹ Using the I/O Stream Class Library:

Introduction, getting started, advanced topics, and manipulators
¹ Using the Collection Class Library:

Overview, instantiating and using, Element and Key functions,
tailoring Collection implementation, polymorphic use of
collections, support for notifications, exception handling, tutorials,
problem solving, compatibility with previous releases, thread
safety

¹ Using the Application Support Class Library:
Introduction, String classes, Exception and Trace classes, Date
and Time classes, controlling threads and protecting data, the
IBM Open Class notification framework, Binary Coded Decimal
classes

 OS/390 C/C++ IBM Open Class Library
Reference,
SC09-2364

Reference information for:

¹ Complex Mathematics Class Library
¹ I/O Stream Class Library
¹ Collection Class Library
¹ Application Support Class Library

 About this Book xv

Table 1 (Page 3 of 3). OS/390 C/C++ Publications

Book Title and Number Key Sections/Chapters in the Book

 OS/390 C/C++ SOM-Enabled Class Library
User’s Guide and Reference,
SC09-2366

Guidance and reference information for:

¹ C++ SOM (RRBC-enabled) versions of Collection and
Application Support Class Libraries

¹ Cross-language SOM version of the Collection Class Library

 Debug Tool User’s Guide and Reference,
SC09-2137

¹ Preparing to debug programs
 ¹ Debugging programs
¹ Using Debug Tool in different environments

 ¹ Language-specific information
¹ Debug Tool reference

APAR and BOOKS files
(Shipped with Program materials)

¹ Partitioned data set CBC.SCBCDOC on the product tape
contains the members APAR and BOOKS which provide
additional information for using the IBM OS/390 C/C++ licensed
program, including

– Isolating reportable problems
 – Keywords

– Preparing Authorized Program Analysis Report (APAR)
– Problem identification worksheet
– Maintenance on OS/390
– Late changes to OS/390 C/C++ publications

Note:

1. For complete and detailed information on OS/390 Language Environment runtime options, linking, and running
with OS/390 Language Environment, refer to the OS/390 Language Environment Programming Guide, SC28-1939.
For complete and detailed information on using interlanguage calls, refer to OS/390 Language Environment
Writing Interlanguage Applications, SC28-1943.

xvi OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

The following table lists the OS/390 C/C++ and related publications that you are
most likely to need. Publications are grouped according to the tasks they describe.

Table 2 (Page 1 of 3). Publications by Task

Tasks Books

Planning, preparing, and migrating to OS/390 C/C++ OS/390 C/C++ Compiler and Run-Time Migration Guide,
SC09-2359

 OS/390 Language Environment Concepts Guide,
GC28-1945

 OS/390 Language Environment Customization,
SC28-1941

 OS/390 OpenEdition Introduction, GC28-1889

 OS/390 OpenEdition XPG4 Conformance Document,
GC28-1897

 OS/390 Release 4 Planning for Installation, GC28-1726
OS/390 Task Atlas, available on the OS/390 home page
in the World Wide Web

Installing OS/390 Program Directory

 OS/390 Release 4 Planning for Installation, GC28-1726

 OS/390 Language Environment Customization,
SC28-1941

Coding programs OS/390 C/C++ Run-Time Library Reference, SC28-1663

 OS/390 C/C++ Language Reference, SC09-2360

OS/390 C/C++ Reference Summary, SX09-1313

 OS/390 C/C++ Programming Guide, SC09-2362

 OS/390 Language Environment Concepts Guide,
GC28-1945

 OS/390 Language Environment Programming Guide,
SC28-1939

 OS/390 Language Environment Programming
Reference, SC28-1940

 OS/390 C/C++ IBM Open Class Library User’s Guide,
SC09-2363

 OS/390 C/C++ IBM Open Class Library Reference,
SC09-2364

 OS/390 C/C++ SOM-Enabled Class Library User’s
Guide and Reference, SC09-2366

 About this Book xvii

Table 2 (Page 2 of 3). Publications by Task

Tasks Books

Coding and binding programs with interlanguage calls OS/390 C/C++ Programming Guide, SC09-2362

 OS/390 C/C++ Language Reference, SC09-2360

 OS/390 Language Environment Programming Guide,
SC28-1939

 OS/390 Language Environment Writing Interlanguage
Applications, SC28-1943

 DFSMS/MVS Program Management, SC28-1943

Compiling, binding, and running programs OS/390 C/C++ User’s Guide, SC09-2361

 OS/390 Language Environment Programming Guide,
SC28-1939

 OS/390 Language Environment Debugging Guide and
Run-Time Messages, SC28-1942
 DFSMS/MVS Program Management, SC26-4916
OS/390 Messages Database, available from the OS/390
home page on the World Wide Web

Compiling and binding applications in the OS/390
OpenEdition environment

 OS/390 C/C++ User’s Guide, SC09-2361

 OS/390 OpenEdition User's Guide, SC28-1891

 OS/390 OpenEdition Command Reference, SC28-1892

 DFSMS/MVS Program Management, SC26-4916

Compiling and binding SOM applications with OS/390
SOMobjects

 OS/390 SOMobjects Programmer's Guide, GC28-1859

 OS/390 C/C++ Programming Guide, SC09-2362

 OS/390 C/C++ User’s Guide, SC09-2361

Debugging programs README file

 Debug Tool User’s Guide and Reference, SC09-2137

 OS/390 C/C++ User’s Guide, SC09-2361

 OS/390 C/C++ Programming Guide, SC09-2362

 OS/390 Language Environment Programming Guide,
SC28-1939

 OS/390 Language Environment Debugging Guide and
Run-Time Messages, SC28-1942

 OS/390 OpenEdition Messages and Codes, SC28-1908

 OS/390 OpenEdition User's Guide, SC28-1891

 OS/390 OpenEdition Command Reference, SC28-1892

 OS/390 OpenEdition Programming Tools, SC28-1904

xviii OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

Table 2 (Page 3 of 3). Publications by Task

Tasks Books

Using shells and utilities in the OS/390 OpenEdition
environment

 OS/390 C/C++ User’s Guide, SC09-2361

 OS/390 OpenEdition Command Reference, SC28-1892

 OS/390 OpenEdition Messages and Codes, SC28-1908

Using sockets library functions in the OS/390
OpenEdition environment

 OS/390 C/C++ Run-Time Library Reference, SC28-1663

Performing diagnosis and submitting Authorized Program
Analysis Report (APAR)

 OS/390 C/C++ User’s Guide, SC09-2361

CBC.SCBCDOC(APAR) on OS/390 C/C++ product tape

Quick reference OS/390 C/C++ Reference Summary, SX09-1313

Multimedia Tutorial For a new way of learning C++ programming, you can
order the CD-ROM Experience C++ A Multimedia
Tutorial, SK2T-1158. This tutorial runs in DOS.

 Hardcopy Books
You can purchase OS/390 C/C++ books one at a time, or in a set. The following
OS/390 C/C++ books are available in hardcopy:

¹ OS/390 C/C++ Run-Time Library Reference, SC28-1663

¹ OS/390 C/C++ User’s Guide, SC09-2361

¹ OS/390 C/C++ Programming Guide, SC09-2362

¹ OS/390 C/C++ Reference Summary, SX09-1313

¹ OS/390 C/C++ IBM Open Class Library User’s Guide, SC09-2363

¹ OS/390 C Curses, SC28-1907

¹ OS/390 C/C++ Compiler and Run-Time Migration Guide, SC09-2359

¹ Debug Tool User’s Guide and Reference, SC09-2137

These books can be purchased singly or as part of a set. The OS/390 C/C++
Compiler and Run-Time Migration Guide, SC09-2359 is provided at no charge.
The remaining books are included in feature code 8009.

 Softcopy Books
All of the OS/390 C/C++ publications (except for the OS/390 C/C++ Reference
Summary) are available in softcopy book format. The books are available on a
tape accompanying the OS/390 product, and also on a CD-ROM called the IBM
Online Library Omnibus Edition: OS/390 Collection, SK2T-6700.

To read the softcopy books, the BookManager Read (Program 5684-062,
5695-046) licensed program must be available on your operating system.
BookManager Read provides access to online information as an alternative to hard
copy documents. You can read, search, make notes, and select sections of text to
print.

 About this Book xix

Also available are BookManager Read/DOS (Program 73F6-022) for the DOS
operating system, and BookManager Read/2 (Program 73F6-023) for the OS/2
operating system. With these products, you can download online books to your
workstation and read them.

With BookManager Read installed on your system, you can enter the command
BOOKMGR to start BookManager and display a list of books available to you. If
you know the name of the book that you want to view, you can use the OPEN
command to open the book directly.

Note: If your workstation does not have graphics capability, BookManager Read
cannot correctly display some characters, such as arrows and brackets.

You can also browse the books on the World Wide Web, through "The Library" link
on the OS/390 home page. The URL for this page is:

http://www.s390.ibm.com/os390/index.html

 Softcopy Examples
Most of the larger examples in the following books are available in
machine-readable form:

¹ OS/390 C/C++ Language Reference, SC09-2360
¹ OS/390 C/C++ User’s Guide, SC09-2361
¹ OS/390 C/C++ Programming Guide, SC09-2362
¹ OS/390 C/C++ IBM Open Class Library User’s Guide, SC09-2363
¹ OS/390 C/C++ IBM Open Class Library Reference, SC09-2364
¹ OS/390 C/C++ SOM-Enabled Class Library User’s Guide and Reference,

SC09-2366

Softcopy examples are indicated in the book by a label. In the following books, the
label has the form CBCxyyy or CLBxyyy, where x refers to a publication:

¹ R and X refer to the OS/390 C/C++ Language Reference
¹ G refers to the OS/390 C/C++ Programming Guide
¹ U refers to the OS/390 C/C++ User’s Guide
¹ A refers to the OS/390 C/C++ IBM Open Class Library User’s Guide

An exception applies to the Collection Class Library example names, which do not
follow a naming convention. These examples are in the OS/390 C/C++ IBM Open
Class Library Reference and in the OS/390 C/C++ SOM-Enabled Class Library
User’s Guide and Reference.

For all books other than the OS/390 C/C++ SOM-Enabled Class Library User’s
Guide and Reference, the label refers to a member name in the data set
CBC.SCBCSAM or CBC.SCLBSAM. For the OS/390 C/C++ SOM-Enabled Class
Library User’s Guide and Reference, the label refers to a member name in the data
set CBC.SCLBXSM.

xx OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

For Late Breaking C/C ++ News...
IBM also publishes the C/370 Compiler Newsletter. This free newsletter keeps
subscribers up to date on the latest product releases, provides coding hints and
tips, questions and answers, and news about C/370 products and IBM OS/390
C/C++.

To take advantage of this free publication, send your name, full mailing address,
and phone number (in case we have to talk to you), in one of these ways:

¹ Send a message electronically to the following network ID :

 – Internet: inetc370@vnet.ibm.com
 – IBMMAIL: ibmmail(caibmrxz)

¹ Mail your request to:

EDITOR, C/370 Compiler Newsletter
IBM Canada Ltd. Laboratory
9/604/895/TOR
895 Don Mills Road
NORTH YORK ONTARIO CANADA M3C 1W3

OS/390 C/C++ on the World Wide Web
Additional information on OS/390 C/C++ is available on the World Wide Web. The
URL for the OS/390 C/C++ home page is:

http://www.software.ibm.com/ad/c370/

 About this Book xxi

xxii OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

About IBM OS/390 C/C ++

The C/C++ feature of the IBM OS/390 licensed program provides support for C and
C++ application development on the OS/390 platform. The C/C++ feature is based
on the C/C++ for MVS/ESA product.

IBM OS/390 C/C++ includes:

¹ A C compiler (referred to as the OS/390 C compiler)
¹ A C++ compiler (referred to as the OS/390 C++ compiler)
¹ A set of C++ class libraries
¹ Application Support Class and Collection Class Library source
¹ A mainframe interactive Debug Tool (optional)
¹ A set of C/C++ application development utilities

IBM offers the C language on other platforms, such as the AIX, OS/2, OS/400,
Sun** Solaris**, VM/ESA, VSE, and Windows** operating systems. The C++
language is also offered on the AIX, OS/2, OS/400, Sun Solaris, and Windows
operating systems.

The C/C++ Compilers
The following sections describe the C and C++ languages and the OS/390 C/C++
compilers.

The C Language
The C language is a general purpose, versatile, function-oriented programming
language that allows a programmer to create applications quickly and easily. C
provides high-level control statements and data types as do other structured
programming languages, and it also provides many of the benefits of a low-level
language.

The C++ Language
The C++ language introduces object-oriented concepts into the C language, on
which it is based. For a detailed description of the differences between OS/390 C++
and OS/390 C, refer to the OS/390 C/C++ Language Reference.

The C++ language introduces classes, which are user-defined data types that may
contain both data and function definitions. This ability to define both functions and
data is data abstraction. You can use classes from established class libraries,
develop your own classes, or derive new classes from existing classes by adding
data descriptions and functions. New classes can inherit properties from one or
more classes. Not only do classes describe the data types and functions available,
but they can also hide (encapsulate) the implementation details from user
programs. An object is an instance of a class.

The C++ language also provides templates and other features including access
control to data and functions, and better type checking and exception handling than
the C language. It also supports polymorphism and operator overloading.

 Copyright IBM Corp. 1995, 1997 xxiii

Common Features of the OS/390 C and C++ Compilers
The OS/390 C/C++ compilers provide you with features such as the following:

¹ Optimization support through the following facilities:

– Algorithms to take advantage of S/390 architecture to get better
optimization for speed and use of computer resources

– The OPTIMIZE compile-time option to instruct the compiler to optimize the
machine instructions it generates, to produce faster running object code

– Interprocedural Analysis (IPA), to perform optimizations across compilation
units

– The precompiled header facility, to save information from one compilation
unit for use in another

¹ DLLs (Dynamic Link Libraries) to reduce application size and to provide
load-on-reference support.

IBM OS/390 C/C++ provides support for generating DLLs in a way similar to the
way OS/2 DLLs are generated. DLLs allow a function reference or a variable
reference in one executable to use a definition located in another executable at
run time. You can use both load-on-reference and load-on-demand DLLs. A
load-on-reference DLL is made available when a DLL function is called or a
DLL variable is referenced. Load-on-demand DLLs are explicitly controlled by
the application code at the source level.

You can use DLLs to split applications into smaller modules and improve
system memory usage. DLLs also offer more flexibility for building, packaging,
and redistributing applications.

¹ Full program reentrancy.

With reentrancy, a program can be run simultaneously by many users. A
reentrant program that is stored in the LPA (Link Pack Area) or ELPA
(Extended Link Pack Area) and is run by multiple users simultaneously uses
less storage, reduces processor I/O when the program starts up, and improves
program performance by reducing the transfer of data to auxiliary storage.
OS/390 C programmers can design programs that are naturally reentrant. For
those programs that are not naturally reentrant, C programmers can use
constructed reentrancy by compiling the programs with the RENT option and
using the program management binder supplied with OS/390, or the OS/390
Language Environment Prelinker (prelinker) and the Linkage Editor, to make
them reentrant. The OS/390 C++ compiler always ensures that C++ programs
are reentrant.

¹ Locale-based internationalization support derived from the IEEE POSIX**
1003.2-1992 standard and from the X/Open** CAE Specification, System
Interface Definitions, Issue 4 and Issue 4 Version 2. This allows programmers
to use locales to specify language/country characteristics for their applications.

¹ The ability to call and be called by other languages such as assembler,
COBOL, PL/1, and Fortran, to enable programmers to integrate OS/390 C/C++
code with existing applications.

¹ Exploitation of OS/390 and OS/390 OpenEdition technology.

OS/390 OpenEdition is an IBM implementation of the open operating system
environment, as defined in the XPG4 and POSIX standards.

xxiv OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

¹ When used with OpenEdition Services and OS/390 Language Environment,
support for the following standards at the system level:

– A subset of the extended multibyte and wide character functions as defined
by the Programming Language C Amendment 1, which is ISO/IEC
9899:1990/Amendment 1:1994(E)

– ISO/IEC 9945-1:1990(E)/IEEE POSIX 1003.1-1990

– A subset of IEEE POSIX 1003.1a, Draft 6, July 1991

– IEEE Portable Operating System Interface (POSIX) Part 2, P1003.2

– A subset of IEEE POSIX 1003.4a, Draft 6, February 1992 (POSIX.4a has
been renumbered by the IEEE POSIX committee to POSIX.1c)

– X/Open CAE Specification, System Interfaces and Headers, Issue 4
Version 2

– X/Open CAE Specification, Network Services, Issue 4

¹ Year 2000 support.

Features Specific to the OS/390 C Compiler
In addition to the features common to OS/390 C/C++, the OS/390 C compiler
provides you with the following:

¹ The ability to write portable code conforming to the following standards:

– All elements of the ISO standard ISO/IEC 9899:1990 (E)

– ANSI/ISO 9899:1990[1992] (formerly ANSI X3.159-1989 C)

– X/Open Specification Programming Language Issue 3, Common Usage C

 – FIPS-160

¹ System programming capabilities, which allow you to use OS/390 C in place of
assembler

¹ Additional optimization capabilities through the INLINE compile-time option

¹ Extensions of the standard C/C++ language definitions to provide programmers
with support for the OS/390 environment, such as fixed-point (packed) decimal
data support

Features Specific to the OS/390 C ++ Compiler
In addition to the features common to OS/390 C/C++, the OS/390 C++ compiler
provides you with the following:

¹ An implementation based on the definition of the language contained in the
Draft Proposal International Standard for Information Systems– Programming
Language C++ (X3J16/92-00091). The OS/390 C++ compiler also conforms to
a subset of the C++ ANSI/ISO (Draft) Standard (X3J16/93-0062).

¹ System Object Model (SOM) support, through the SOM Interface Definition
Language (IDL) compiler available with OS/390 SOMobjects. The IDL compiler
and associated emitters can be used to create language-specific bindings that
define the interface to a SOM object. This enables OS/390 C/C++ programs to
share SOM objects with other languages. In addition, SOM enables
release-to-release binary compatibility.

 About IBM OS/390 C/C++ xxv

With Direct-to-SOM (DTS) support in the OS/390 C++ compiler, you can
generate SOM objects directly from C++ code. You do not need to create and
process IDL first. You can write virtually the same code you do when creating
C++ objects.

Note: The OS/390 C/C++ compiler no longer supports IDL generation through
the IDL compile-time option. This option instructed the compiler to
generate IDL, which is required for mixed-language or distributed object
applications. If you need IDL for your applications, you should now code
it yourself instead of generating it through the IDL compile option.

¹ C++ template support and exception handling consistent with VisualAge C++
product implementations.

 Utilities
The following utilities are provided with the OS/390 C/C++ compilers:

¹ The Object Library Utility to update PDS libraries of object modules and IPA
object modules

¹ The DLL Rename Utility to make selected DLLs a unique component of the
applications with which they are packaged

¹ The CXXFILT Utility to map OS/390 C++ mangled names to the original source

¹ The localedef Utility to read the locale definition file and produce a locale object
that the locale-specific library functions can use

¹ The DSECT Conversion Utility to convert descriptive assembler DSECTs into
OS/390 C/C++ data structures

¹ The C/C++ Model Tool to provide online help for C/C++ #pragma directives and
runtime library functions (other than the C Curses functions) at the level
supplied in OS/390 Release 2

 Class Libraries
IBM OS/390 C/C++ provides a base set of class libraries, called IBM Open Class,
which is consistent with that available in other members of the VisualAge C++
product family. These class libraries are:

¹ The I/O Stream Class Library

The I/O Stream Class Library lets you view input and output (I/O) independent
of physical I/O devices or of data types used. You can code sophisticated I/O
statements easily and clearly, and define input and output for your own data
types. By using the I/O Stream Class Library, you can improve the
maintainability of programs that use input and output.

¹ The Complex Mathematics Class Library

The Complex Mathematics Class Library lets you manipulate and perform
standard arithmetic on complex numbers. Complex numbers are used in the
scientific and technical fields.

¹ The Application Support Class Library

The Application Support Class Library provides the basic abstractions needed
during the creation of most C++ applications, including String, Date, and Time.

xxvi OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

The Application Support Class library is available in a C++ SOM as well as the
regular C++ native version.

¹ The Collection Class Library

The Collection Class Library uses data abstraction to implement a wide variety
of classical data structures such as stack, tree, list, hash table, and so on.
Collections are used by most programs. Programs can be developed without
having to define every collection. Programmers can start programming using a
high level of abstraction and later replace an abstract data type with the
appropriate concrete implementation. Each abstract data type has a common
interface for all of its implementations. The Collection Class Library provides
programmers with a consistent set of building blocks from which application
objects can be derived. The library is designed to exploit such C++ language
features as exception handling and template support.

The Collection Class Library is available in a C++ SOM and a cross-language
SOM version, as well as the regular C++ native version.

All of the libraries described above, except the cross-language SOM version of the
Collection Class Library, are thread-safe.

All of the libraries described above are available in both static and DLL formats.
The Application Support Class and Collection Class libraries are packaged together
in a single DLL. For compatibility, separate side-decks are available for the
Application Support Class and Collection Class libraries, in addition to the side-deck
available for the combined library.

Note: If your product uses the IBM-supplied DLLs, you must use the DLL Rename
utility to rename them, and you must ship those renamed DLLs with your
product. Refer to the OS/390 C/C++ User’s Guide for information about the
DLL Rename utility.

Class Library Source
The Class Library Source consists of the following:

¹ Application Support Class Library source code

¹ Collection Class Library source code (C++ native and C++ SOM only)

¹ Instructions for building the Application Support Class and Collection Class
Libraries in C++ native (static and DLL) versions

¹ Instructions for building the Application Support Class and Collection Class
Libraries in C++ SOM (static and DLL) versions

¹ Class Library Language Environment message file source

¹ Instructions for building the Class Library Language Environment message files

The Debug Tool
IBM OS/390 C/C++ supports program development using a mainframe interactive
Debug Tool. This optionally available tool allows you to debug applications in their
native host environment, such as CICS/ESA, IMS/ESA, DB2, and so on. The
Debug Tool provides the following support and function:

 ¹ Step mode
 ¹ Breakpoints

 About IBM OS/390 C/C++ xxvii

 ¹ Monitor
 ¹ Frequency analysis
 ¹ Dynamic patching

The debug session can be recorded in a log file, so you can replay the session.
You can use the Debug Tool to help capture test cases for future program
validation or to further isolate a problem within an application.

You can specify either data sets or UNIX-like hierarchical file system (HFS) files as
source files.

OS/390 Language Environment
IBM OS/390 C/C++ exploits the C/C++ runtime environment and library of runtime
services available with OS/390 Language Environment (formerly Language
Environment for MVS & VM, Language Environment/370 and LE/370).

OS/390 Language Environment consists of four language-specific runtime libraries,
and Base Routines and Common Services, as shown in Figure 1. OS/390
Language Environment establishes a common runtime environment and common
runtime services for language products, user programs, and other products.

C/C++
Language
Specific
Library

COBOL
Language
Specific
Library

PL/I
Language
Specific
Library

FORTRAN
Language
Specific
Library

Language Environment Base Routines and Common Services

Figure 1. Libraries in OS/390 Language Environment

The common execution environment is made up of data items and services
included in library routines available to an application running in the environment.
The services that OS/390 Language Environment provides include:

¹ Services that satisfy basic requirements common to most applications. These
include support for the initialization and termination of applications, allocation of
storage, interlanguage communication (ILC), and condition handling.

¹ Extended services often needed by applications. These functions are contained
within a library of callable routines, and include interfaces to operating system
functions and a variety of other commonly used functions.

¹ Runtime options that help in the execution, performance, and diagnosis of your
application.

xxviii OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

¹ Access to operating system services; OS/390 OpenEdition services are
available to an application programmer or program through the OS/390 C/C++
language bindings.

¹ Access to language-specific library routines, such as the OS/390 C/C++ library
functions.

The binder provided with OS/390 combines the object modules, load modules, and
program objects comprising an OS/390 application to produce a single output
program object that you can then load for execution. The binder supports all C and
C++ code, provided that the output program is stored in a PDSE (Partitioned Data
Set Extended) member or an HFS file.

If you cannot use a PDSE member or HFS file, and your program contains C++
code, or C code that is compiled with any of the RENT, LONGNAME, DLL or IPA
compile-time options, you must use the prelinker.

Using the binder without using the prelinker has the following advantages:

¹ Faster rebinds when recompiling and rebinding a few of your source files

¹ Rebinding at the single compile unit level of granularity (except when you use
the IPA compile-time option)

¹ Input of object modules, load modules, and program objects

¹ Improved long name support:

– Long names do not get converted into prelinker generated names
– Long names appear in the binder maps, enabling full cross-referencing/li>
– Variables do not disappear after prelink
– Fewer steps in the process of producing your executable program

The prelinker provided with OS/390 Language Environment combines the object
modules comprising an OS/390 C/C++ application and produces a single object
module that you can link-edit into a load module (which is stored in a PDS), or bind
into a load module or a program object stored in a PDS, or a PDSE or HFS file.

 OS/390 OpenEdition
OS/390 OpenEdition provides capabilities under OS/390 to make it easier to
implement or port applications in an open, distributed environment.

OS/390 OpenEdition Services
OS/390 OpenEdition Services are available to OS/390 C/C++ application programs
through the C/C++ language bindings available with OS/390 Language
Environment.

Together, the OS/390 OpenEdition Services, OS/390 Language Environment, and
OS/390 C/C++ compilers provide an application programming interface that
supports industry standards.

OS/390 OpenEdition support for both existing OS/390 applications and new
OpenEdition applications includes:

¹ C programming language support as defined by ISO/ANSI C

¹ C++ programming language support

 About IBM OS/390 C/C++ xxix

¹ C language bindings as defined in: the IEEE 1003.1 and 1003.2 standards,
subsets of the draft 1003.1a and 1003.4a standards, X/Open CAE
Specification: System Interfaces and Headers, Issue 4, Version 2, which
provides standard interfaces for better source code portability with other
conforming systems, and X/Open CAE Specification, Network Services, Issue
4, which defines the X/Open UNIX** descriptions of sockets and X/Open
Transport Interface (XTI)

¹ OS/390 OpenEdition Extensions that provide OS/390-specific support beyond
the defined standards

¹ The OS/390 OpenEdition Shell and Utilities feature, which provides:

– A UNIX-like user interface (with support for POSIX.2 and XPG4.2)

– Support for tools and utilities as defined in the CAE Specification,
Commands and Utilities, Issue 4 (XPG4), as well as OS/390 support,
including the following:

ar Creates and maintains library archives

BPXBATCH Allows you to submit batch jobs that run shell
commands or scripts or OS/390 C/C++ executable files
in HFS files from a shell session

c89 Compiles and link-edits OS/390 C applications

gencat Merges the message text source files Messagefile
(usually *.msg) into a formatted message Catalogfile
(usually *.cat)

lex Writes large parts of a lexical analyzer automatically,
based on a description supplied by the programmer

make Helps you manage projects containing a set of
interdependent files, such as a program with many
OS/390 C/C++ source and object files, by keeping all
such files up to date with one another

yacc Allows you to write compilers and other programs that
parse input according to strict grammar rules

– Support for other utilities such as:

c++ Compiles, binds, prelinks and link-edits OS/390
OpenEdition C++ applications

mkcatdefs Preprocesses a message source file for input to the gencat
utility

runcat Invokes mkcatdefs and pipes the message catalog source
data (the output from mkcatdefs) to gencat

dspcat Displays all or part of a message catalog

dspmsg Displays a selected message from a message catalog

¹ The OpenEdition Debugger feature, which provides the dbx interactive symbolic
debugger for OS/390 OpenEdition applications

¹ OS/390 OpenEdition services that provide access to a UNIX-like hierarchical
file system (HFS), with support for the POSIX.1 and XPG4 standards

¹ OS/390 C/C++ I/O routines support using HFS files, standard OS/390 data sets,
or a mixture of both

xxx OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

¹ Application threads (with support for a subset of POSIX.4a)

¹ Support for OS/390 C/C++ DLLs

OS/390 OpenEdition offers program portability across multivendor operating
systems, with support for POSIX.1, POSIX.1a (draft 6), POSIX.2, POSIX.4a (draft
6), and XPG4.2.

To application developers who have used UNIX-like environments, the OS/390
OpenEdition Shell and Utilities are a familiar C/C++ application development
environment. If you are familiar with existing MVS development environments, you
may find that the OS/390 OpenEdition environment can enhance your productivity.
Refer to the OS/390 OpenEdition User's Guide for more information on the Shell
and Utilities.

OS/390 C/C++ Applications with OpenEdition C/C ++ Functions
Most OpenEdition C functions are available at all times. However, to use some
OpenEdition C functions, an OS/390 C/C++ program must be run on a system with
the OS/390 OpenEdition kernel available and active. In some situations, you must
also specify the POSIX(ON) runtime option. This is required for the POSIX.4a
threading functions, and for such functions as the system and signal handling
functions, where the behavior is different between POSIX/XPG4 and ANSI. Refer to
the OS/390 C/C++ Run-Time Library Reference for more information about
requirements for each function.

Some of the ways an OS/390 C/C++ program that uses OpenEdition C functions
can be invoked are:

¹ The program can be invoked directly from the OS/390 OpenEdition Shell.

¹ The program can be invoked from another program, or from the OS/390
OpenEdition Shell, using one of the exec family of functions, or the BPXBATCH
utility from TSO or MVS batch.

¹ The program can be invoked using the POSIX system call.

¹ The program can be invoked directly through TSO or MVS batch without the
use of the intermediate BPXBATCH utility. In some cases, the POSIX(ON)
runtime option is required.

Input and Output
The C/C++ runtime library that supports the OS/390 C/C++ compiler supports
different input and output (I/O) interfaces, file types, and access methods.
Additional support is provided by the C++ I/O Stream Class Library.

 I/O Interfaces
The C/C++ runtime library supports the following I/O interfaces:

C Stream I/O
This is the default and the ANSI-defined I/O method. All
I/O is processed by character.

Record I/O
Your input and output can also be processed by record.
A record is a set of data treated as a unit. Record
processing of VSAM data sets is also supported.

 About IBM OS/390 C/C++ xxxi

Record I/O is an OS/390 C/C++ extension to the ANSI
standard.

TCP/IP Sockets I/O
OS/390 OpenEdition provides support for an enhanced
version of an industry-accepted protocol for client/server
communication known as sockets. A set of C language
functions provides support for OS/390 OpenEdition
sockets. OS/390 OpenEdition sockets correspond
closely to the sockets used by UNIX applications that
use the Berkeley Software Distribution (BSD) 4.3
standard (also known as OE sockets). The slightly
different interface of the X/Open CAE Specification,
Networking Services, Issue 4, is supplied as an
additional choice. This interface is known as X/Open
Sockets.

The OS/390 OpenEdition socket application program
interface (API) provides support for both UNIX domain
sockets and Internet domain sockets. UNIX domain
sockets, or local sockets, allow interprocess
communication within OS/390 independent of TCP/IP.
Local sockets behave like traditional UNIX sockets and
allow processes to communicate with one another on a
single system. Internet sockets allow application
programs to communicate with others in the network
using TCP/IP.

In addition, the C++ I/O Stream Library supports formatted I/O in C++. You can
code sophisticated I/O statements easily and clearly, and define input and output
for your own data types. This helps improve the maintainability of programs that
use input and output.

 File Types
In addition to conventional files, such as sequential files and partitioned data sets,
the C/C++ runtime library supports the following file types:

Virtual Storage Access Method (VSAM) Data Sets
OS/390 C/C++ has native support for three types of
VSAM data organization:

¹ Key-sequenced data sets (KSDS) are used when a
record will normally be accessed through a key
within the record. A key is one or more consecutive
characters taken from a data record that identifies
the record.

¹ Entry-sequenced data sets (ESDS) are used when
data will be accessed in the order it was created (or
the reverse order).

¹ Relative-record data sets (RRDS) are used for data
in which each item has a particular number (for
example, a telephone system with a record
associated with each number).

xxxii OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

All three types are ordered and can have keys
associated with their records.

Hierarchical File System Files
When you are running under MVS, TSO (batch and
interactive), or IMS, OS/390 C/C++ recognizes a
Hierarchical File System (HFS) file as such if the name
specified on the fopen() or freopen() call conforms to
certain rules (described in the OS/390 C/C++
Programming Guide). You can create regular, link,
directory, character special, or FIFO HFS files.

Memory Files
Memory files are temporary files that reside in memory.
For improved performance, you can direct input and
output to memory files rather than to devices. Since
memory files reside in main storage and only exist
while the program is executing, they are primarily used
as work files. Memory files can be accessed across
load modules through calls to non-POSIX system() and
C fetch(); they exist for the life of the root program.
Standard streams can be redirected to memory files on
a non-POSIX system() call using command line
redirection.

Hiperspace Expanded Storage
Large memory files can be placed in Hiperspace
expanded storage to free up some of your home
address space for other uses. Hiperspace expanded
storage or high performance space is a range of up to
2 gigabytes of contiguous virtual storage space that a
program can use as a buffer (1 gigabyte = 230 bytes).

Additional I/O Features
IBM OS/390 C/C++ provides additional I/O support through the following features:

¹ User error handling for serious I/O failures (SIGIOERR)

¹ Improved sequential data access performance through enablement of the
DFSMS/MVS support for 31-bit sequential data buffers and sequential data
striping on extended format data sets

¹ Full support of PDS/Es on OS/390, including support for multiple members
opened for write

¹ Overlapped I/O support under OS/390 (NCP, BUFNO)

¹ Multibyte character I/O functions

¹ Fixed-point (packed) decimal data type support in formatted I/O functions

¹ Support for multiple volume data sets that span more than one volume of
DASD or tape

¹ Support for Generation Data Group I/O

 About IBM OS/390 C/C++ xxxiii

The System Programming C Facility
The System Programming C (SPC) facility allows you to build applications that
require no dynamic loading of OS/390 Language Environment libraries, and allows
you to tailor your application to better utilize the low-level services available on your
operating system. You can:

¹ Develop SPC applications that can be executed in a customized environment
rather than with OS/390 Language Environment services. Note that if you do
not use OS/390 Language Environment services, only some built-in functions
and a limited set of C/C++ runtime library functions are available to you.

¹ Use the OS/390 C language as an assembler language substitute for writing
system exit routines, with the interfaces provided by SPC.

¹ Develop applications featuring:

– A user-controlled environment, in which an OS/390 C environment is
created once and used repeatedly for C function execution from other
languages.

– Co-routines using a two-stack model to write application service routines.
In this model, the application calls on the service routine to perform
services independently of the user, and then is suspended when control is
returned to the user application.

Interaction with Other IBM Products
When you use OS/390 C/C++, you can write programs that take advantage of the
power of other IBM products and subsystems. These products and subsystems are:

¹ Cross System Product (CSP)

Cross System Product/Application Development (CSP/AD) is an application
generator that provides ways to interactively define, test, and generate
application programs to improve productivity in application development. Cross
System Product/Application Execution (CSP/AE) takes the generated program
and executes it in a production environment.

Note: CSP applications cannot be compiled with the OS/390 C++ compiler.
But your OS/390 C++ program can use ILC to call OS/390 C programs
that access CSP.

¹ Customer Information Control System (CICS)

You can use the CICS/ESA Command-Level Interface to write C/C++
application programs. The CICS Command-Level Interface provides data, job,
and task management facilities that are normally provided by the operating
system.

Note: Code preprocessed with CICS/ESA versions prior to V4 R1 is not
supported for OS/390 C++ applications. OS/390 C++ code preprocessed
on CICS/ESA V4 R1 cannot run under CICS/ESA V3 R3.

¹ DATABASE 2 (DB2)

DB2 programs manage data stored in relational data bases. The IBM
DATABASE 2 Licensed Program runs on OS/390.

You can access the data using a structured set of queries written in a language
called Structured Query Language (SQL). The DB2 program uses SQL

xxxiv OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

statements imbedded in the program. The SQL translator (DB2 preprocessor)
translates the imbedded SQL into host language statements that perform the
requested functions. The OS/390 C/C++ compilers compile the output of the
SQL translator. The DB2 program processes a request and processing returns
to the application.

¹ Data Window Services (DWS)

The Data Window Services (DWS) part of the Callable Services Library allows
your OS/390 C or OS/390 C++ program to manipulate temporary data objects
known as TEMPSPACE and VSAM linear data sets.

¹ Information Management System (IMS)

The Information Management System/Enterprise Systems Architecture
(IMS/ESA) product provides support for hierarchical databases.

¹ Interactive System Productivity Facility (ISPF)

OS/390 C/C++ provides access to the Interactive System Productivity Facility
(ISPF) Dialog Management Services. A dialog is the interaction between a
person and a computer. The dialog interface contains display, variable,
message, and dialog services as well as other facilities that are used to write
interactive applications.

¹ Graphical Data Display Manager (GDDM)

GDDM provides a comprehensive set of functions to display and print
applications most effectively. These functions include:

– A windowing system that the user can tailor to display selected information

– Support for presentation and keyboard interaction

– Comprehensive graphics support

– Fonts, including support for double-byte character set (DBCS)

– Business image support

– Saving and restoring graphics pictures

– Support for many types of display terminals, printers and plotters

¹ Query Management Facility (QMF)

OS/390 C supports the Query Management Facility (QMF), a query and report
writing facility, which allows you to write applications through a callable
interface. You can create applications to perform a variety of tasks, such as
data entry, query building, administration aids, and report analysis.

Additional Features of OS/390 C/C ++

Feature Description

Multibyte Character
Support

OS/390 C/C++ supports multibyte characters for those national languages such as
Japanese whose characters cannot be represented by a single byte.

 About IBM OS/390 C/C++ xxxv

Feature Description

Wide Character Support Multibyte characters can be normalized by OS/390 C library functions and encoded in
units of one length. These normalized characters are called wide characters.
Conversions between multibyte and wide characters can be performed by string
conversion functions such as wcstombs, mbstowcs, wcsrtombs, and mbsrtowcs, as well
as the family of wide-character I/O functions. Wide-character data can be represented
by the wchar_t data type.

Extended Precision
Floating-Point Numbers

OS/390 C/C++ provides three S/370 floating-point number data types: single precision
(32 bits), declared as float; double precision (64 bits), declared as double; and
extended precision (128 bits), declared as long double.

Extended precision floating-point numbers give greater accuracy to mathematical
calculations.

Command Line Redirection You can redirect the standard streams stdin, stderr, and stdout from the command
line or when calling programs using the system() function.

National Language Support OS/390 C/C++ provides message text in either American English or Japanese. You
can dynamically switch between the two languages.

Locale Definition Support OS/390 C/C++ provides a locale definition utility that supports the creation of separate
files of internationalization data, or locales. Locales can be used at run time to
customize the behavior of an application to national language, culture, and coded
character set (code page) requirements. Locale-sensitive library functions, such as
isdigit, use this information.

Coded Character Set
(Code page) Support

The OS/390 C/C++ compiler can compile C/C++ source written in different EBCDIC
code pages. In addition, the iconv utility converts data or source from one code page
to another.

Selected Built-in Library
Functions

Selected library functions, such as string and character functions, are built into the
compiler to improve performance execution. Built-in functions are compiled into the
executable, and no calls to the library are generated.

Multitasking Facility (MTF) Multitasking is a mode of operation where your program performs two or more tasks at
the same time. OS/390 C provides a set of library functions that perform multitasking.
These functions are known as the Multitasking Facility (MTF). MTF uses the
multitasking capabilities of OS/390 to allow a single OS/390 C application program to
use more than one processor of a multiprocessing system simultaneously.

Packed Structures and
Unions

OS/390 C provides support for packed structures and unions. Structures and unions
may be packed to reduce the storage requirements of a OS/390 C program.

Fixed-point (Packed)
Decimal Data

OS/390 C supports fixed-point (packed) decimal as a native data type for use in
business applications. The packed data type is similar to the COBOL data type COMP-3
or the PL/I data type FIXED DEC, with up to 31 digits of precision.

The Application Support Class Library provides the Binary Coded Decimal Class for
C++ programs.

Long Name Support For portability, external names can be mixed case and up to 1024 characters in
length. For C++, the limit applies to the mangled version of the name.

System Calls You can call commands or executable modules using the system function under
OS/390, OS/390 OpenEdition services, and TSO. You can also use the system
function to call EXECs on OS/390 and TSO, or Shell scripts using OS/390
OpenEdition services.

Exploitation of ESA Support for OS/390, IMS/ESA, Hiperspace expanded storage, and CICS/ESA allows
you to exploit the features of the ESA.

xxxvi OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

Feature Description

Exploitation of hardware ARCH(2) instructs the compiler to generate faster instruction sequences available only
on newer machines. TUNE(2) allows the executable program to be optimized for a
certain architecture. For information on which machines and architectures support the
above options, refer to the ARCHITECTURE and TUNE compiler information in the
OS/390 C/C++ User’s Guide.

 About IBM OS/390 C/C++ xxxvii

xxxviii OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 1

2 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

C++SOM and Cross-language SOM Class Libraries

Chapter 1. C++ SOM and Cross-language SOM Class Libraries 5
SOM-enabled and Not SOM-enabled Versions . 5
C++ SOM and Cross-language SOM Collection Classes 6
Coding with Class Libraries under OS/390 OpenEdition Services 7
Compiling and Binding with the C++ SOM Libraries 7
Using the Cross-language SOM Collection Class Library 9

 Copyright IBM Corp. 1995, 1997 3

4 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

Chapter 1. C++ SOM and Cross-language SOM Class
Libraries

This release includes three types of class libraries:

 ¹ C++ native
¹ C++ SOM, which provides release-to-release binary compatibility (RRBC)
¹ Cross-language SOM, which provides RRBC and cross-language support

The I/O Stream and Complex Mathematics Class Libraries are available in C++
native versions only.

The Application Support Class Library is available in:

 ¹ C++ native
 ¹ C++ SOM

The Collection Class Library is available in:

 ¹ C++ native
 ¹ C++ SOM
 ¹ Cross-language SOM

All of these class libraries are available in both static and DLL forms.

The C++ native versions of the libraries are documented in the OS/390 C/C++ IBM
Open Class Library User’s Guide and OS/390 C/C++ IBM Open Class Library
Reference.

You use the C++ SOM class libraries the same way as the C++ native versions,
except that you compile and bind them differently. Instructions for compiling and
binding the C++ SOM class libraries are described in this book; for guidance and
reference information on these libraries, see the books listed above for C++ native
class libraries.

All information for the cross-language SOM Collection Class Library is included in
this book.

SOM-enabled and Not SOM-enabled Versions
When you use the SOM-enabled versions of the library, which provide RRBC, your
program can run with future releases of the library without needing to be
recompiled. Recompilation is normally required whenever either your program or
the library changes; with the RRBC-enabled library, you normally do not need to
recompile unless your program changes. Depending on the RRBC version of the
library you use (DLL or static) you may need to rebind your application:

¹ If you used the RRBC DLL you neither need to recompile nor rebind your
application.

¹ If you used the static library you will only have to rebind your application with
the new static RRBC library.

Release-to-release binary compatibility for the library is achieved by using the
Direct-To-SOM support provided by the OS/390 C/C++ compiler. All classes in the

 Copyright IBM Corp. 1995, 1997 5

library accessible by applications inherit from SOMObject, and method resolution is
performed using the SOM method resolution mechanism. For details on
Direct-To-SOM support, see "Direct-to-SOM Support under OS/390 C/C++" in the
OS/390 C/C++ Programming Guide.

Although RRBC can help you reduce development effort and make it easier to
redistribute your programs, there are performance and code size trade-offs you
should be aware of. Adding SOM-enablement to a program tends to increase its
code size, whether the program uses the DLL version or the static version of a
library. The RRBC version of the DLL is also larger than the C++ native version,
although DLL size does not have a significant impact on DLL load-time. Finally,
method resolution via SOM is slower than pure C++ method resolution. Therefore,
for reasons of performance or code size, you may want to use the C++ native
versions of the library as these are not RRBC-enabled. With these versions, you
may have to recompile your application with a possible future version of the library,
because these versions do not guarantee release-to-release binary compatibility.

Why Multiple Library Versions?
There are good reasons for using each of the library versions. The following table
has a column for each RRBC/non-RRBC library version, and rows for different
objectives. A single X in a cell indicates that the library version accomplishes the
objective; however, a double X means that it accomplishes the objective better
than other library versions. To determine what RRBC/non-RRBC library version
you should use, identify the objectives that are most important to you, and look for
a column where each of the objectives has a X. Some objectives, such as
reducing code size and eliminating recompilation for future library releases, are
incompatible.

Objective RRBC
Static

RRBC
DLL

C++
Native
Static

C++ Native
DLL

Reduce code size X XX

Reduce load time X X

Eliminate need to
recompile with new library
releases

X X

Eliminate need to rebind
with new library releases

X

Maximize runtime
performance

X X

Avoid dependence on
library version installed on
target system

X

C++ SOM and Cross-language SOM Collection Classes
Both C++ SOM and cross-language SOM collection classes are SOM-enabled and
therefore support RRBC. Beyond that, the differences are as follows:

¹ Use the C++ SOM library if you need/wish to:

– Use C++ template syntax/semantics with classes.
– Use C++ exception model (throw/catch) to handle exceptions from classes.

6 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

– Tailor collection class implementation using pre-defined implementation
variants.

– Preserve source compatibility between native C++ and RRBC-enabled
applications. Source code is identical between C++ native and C++ SOM
classes. However, cross-language SOM classes introduce source
incompatibilities in the form of changed class names (eg: IBag to ISBag),
operation names, error handling and changed header file suffix (from .h to
.hh/.xh) for C++ code.

¹ Use the cross-language SOM library if you need/wish to:

– Use the collection classes from C or C++
– Multiply inherit from a collection class and some SOM class. All classes in

a class hierarchy must be SOM classes if any is a SOM class. All
cross-language SOM collection classes are derived from SOMobject
whereas some C++ SOM collection classes are not.

Coding with Class Libraries under OS/390 OpenEdition Services
If you use the class libraries in applications that run under OS/390 OpenEdition
services, the following restrictions apply:

¹ These class libraries are not safe to use with respect to asynchronous signals.
In particular, this means:

– Do not invoke these classes from a signal handler during asynchronous
signal handling.

– Do not call longjmp() or siglongjmp() from a signal handler during
asynchronous signal handling. If you do, the class library behavior is
undefined.

If you don't observe these restrictions, the subsequent behavior of any of these
classes is undefined. For simplicity, avoid invoking these classes from any
signal handler.

¹ Do not call fork() in user code that has been invoked from class library code
(for example, in an override of IStringTest::test from the Application Support
CLass library or in an implementation of allElementsDo from the Collection
Class library).

Compiling and Binding with the C ++ SOM Libraries
The C++ native and C++ SOM class libraries share the same set of header files.
Using compile-time switches, you control the inclusion of the correct version of the
header files in your application.

Note: If your source code includes the IBM-supplied class library header files, you
must use the SEARCH compiler option to identify the relevant data sets. Using
SYSLIB may result in compilation errors.

The IBM-supplied catalog procedure (i.e., CBCB, CBCCB) binds the C++ native
DLL versions of IBM Open Class Library by default. The input definition side-decks
are in data set CBC.SCLBSID, members COMPLEX, IOSTREAM, and ASCCOLL.

If you want to use the C++ SOM static or DLL class libraries, refer to the directions
below.

 Chapter 1. C++ SOM and Cross-language SOM Class Libraries 7

Note: Your application cannot use multiple copies of an IBM Open Class library.
If your application consists of multiple modules (for example, a main module and a
DLL) that use the same class library, make sure that all your modules bind
dynamically to the class library: otherwise the class library will be linked in multiple
times, and there will be multiple copies in use by your application. The use of
multiple copies of a class library within a single application is not supported, and
can have unexpected results.

Refer to the OS/390 C/C++ IBM Open Class Library User’s Guide for directions for
compiling and binding with the C++ native I/O Stream, Complex Mathematics,
Application Support, and Collection Class Libraries, in either the static or DLL
forms.

¹ To use the DLL C++ SOM Application Support and Collection Class Libraries,
do the following:

1. When you compile, add the following compile options:

DEF(__RRBC_LIB__)
SEARCH('CEE.SCEEH.+','CBC.SCLBH.+','SOMMVS.SGOSHH.+','SOMMVS.SGOSH.+',...

where SOMMVS is the high level qualifier of the OS/390 SOMobjects
runtime library.

2. When you bind, include the following definition side-decks on the SYSLIN
ddname:

 – CBC.SCLBSID(ASCOLSOM)
 – CBC.SCLBSID(IOSTREAM)
 – SOMMVS.SGOSIMP(GOSSOMK)

3. The following libraries must be available at run time:

 – CEE.SCEERUN
 – CBC.SCLBDLL
 – SOMMVS.SGOSLOAD

Note: The C++ SOM DLL (Application Support and Collection Class Libraries)
resides in the data set SCLBDLL. The member name is ASCOLSOM.

¹ To use the static C++ SOM Application Support and Collection Class Libraries,
do the following:

1. When you compile, add the following compile options:

DEF(__RRBC_LIB__)
SEARCH('CEE.SCEEH.+','CBC.SCLBH.+','SOMMVS.SGOSHH.+','SOMMVS.SGOSH.+',...

where SOMMVS is the high level qualifier of the OS/390 SOMobjects
runtime.

2. When you bind:

– Include the following definition side-decks as input:
 - SOMMVS.SGOSIMP(GOSSOMK)

– Remove the following definition side-decks from the binder input:
 - CBC.SCLBSID(IOSTREAM/ASCCOLL)

– Include the following static libraries in your autocall library specification,
by specifying the following for your SYLIB concatenation.
 - CBC.SCLBOBC
 - CBC.SCLBCPP

3. The following libraries must be available at run time:

8 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 – CBC.SCLBDLL
 – SOMMVS.SGOSLOAD
 – CEE.SCEERUN

The source for the IBM Open Class libraries is available in the CBC.SCLDH.* data
sets.

Note: Do not use the class library source data sets (CBC.SCLDH.*) unless you
are using your own libraries built from the source in YOURID.ASCSRC or
CBC.CCLSRC. If you are, then the class library source data sets must be specified
first in the search order.

 Migration Notes
The Collection Class Library and the Application Support Class Library DLLs and
side-decks were merged in V1R3 of OS/390 C/C++. The combined DLL and
side-deck is ASCOLSOM. This single side-deck and DLL should be used for all
new applications.

Side-decks with the names APPSUBC (C++ SOM Application Support Class Library
entry points only) and COLLRRBC (C++ SOM Collection Class Library entry points
only) are supplied for migration purposes only. These side-decks should only be
used in circumstances where a name collision exists between your application code
and one of the libraries. For example, an application could use the Application
Support Class Library and contain a function with the same name as one in the
Collection Class Library. In this example, you must bind with the APPSUBC
side-deck only to allow the duplicate name to be resolved in the application code.
The combined DLL, ASCCOLL, will still be used.

DLLs with the names APPSUBC and COLLRRBC are provided for applications
linked with previous releases of OS/390 C/C++. These DLLs are equivalent to
ASCOLSOM.

Using the Cross-language SOM Collection Class Library
IDL (Interface Definition Language) for the cross-language SOM collection classes
is provided in the CBC.SCLBXL.IDL data set. This IDL can be processed by the
SOM compiler to generate bindings for use by the selected language, such as C or
C++.

C header files for the cross-language SOM collection classes are provided in the
CBC.SCLBXL.H data set.

DTS C++ header files for the cross-language SOM collection classes are provided
in the CBC.SCLBXL.HH data set.

The Interface Repository (IR) for the cross-language SOM collection classes is
provided in the CBC.SCLBXL.IR data set.

The DLL version of the cross-language SOM Collection Class Library resides as
COLLXL in the CBC.SCLBDLL data set. The corresponding definition side-deck is
COLLXL and is provided in the CBC.SCLBSID data set. This library requires the
C++ native DLLs and side decks IOSTREAM and ASCCOLL.

 Chapter 1. C++ SOM and Cross-language SOM Class Libraries 9

The static version of the cross-language SOM Collection Class Library resides in
the CBC.SCLBOXL data set. This object library requires the C++ native class
libraries, CBC.SCLBCPP.

For more information on using IDL to access a class library refer to the OS/390
SOMobjects Programmer's Guide.

10 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

User's Guide: SOM Cross-language Collection Classes

Chapter 2. Overview of the SOM Cross-language Collection Classes . . . 13
Classes Provided by the Library . 13
Benefits of the SOM Cross-language Collection Classes 17
Types of Classes in the SOM Cross-language Collection Classes 17
Flat Collections . 18
Restricted Access . 24
Auxiliary Classes . 24
The Overall Implementation Structure . 24

Chapter 3. Using the Collection Classes . 27
Creating an Operations Class Object . 27
Creating Collections . 28
Adding, Removing, and Replacing Elements . 28
Cursors . 30
Iterating over Collections . 31
Bounded and Unbounded Collections . 33

Chapter 4. Element Functions and Key-Type Functions 35
Introduction to Element Functions and Key-Type Functions 35

Chapter 5. Polymorphic Use of Collections 37
Introduction to Polymorphism . 37

Chapter 6. Exception Handling . 39
Introduction to Exception Handling . 39
Levels of Exception Checking . 40
List of Exceptions . 40

 Copyright IBM Corp. 1995, 1997 11

12 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Types of Collections

Chapter 2. Overview of the SOM Cross-language Collection
Classes

A SOM collection is an abstract concept, or a SOM class implementing an abstract
concept, that allows you to manipulate objects in a group. Collections are used to
store and manage elements (or objects). Different collections have different
internal structures, and different access methods for storage and retrieval of
objects. To be eligible for insertion into any collection, elements must inherit from
the SOMObject class.

This chapter describes the types of collections provided by the library, introduces
the classes that make up the SOM Cross-language Collection Classes, and
explains some of the key concepts that are used to describe the SOM
Cross-language Collection Classes.

Classes Provided by the Library
This section lists the collections of the Collection Class Library, and provides a
verbal description of a potential application for each collection type. The
description can be used to aid in the understanding of the characteristics, behavior
of each collection, and the overall capabilities of the Collection Classes.

 Bag
An example of using a Bag is a program for entering observations on species of
plants and animals found in a river. Each time you spot a plant or animal in the
river, you enter the name of the species into the collection. If you spot a species
twice during an observation period, the species is added twice, because a Bag
supports multiple elements. You can locate the name of a species that you have
observed, and you can determine the number of observations of that species;
however, you cannot sort the collection by species (because a Bag is an unordered
collection). To sort the elements of a Bag, you should use a sorted Bag instead.

 Deque
An example of using a Deque is a program for managing a lettuce warehouse.
Cases of lettuce arriving into the warehouse are registered at one end of the
Queue (the “fresh” end) by the receiving department. The shipping department
reads the other end of the Queue (the “old” end) to determine which case of lettuce
to ship next. However, if an order comes in for very fresh lettuce, which is sold at
a premium, the shipping department reads the “fresh” end of the Queue to select
the freshest case of lettuce available.

 Equality Sequence
An example of using an Equality Sequence is a program that calculates members
of the Fibonacci sequence and places them in a collection, with multiple elements
of the same value being allowed. For example, the sequence begins with two
instances of the value 1. You can search for a given element, for example 8, and
find out what element follows it in the sequence. Element equality allows you to
accomplish this by using the locate() and setToNext() functions.

 Copyright IBM Corp. 1995, 1997 13

 Types of Collections

 Heap
You can compare using a Heap collection to managing the scrap metal entering a
scrapyard. Pieces of scrap are placed in the Heap in an arbitrary location, and an
element can be added multiple times (for example, you could have a rear left
fender from a particular kind of car). When a customer requests a certain amount
of scrap, elements are removed from the Heap in an arbitrary order until the
required amount is reached. You cannot search for a specific piece of scrap
except by examining each piece of scrap in the Heap and manually comparing it to
the piece you are looking for.

 Key Bag
An example of using a Key Bag is a program that manages the distribution of
combination locks to members of a fitness club. The element key is the number
that is printed on the back of each combination lock. Each element also has data
members for the club member's name, membership number, and so on. When you
join the club, you are given one of the available combination locks, and your name,
membership number, and the number on the combination lock are entered into the
collection. Because a given number on a combination lock may appear on several
locks, the program allows the same lock number to be added to the collection
multiple times. When you return a lock because you are leaving the club, the
program finds the elements whose key matches your lock's serial number, and
deletes the matching element that has your name associated with it.

 Key Set
An example of using a Key Set is a program that allocates rooms to patrons
checking into a hotel. The room number serves as the element's key, and the
patron's name is a data member of the element. When you check in at the front
desk, the clerk pulls a room key from the board, and enters that key's number and
your name into the collection. When you return the key at check-out time, the
record for that key is removed from the collection. You cannot add an element to
the collection that is already present, because there is only one key for each room.
If you attempt to add an element that is already present, the add() function returns
0 to indicate that the element was not added.

Key Sorted Bag
An example of using a Key Sorted Bag is a program that maintains a list of
families, sorted by the number of family members in each family. The key is the
number of family members. You can add an element whose key is already in the
collection (because two families can have the same number of members), and you
can generate a list of families sorted by size; however, you cannot locate a family
except by its key, because a Key Sorted Bag does not support element equality.

Key Sorted Set
An example of using a Key Sorted Set is a program that keeps track of canceled
credit card numbers and the individuals to whom they are issued. Each card
number occurs only once, and the collection is sorted by card number. When a
merchant enters a customer's card number into a point-of-sale terminal, the
collection is checked to see if that card number is listed in the collection of
canceled cards. If it is found, the name of the individual is shown, and the
merchant is given directions for contacting the credit card company. If the card
number is not found, the transaction can proceed because the card is considered to
be valid. A list of canceled cards is printed out each month, sorted by card

14 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Types of Collections

number, and distributed to all merchants who do not have an automatic
point-of-sale terminal installed.

 Map
An example of using a Map is a program that translates integer values between the
ranges of 0 and 20 to their written equivalents or vice versa (from numeric terms to
the written equivalent). Two Maps are created, one with the integer values as
keys, one with the written equivalents as keys. You can enter a number, and that
number is used as a key to locate the written equivalent. You can enter a written
equivalent of a number, and that text is used as a key to locate the value. A given
key always matches only one element. You cannot add an element with a key of 1
or “one” if that element is already present in the collection.

 Priority Queue
An example of a Priority Queue is a program used to assign priorities to service
calls for a heating repair firm. When a customer calls with a problem, a record with
that person's name and the seriousness of the situation is placed in a Priority
Queue. When a service person becomes available, customers are chosen by the
program beginning with those whose situation is most severe. In this example, a
serious problem such as a nonfunctioning furnace would be indicated by a low
value for the priority, and a minor problem such as a noisy radiator would be
indicated by a high value for the priority.

 Queue
An example of using a Queue is a program that processes requests for parts at the
cash sales desk of a warehouse. A request for a part is added to the Queue when
the customer's order is taken, and is removed from the Queue when someone
receives the order form for the part. Using a Queue collection in such an
application ensures that all orders for parts are processed on a first-come and
first-served basis.

 Relation
An example of using a Relation is a program that maintains a list of all your
relatives, with an individual's relationship, to you, as the key. You can add an aunt,
uncle, grandmother, daughter, father-in-law, and so on. You can add an aunt even
if an aunt is already in the collection, because you can have several relatives who
have the same relationship to you. (For unique relationships such as mother or
father, your program would have to check the collection to make sure it did not
already contain a family member with that key, before adding the family member.)
You can locate a member of the family, but the family members are not in any
particular order.

 Sequence
An example of a Sequence is a program that maintains a list of the words in a
paragraph. The order of the words is obviously important, and you can add or
remove words at a given position, but you cannot search for individual words
except by iterating through the collection and comparing each word to the word you
are searching for. You can add a word that is already present in the sequence,
because a given word may be used more than once in a paragraph.

 Chapter 2. Overview of the SOM Cross-language Collection Classes 15

 Types of Collections

 Set
An example of a Set is a program that creates a packing list for a box of free
samples to be sent to a warehouse customer. The program searches a database
of in-stock merchandise, and selects ten items at random whose price is below a
threshold level. Each item is then added to the Set. The Set does not allow an
item to be added if it is already present in the collection, ensuring that a customer
does not get two samples of a single product. The set is not sorted, and elements
of the set cannot be located by key.

 Sorted Bag
An example of using a Sorted Bag is a program for entering observations on the
types of stones found in a riverbed. Each time you find a stone on the riverbed,
you enter the stone's mineral type into the collection. You can enter the same
mineral type for several stones, because a sorted Bag supports multiple elements.
You can search for stones of a particular mineral type, and you can determine the
number of observations of stones of that type. You can also display the contents of
the collection, sorted by mineral type, if you want a complete list of observations
made to date.

 Sorted Map
An example of using a Sorted Map is a program that matches the names of rivers
and lakes to their coordinates on a topographical map. The river or lake name is
the key. You cannot add a lake or river to the collection if it is already present in
the collection. You can display a list of all lakes and rivers, sorted by their names,
and you can locate a given lake or river by its key, to determine its coordinates.

 Sorted Relation
An example of using a Sorted Relation is a program used by telephone operators
to provide directory assistance. The computerized directory is a Sorted Relation
whose key is the name of the individual or business associated with a telephone
number. When a caller requests the number of a given person or company, the
operator enters the name of that person or company to access the phone number.
The collection can have multiple identical keys, because two individuals or
companies might have the same name. The collection is sorted alphabetically,
because once a year it is used as the source material for a printed telephone
directory.

 Sorted Set
An example of using a sorted set is a program that tests numbers to see if they are
prime. Two complementary sorted sets are used, one for prime numbers, and one
for nonprime numbers. When you enter a number, the program first looks in the
set of nonprime numbers. If the value is found there, the number is nonprime. If
the value is not found there, the program looks in the set of prime numbers. If the
value is found there, the number is prime. Otherwise the program determines
whether the number is prime or nonprime, and places it in the appropriate sorted
set. The program can also display a list of prime or nonprime numbers, beginning
at the first prime or nonprime following a given value, because the numbers in a
sorted set are sorted from smallest to largest.

16 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Stack
An example of using a stack is a program that keeps track of daily tasks that you
have begun to work on but that have been interrupted. When you are working on a
task and something else comes up that is more urgent, you enter a description of
the interrupted task and where you stopped it into your program, and the task is
pushed onto the stack. Whenever you complete a present task, you ask the
program for the most recently saved task that was interrupted. This task is popped
off the stack, and you resume your work where you left off. When you attempt to
pop an item off the stack and no item is available, you have completed all your
tasks.

Benefits of the SOM Cross-language Collection Classes
In addition to implementing the common abstract data types efficiently and reliably,
the SOM Cross-language Collection Classes gives you the following benefits:

¹ A framework of properties to help you decide which abstract data type is
appropriate in a given situation

¹ A choice about how the abstract data type you have chosen is implemented by
the SOM Cross-language Collection Classes.

The Collection Class Library lets you choose the appropriate abstract data type for
a given situation by providing collection classes that are a complete, systematic,
and have a consistent combination of basic properties. These properties, which are
explained in “Flat Collections” on page 18, help you to select abstract data types
that are at the appropriate level of abstraction. In a particular application, for
example, you may have the choice between using a Bag and a Key Sorted Set.
The properties of these two collections will help you decide which one is more
appropriate.

Types of Classes in the SOM Cross-language Collection Classes
The classes that make up the Collection Class Library are divided into two types:

Flat Collections
Flat collections include abstractions such as Sequence, Set, Bag, and
Map. Flat collections have no hierarchy of elements or recursive
structure, in contrast to trees or graphs for example. All flat collections
are derived from a hierarchy of abstract base classes.

See “Flat Collections” on page 18 for more information on flat
collections and their properties.

Auxiliary Classes
The auxiliary classes include classes for cursors, applicators,
comparators, predicates, and operations.

Cursors and applicators give you convenient methods for accessing the
elements stored in the collections. See “Cursors” on page 30 for more
details on cursor classes. See “Iteration Using Applicators” on page 32
for more details on applicator classes.

Operations are required whenever a collection instance is constructed.
They provide the element-type specific information to the collection, for
example, they define the ordering relations between the collection's

 Chapter 2. Overview of the SOM Cross-language Collection Classes 17

 Flat Collections

elements. See Chapter 4, “Element Functions and Key-Type Functions”
on page 35 for more details on operations classes.

 Flat Collections
Four basic properties are used to differentiate between different flat collections:

Ordering
Whether a next or previous relationship exists between elements.

Access by key
Whether a part of the element (a key) is relevant for accessing an
element in the collection. When keys are used, they are compared
using relational operators.

Equality for elements
Whether equality is defined for the element.

Uniqueness of entries
Whether any given element or key is unique, or whether multiple
occurrences of the same element or key are allowed.

Figure 2 on page 19 shows the flat collection that results from each combination of
properties. For example, “Map” appears in the Unique Unordered column, for the
Key Element Equality row. This means that a Map is unordered, each element is
unique, keys are defined, and element equality is defined. The figure contains N/A
where no flat collection corresponds to the combination of properties. For example,
the N/A in the first two rows of the rightmost column indicates that an ordered
collection that is sequential (instead of sorted) and offers access by key is not
available. This implies that there are no flat collections that have all of the following
properties:

¹ The collection is ordered.
¹ The collection is sequential.
¹ The collection allows an element to appear more than once.
¹ Keys are defined for elements in the collection.

The rationale for not implementing collections with these combinations of properties
is that there is no reason to choose them over another collection that is already
available. For example, with an ordered collection that is sequential and offers
access by key, the key access would only have advantages if the elements are
stored in a position depending on their key. Because they are not, there is no flat
collection with key access that maintains a sequential order.

18 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Flat Collections

Figure 2. Combination of Flat Collection Properties

Unordered Ordered

Sorted Sequential

Unique Multiple Unique Multiple Multiple

Key (Key
equality
must be
defined)

Element
Equality

Map Relation Sorted map Sorted
relation

N/A

No Element
Equality

Key set Key bag Key sorted
set

Key sorted
bag

N/A

No Key Element
Equality

Set Bag Sorted set Sorted bag Equality
sequence

No Element
Equality

N/A Heap N/A N/A Sequence

Ordering of Collection Elements
The elements of a flat collection class can be ordered in three ways:

¹ Unordered collections have elements that are not ordered.
¹ Sorted collections have their elements sorted by an ordering relation defined for

the element type. For example, integers can be sorted in ascending order, and
strings can be ordered alphabetically. The ordering relation is determined by
the instantiations for the collection class. For elements where the ordering
relation returns the same position, elements are added in chronological order,
that is, in the order as they arrive.

¹ Sequential collections have their ordering determined by an explicit qualifier to
the add() function, for example, addAtPosition().

A particular element in a sorted collection can be accessed quickly by using the
ordering relation to determine its position. Unordered collections can also be
implemented to allow fast access to the elements by using, for example, a hash
table or a sorted representation. The Collection Class Library provides a fast
locate() function that uses this structure for unordered and sorted collections.
Even though unordered collections are often implemented by sorting the elements,
do not assume that all unordered collections are implemented in this way. If your
program requires this assumption to be true, use a sorted collection instead.

For each flat collection, the Collection Class Library provides both unordered and
sorted abstractions. For example, the Collection Class Library supports both a set
and a sorted set. The ordering property is independent of the other properties of
flat collections; you have the choice of making a given flat collection unordered or
sorted regardless of the choices that you make for the other properties.

Access by Key
A given flat collection can have a key defined for its elements. A key is usually a
data member of the element, but it can also be calculated from the data members
of the element by some arbitrary function. Keys let you:

¹ Organize the elements in a collection
¹ Access a particular element in a collection

 Chapter 2. Overview of the SOM Cross-language Collection Classes 19

 Flat Collections

For collections that have a key defined, an equality relation must be defined for the
key. Thus, a collection with a key is said to have key equality. In SOM collections
where the elements are SOMObjects the key, as the element's data member, must
inherit from the class SOMObject. This is not required if the element's key is not a
data member but is calculated in some other way.

Equality for Keys and Elements
A flat collection can have an equality relation defined for its elements. The default
equality relation is based on the element as a whole, not just on one or more of its
data members (for example, the key). For two elements to be equal, all data
members of both elements must be equal. The equality relation is needed for
functions such as those that locate or remove a given element. A flat collection
that has an equality relation has element equality.

You can define your own equality relation to behave differently. For example, your
equality relation could test only certain data members of two elements to determine
element equality. In such cases, element equality may apply to two elements even
if the elements are not exactly equal. The equality relation for keys may be
different than the equality relation for elements. For more information, refer to the
operations functions Equal() and KeyEqual as described in Chapter 33,
“Operations” on page 125.

Conceptually, for example, consider a job control block that has a priority and a job
identifier that defines equality for jobs. You could choose to implement a job
collection as unordered, with the job ID as key, or as sorted by priority, with the
priority as key. The Job class for this job control block could look like this:

20 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Flat Collections

interface JobId : SOMObject {

 #ifdef __SOMIDL__
 implementation {

unsigned long ivId;
 };
 #endif
 };

interface Priority : SOMObject {

 #ifdef __SOMIDL__
 implementation {

unsigned long ivId;
 };
 #endif
 };

interface Job : SOMObject {
 attribute JobId ivId;

attribute Priority ivPriority;
 #ifdef __SOMIDL__
 implementation {

releaseorder: _get_ivId, _set_ivId,
 _get_ivPriority, _set_ivPriority;
 };
 #endif
 };

// if ivId is the key:
interface JobOps1 : ISOps {

 ...
Key : override;

 };

// if ivId is the key:
SOM_Scope SOMObject* SOMLINK Key(JobOps1 *somSelf, Environment *ev,

 SOMObject* element)
 {
 return ((Job*)element->_get_ivId(ev);
 }

// if ivPriority is the key:
interface JobOps2 : ISOps {

 ...
key : override;

 };

// if ivPriority is the key:
SOM_Scope SOMObject* SOMLINK Key(JobOps2 *somSelf, Environment *ev,

 SOMObject* element)
 {
 return ((Job*)element->_get_ivPriority(ev);
 }

 Chapter 2. Overview of the SOM Cross-language Collection Classes 21

 Flat Collections

In the first case, you would have fast access through the job ID but not through the
priority; in the second case, you would have fast access through the priority but not
through the job ID.

All operations that are required to find out whether two elements are equal, what
the key of an element is, or what the ordering of elements is within a collection are
implemented in a default implementation via an operations class called ISOps.

If you let JobOps1 inherit from ISOps and use a JobOps1 instance within a Job
initializer method, then JobId is defined to be the key. JobOps2 is used when the
Priority should be the key. The overidden Key methods of JobOps1 and JobOps2
just return the attribute values from the Job instance. The ordering relation on the
priority key in the second case does not yield a job equality, because two jobs can
have equal priorities without being the same.

Functions like locateElementWithKey() use the equality relation on keys to locate
elements within a collection. A collection that defines key equality may also define
element equality. Functions that are based on equality (such as locate()) are only
provided for collections that define element equality. Collections that define neither
key equality nor element equality, such as Heaps and Sequences, provide no
functions for locating elements by their values or testing for containment. Elements
can be added and retrieved from such collections by iteration. For sequences,
elements can also be added and retrieved by position.

A sorted collection must define either key equality or element equality. A sorted
collection that does not have a key defined must have an ordering relation defined
for the element type; this relation implicitly defines element equality.

Keys can be used to access a particular element in a collection. The alternative to
defining element equality as equality of all data members is to define it as equality
of keys only. (In the job control block example on page 20, this means defining job
equality as equality of the job ID.) Use this alternative only when you are sure that
keys are unique. When you use this alternative, you can locate an element only
with the key (using locateElementWithKey(key) instead of locate(element)).
Locating elements by key improves performance, particularly if the complete
element is large in comparison to the key alone.

The Collection Class Library provides sorted and unsorted versions of Maps and
relations, for which both key and element equality must be defined. These
collections are similar to key set and key bag, except that they define functions
based on element equality, namely union and intersection. The add() function
behaves differently toward Maps and relations than it does toward key set and key
bag.

Uniqueness of Entries
The terms unique and multiple relate to the key, in collections with a key, and for
collections with no key; unique and multiple relate to the element.

In some flat collections, such as Map, key set, and set, no two elements are equal
or have equal keys. Such collections are called unique collections. Other
collections, including relation, key bag, bag, and Heap, can have two equal
elements or elements with equal keys. Such collections are called multiple
collections.

22 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Flat Collections

For those multiple collections with key that have element equality (relation and
sorted relation), elements are always unique while keys can occur multiple times.
In other words, if element equality is defined for a multiple collection with key,
element equality is tested before inserting a new element.

A unique collection with no keys and no element equality is not provided because a
containment function cannot be defined for such a collection. A containment
function determines whether a collection contains a given element.

The behavior during element insertion (when one of the add... methods is applied
to a collection) distinguishes unique and multiple collections. In unique collections,
the add() function does not add an element that is equal to an element that is
already in the collection. In multiple collections, the add() function adds elements
regardless of whether they are equal to any existing elements or not.

The add() function has two general properties:

¹ All elements that are contained in the collection before an element is added are
still contained in the collection after the element is added.

¹ The element that is added will be contained in the collection after it is added.

Operations that contradict these properties are not valid. You cannot add an
element to a Map or sorted map that has the same key as an element that is
already contained in the collection. In the case of a Map and sorted map, an
exception is thrown.

Note: Both Map and sorted map are unique collections. That is, a request to add
an equal element (where not only the key is equal to an already existing key, but
the whole element is equal to an existing element) is ignored. The functions
locateOrAddElementWithKey() and addOrReplaceElementWithKey() specify what
happens if you try to add an element to a collection that already contains an
element with the same key.

Figure 3 shows the result of adding a series of four elements to a Map, a relation,
a key set, and a key bag. The first row shows what each collection looks like after
the element <a,1> has been added to each collection. Each following row shows
what the collections look like after the element in the leftmost column is added to
each.

The elements are pairs of a character and an integer. The character in the pair is
the key. An element equality relation, if defined, holds between two elements if
both the character and the integer in each pair are equal.

Figure 3. Behavior of add for Unique and Multiple Collections

add Map or Sorted
Map

Relation or
Sorted
Relation

Key Set or
Key Sorted
Set

Key Bag or Key
Sorted Bag

<a,1> <a,1> <a,1> <a,1> <a,1>

<b,1> <a,1>, <b,1> <a,1>, <b,1> <a,1>, <b,1> <a,1>, <b,1>

<a,1> <a,1>, <b,1> <a,1>, <b,1> <a,1>, <b,1> <a,1>, <b,1>,
<a,1>

<a,2> exception:
Key Already
Exists

<a,1>, <b,1>,
<a,2>

<a,1>, <b,1> <a,1>, <b,1>,
<a,1>, <a,2>

 Chapter 2. Overview of the SOM Cross-language Collection Classes 23

 Implementation Structure

 Restricted Access
Flat collections with restricted access have a restricted set of functions that can be
applied to them; that is, only a subset of the functions listed in “Reference: SOM
Cross-language Collection Classes - Flat Collections” can be applied. Examples of
such flat collections are Stack and priority queue.

You may want to restrict the set of functions for reasons such as:

1. You can simplify the interface to the collection.
2. The normal rules for restricted flat collections apply, so certain assumptions can

be made when validating and inspecting the code. A stack, for example, does
not allow the removal of any element except the top one.

3. You can create new implementation options.

The Collection Class Library provides the Stack, Deque, and Queue collections,
which are based on Sequence, as flat collections with restricted access. These
descriptions are alphabetically merged with descriptions for other collections. You
can use Table 3 to select the appropriate flat collection with restricted access for a
given set of properties.

Table 3. Properties for Collections with Restricted Access

Add Remove Sorted (with key) Unsorted (no key)

According to
key

First Priority Queue N/A

Last Last N/A Stack

Last First N/A Queue

First or last First or last N/A Deque

 Auxiliary Classes
To use the collection classes eficiently, you often need a cursor and an applicator
class. These classes let you iterate over all elements of a collection, and, for
example, apply a certain function to all elements or iterate over the collection until
you have found a certain element. These classes are described in “Cursors” on
page 30 and “Iteration Using Applicators” on page 32.

Read the OS/390 C/C++ IBM Open Class Library Reference for a description of
Comparators, Predicates, and Operations.

The Overall Implementation Structure
To achieve maximum runtime efficiency and ease of use, the Collection Class
Library combines the common features of object-oriented techniques, such as class
hierarchies, polymorphism and late binding, with an efficient class structure that
uses advanced optimization techniques.

24 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Implementation Structure

 Abstract Classes
The SOM concept of abstract classes differs from that in C++. In C++, the abstract
class mechanism supports the notion of a general concept, such as a shape, of
which only more concrete variants, such as square and circle can be used. An
abstract class not only describes the general concept, it also cannot be instantiated.

Another aspect of the abstract base class is the notion of a pure virtual function.
Any child of the parent abstract base class must override each pure virtual function
(method) in order to use the function.

In SOM, there are no virtual functions; however, this C++ concept is similarily valid
for SOM. In SOM, class implementors can use one of the following approaches:

¹ Declare an interface in the parent class to a method that all children must
override and redefine. If the method is not overidden, the parent class will
raise an excpetion.

¹ Declare and define an interface in the parent class
 to a method that the children can either accept as their base definition or can
override and redefine.

The classes in the Collection Class Library are related through a hierarchy of
abstract classes shown in Figure 4 on page 26 and Figure 5 on page 26. The
leaves of the abstract class hierarchy (that is, those classes that have no derived
classes within the abstract class hierarchy tree) define the collection for which
concrete implementations are provided. The lines in the figure represent an is a
relationship from a lower collection to the collection above it. For example, a set is
an equality collection, which is a collection. The names of abstract collections start
with ISA. There are two separate class hierarchies, namely for flat collections with
and without restricted access.

 Chapter 2. Overview of the SOM Cross-language Collection Classes 25

 Implementation Structure

Key
Sorted

Set

Equality
Key Sorted
Collection

Equality
Key

Collection

Key Sorted
Collection

Sorted
Collection

Collection

Equality
Sorted

Collection

Sequential
Collection

Sorted
Relation

Equality
Sequence

Sequence

Sorted
Set

Sorted
Map

Sorted
Bag

Key Sorted
Bag

Set

Bag

Map

RelationKey Bag

Heap

Equality
Collection

Key
Collection

Ordered
Collection

Key Set

Figure 4. Abstract Hierarchy

Sequence QueueStack
Priority
Queue

Restricted Access
Collection

Figure 5. Abstract Hierarchy of Flat Collections with Restricted Access

26 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Creating Collections

Chapter 3. Using the Collection Classes

This chapter describes how to use collection classes.

To use a collection class, you normally follow these steps:

1. Select a collection type to be used in your application.

2. Implement a SOM class by subclassing from ISOps.

3. Create an object of above operations class.

4. Create a collection object of the selected collection type, using the operations
class object as constructor argument.

5. Apply functions to these objects.

6. Check for exceptions by inspecting the environment structure.

Step 3 is described in more detail in “Creating an Operations Class Object” and
step 4 is described in more detail in “Creating Collections” on page 28. All other
steps (except step 1) are illustrated by the various samples provided with this
documentaion.

Creating an Operations Class Object
Before you create a collection you must first create an operations object. The
operations object is required in order to manage elements within a collection. This
object provides important element type and key type specific information to the
collection implementation.

To define an operations object you must subclass from ISOps, for example,

interface AnimalsOps : ISOps {
 ...
 };

 ...

 AnimalsOps animalsOps ;
 ...

animalsOps = (AnimalsOps) AnimalsOpsNew() ;

This class contains the superset of all required operations (methods) in a default
implementation.

 Note!

Each collection requires a certain subset of these operations. See "Required
Operations" in the chapters of the individual collections in “Reference: SOM
Cross-language Collection Classes - Flat Collections” on page 43. See
Chapter 33, “Operations” on page 125 for more information on the default
implementation technique for the single operations. You may want to override
some or all of the operations required by your selected collection.

 Copyright IBM Corp. 1995, 1997 27

 Adding, Removing, and Replacing Elements

 Creating Collections
When you construct the collection object you specify an ISOps subclass instance as
created in “Creating an Operations Class Object” on page 27 within the
constructor:

observations = ISKeyBagNew_ISKeyBag_withOps(ev, animalsOps) ;

After you constructed the collection you must not use the operations any more.
The collection is responsible for the destruction of the operations object.

To construct a collection object, you must use the provided initializer methods only;
do not use any other SOM defined way to construct a collection object.

For example, for a bag, the initializer methods are defined in sbag.idl.

Adding, Removing, and Replacing Elements
You can perform three operations to modify a collection:

¹ Adding elements. Use the add() function and its variants.
¹ Removing elements. Use the remove() function and its variants.
¹ Replacing elements. Use the replace() function and its variants.

 Adding Elements
The function add() places the element identified by its argument into the collection.
After an element has been added, all cursors of the collection become undefined.
Cursors are used to point to elements of the collection; an undefined cursor is one
that might not currently point to a valid element. add() behaves differently
depending on the properties of the collection:

¹ In unique collections, an element is not added if it is already contained in the
collection.

¹ In sorted collections, an element is added according to the ordering relation of
the collection.

¹ In sequential collections, an element is added to the end of the collection.

In general, you can copy one collection to another collection that is initially empty
by iterating through the elements of the first collection and calling add() with each
element as an argument.

For sequential collections, elements can be added at a given position using add
functions other than add(), such as addAtPosition(), addAsFirst(), and
addAsNext(). Elements after and including the given position are shifted. Positions
can be specified by a number, with 1 for the first element, by using the
addAtPosition() function. Positions can also be specified relative to another
element by using the addAsNext() or addAsPrevious() functions, or relative to the
collection as a whole by using the addAsFirst() or addAsLast functions.

Warning: A potential pitfall exists, depending on how you defined element equality;
you may loose object identity when adding an element to a collection.

For example, you defined a Bag of words, with an element equality as
case-insensitive string equality, this means that you do not worry about the case
but only the sequence of the letters. Therefore, the Bag is 'free to forget about

28 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Adding, Removing, and Replacing Elements

case' and adding an element will therefore not guarantee that the case is
remembered later.

Add the elements Word, word, and WORD to an instance of a Bag, in all three of
these cases you will receive the return value true (element added). If you now
iterate through the collection and retrieve the elements one by one you should not
expect to receive back Word, word, and WORD; it may be the case that you will
receive WORD three times.

 Removing Elements
In the Collection Classes, you can remove an element that is pointed to by a given
cursor by using the removeAt() function. All other removal functions operate on the
model of first generating a cursor that refers to the desired position and then
removing the element to which the cursor refers. There is an important difference
between element values and element occurrences. An element value may, for
nonunique collections, occur more than once. The basic remove() function always
removes only one occurrence of an element.

For collections with key equality or element equality, removal functions remove one
or all occurrences of a given key or element. These functions include remove(),
removeElementWithKey(), removeAllOccurrences(), and
removeAllElementsWithKey(). Ordered collections provide functions for removing
an element at a given numbered position. Ordered collections also allow you to
remove the first or last element of a collection using the removeFirst() or
removeLast() functions.

After an element has been removed, all cursors of the collection become undefined.
Therefore, removing all elements with a given property from a collection cannot be
done efficiently using cursors. After you have removed one element with the
property, the entire collection would have to be searched for the next element with
the property. If you want to remove all of the elements in a collection that have a
given property, you should use the function removeAll() and provide a predicate
object as its argument. Refer to Chapter 32, “Predicate” on page 123 for an
example on how to use predicate object.

 Replacing Elements
It is possible to modify collections by replacing the value of an element occurrence.
Adding and removing elements usually changes the internal structure of the
collection. Replacing an element leaves the internal structure unchanged. If an
element of a collection is replaced, the cursors in the collection do not become
undefined.

For collections that are organized according to element properties, such as an
ordering relation, the replace function must not change this element property. For
key collections, the new key must be equal to the key that is replaced. For nonkey
collections with element equality, the new element must be equal to the old element
as defined by the element equality relation. The key or element value that must be
preserved is called the positioning property of the element in the given collection
type.

Sequential collections and heaps do not have a positioning property. Element
values in sequences and heaps can be changed freely. The replaceAt() function
checks whether the replacing element has the same positioning property as the

 Chapter 3. Using the Collection Classes 29

 Cursors

replaced element. (See Chapter 6, “Exception Handling” on page 39 for more
details on preconditions.) When you use the elementAt() function to replace part
of the element value, this check is not performed. If you want to ensure safe
replacement (a replacement that does not change the positioning property), use
replaceAt() rather than elementAt().

 Cursors
A cursor is a reference to an element in a collection. If the position of the element
changes, the cursor is invalidated. This occurs because the cursor refers only to
the position of the element and not to the element itself.

A cursor is always associated with a collection. Cursors are implicitly associated
with a collection by using the respective collection as a cursor factory. Creating a
cursor in a different way than using the collection as cursor factory may result in
undefined behaviour. Each collection function that takes a cursor argument has a
precondition that the cursor actually belongs to the collection. Simple functions,
such as advancing the cursor, are also functions of the cursor itself. For example,
given the following definitions within a C application:

 ...
 ISSet myJobSet;
 ISCursor myCursor;
 ...

myCursor = _newCursor(myJobSet,ev);
 ...

the following two lines of code are functionally equivalent:

 ISCursor_setToNext(myCursor,ev);
 ISSet_setToNext(myJobSet,ev,myCursor);

You have to use the fully qualified method versions because both interfaces provide
methods with the same name.

Cursors and iteration by cursors can be used with any collection. With cursors the
Collection Classes provide:

¹ An iteration scheme that is simpler than using iterators. (See “Iteration Using
Applicators” on page 32.)

¹ The ability to define functions that return cursors. Such functions can give you
fast access to an element if it exists, or indicate the non-existence of an
element by returning an invalid cursor.

Cursors are only temporarily defined. As soon as elements are added to or
removed from the collection, existing cursors become undefined. One of the three
following situations occurs:

1. The cursor is invalidated (isValid() will return 0).
2. The cursor remains valid and points to an element of the collection; however, it

may point to a different element than before.
3. The cursor remains valid but no longer points to an element of the collection.

Do not use an undefined cursor as an argument to a function that requires the
cursor to point to an element of the collection.

30 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Iteration

The abstract class hierarchy defines three methods in order to construct an
appropriate cursor for a given collection:

 ¹ newCursor
 ¹ newElementCursor
 ¹ newOrderedCursor

Only above methods should be used to create cursors.

Using Cursors for Locating and Accessing Elements
Cursors provide a basic mechanism for accessing elements of collection classes.
For each collection, you can define one or more cursors, and you can use these
cursors to access elements. Collection Class functions such as elementAt(),
locate() and removeAt() use cursors to access elements.

Several other functions, such as firstElement() or elementWithKey(), return an
element. They can be thought of as first executing a corresponding cursor function,
such as setToFirst() or locateElementWithKey(), and then accessing the element
using the cursor.

You must determine if the element exists before trying to access it. If its existence
is not known from the context, it must first be checked. To save the extra effort of
locating the desired element twice (once for checking whether it exists and then for
actually retrieving its reference), use the cursor that is returned by the locate
function for fast element access:

if (_locateElementWithKey (myCollection, ev, myCursor)) {
 // ...

myVariable = (MyElement)_elementAt(myCollection, ev, myCursor);
 // ...
 }

The elementAt() function can also be used to replace the value of the referenced
element. You must ensure that the value you are changing does not change the
positioning property of the element with respect to the given collection. See
“Adding, Removing, and Replacing Elements” on page 28 for more details.

Iterating over Collections
Iterating over all or some elements of a collection is a common operation. The
Collection Classes give you two methods of iteration:

 ¹ Using cursors
¹ Using the allElementsDo function together with applicators

Ordered (including sorted) collections have a well-defined ordering of their
elements, while unordered collections have no defined order in which the elements
are visited in an iteration; however, each element is visited exactly once.

You cannot add or remove elements from a collection while you are iterating over a
collection, or all elements may not be visited once. You cannot use any of the
iterations described in this section if you want to remove all of the elements of a
collection that have a certain property. Use the function removeAll() that takes a

 Chapter 3. Using the Collection Classes 31

 Iteration

predicate function as argument. See “Removing Elements” on page 29 for details
on removing elements.

Iteration Using Cursors
Cursor iteration can be done with a for loop. Consider the following example:

 ISSet myCollection;
 MyIntElement currentElement;

// create collection and add elements to collection ...
 // ...

ISCursor myCursor = _newCursor(myCollection,ev);
 for (ISCursor_setToFirst(myCursor,ev);
 ISCursor_isValid(myCursor,ev);
 ISCursor_setToNext(myCursor,ev))
 {
 // ...
 currentElement =
 (MyIntElement) _elementAt(myCollection,ev,myCursor);

// work with currentElement
 // ...
 }

myCollection is an instance of ISSet. This is the default implementation for a Set.
MyIntElement is an interface you derived from SOMObject, you create instances of
MyIntElement and add those to myCollection. The for loop iterates over all
elements stored within the collection. elementAt returns the current element within
a loop iteration.

This code sample does not show any environment tests for possible exceptions.

Note: You should remove multiple elements from a collection using the
removeAll() function, with a predicate function as an argument. See “Adding,
Removing, and Replacing Elements” on page 28 for further details.

Iteration Using Applicators
Cursor iteration has two possible drawbacks:

¹ For unordered collections, the explicit notion of an (arbitrary) ordering may be
undesirable for stylistic reasons. For example, it could mislead you (or another
programmer) into perceiving or exploiting an order where in fact the order does
not exist or is not guaranteed.

¹ Iteration in an arbitrary order might be done more efficiently using something
other than cursors. For example, with tree representations, a recursive descent
iteration may be faster than the cursor navigation, even though the time for
extra function calls must be considered.

The Collection Classes provide the allElementsDo() function that addresses both
drawbacks by calling a function that is applied to all elements. The function returns
a boolean value which is internally used to indicate continuation or ending of the
iteration. For ordered collections, the function is applied in this order. Otherwise
the order is unspecified.

The function that is applied in each iteration step can be given by defining the
function as a method of a user-defined applicator class:

32 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Bounded and Unbounded Collections

¹ As an object of an applicator class : Code the function as a member function
of an applicator class that you create (for example, myApplicatorClass) and let
the applicator apply this function to every element, by using
allElementsDo(...,myApplicatorObject), where myApplicatorObject is an
object of myApplicatorClass.

Note: You should not add or remove elements while using the applicator.

If you use an object of an applicator class, this class must offer an applyTo()
function. It also must be derived from the base class ISApplicator. The applicator
base class is defined in the following way:

interface ISApplicator : SOMObject {
boolean applyTo (in SOMObject element) ;

 // ...
 };

Additional arguments that are needed for the iteration can, for example, be passed
as arguments to the constructor of the derived applicator class. You must define
the function with the given argument and return types.

Bounded and Unbounded Collections
A bounded collection limits the number of elements it can contain. There are no
bounded collections in the Collection Classes; however, the concept of bounded
collections is supported so that you can create your own bounded collection
implementations.

When a bounded collection contains the maximum number of elements, the
collection is said to be bound and full. This condition can be tested by the function
isFull(). If elements are added to a full collection, the exception IFullException
is returned.

You can determine the maximum number of elements in a bounded collection by
calling the function maxNumberOfElements(). You can only call this function if the
collection is bounded. You can determine whether a collection is bounded by
calling the function isBounded().

In the current implementation of the Collection Classes, all collections are
unbounded. The functions isBounded() and isFull() always return 0. The
function maxNumberOfElements() returns the exception INotBoundedException.

 Chapter 3. Using the Collection Classes 33

 Bounded and Unbounded Collections

34 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Element and Key-Type Functions

Chapter 4. Element Functions and Key-Type Functions

This chapter describes the functions that are required by member functions of the
Collection Classes to manipulate elements and keys. The following topic is
discussed:

¹ Element operations and key operations defined through operation classes

Note: Using an operations class is the only way to provide element functions and
key-type functions for the SOM Cross-language Collection Classes.

Introduction to Element Functions and Key-Type Functions
The member functions of the Collection Class Library call other functions to
manipulate elements and keys. These functions are called element functions and
key-type functions, respectively.

Member functions of the Collection Class Library may, for example, need to test the
equality relation between elements. When this is required the application
programmer must help in doing this job.

The element functions that may be required by a given collection are:

 ¹ Assignment
 ¹ Equality test
 ¹ Ordering relation
 ¹ Key access
 ¹ Hash function

The key-type functions that may be required by a given collection are:

 ¹ Equality test
 ¹ Ordering relation
 ¹ Hash function

Note: Where both equality test and ordering relation are required element
functions (or where both are required key-type functions), the library does not
define which of the two is used to determine element or key equality.

The lists above are the superset of all element functions and key-type functions that
a Collection Class could ever require. For example, a collection without keys does
not require any key-type functions, and a collection without element equality does
not require an equality test.

You must subclass from the ISOps interface and override appropriate methods in
order to provide above functions.

You can find examples of these functions in the coding examples in the OS/390
C/C++ IBM Open Class Library Reference.

The Compare() method must return a value that is less than, equal to, or greater
than zero, depending on whether the first argument is less than, equal to, or
greater than the second argument. The two arguments for the Compare() method
are SOM objects and the application programmer usually issues specific methods
against these instances in order to make the decision.

 Copyright IBM Corp. 1995, 1997 35

 Element and Key-Type Functions

Note: As the default implementation of the provided Compare() operation is a
pointer comparison, it is advisable to override this operation.

The hash function must return a value that is less than the second argument; the
hash function should evenly distribute over the range between zero and the second
argument. For equal elements or keys, the hash element must yield equal results.
An efficient hash function is very important to the performance of your program.

For Assign() a default implementation is defined.

You can also use element operation classes in cases where you want to place
elements of one type into more than one collection. For example, suppose you
require a collection that is used to store employee records that can be sorted either
by name or by salary. You can declare an element class Person, and then place
references to each Person instance into each of two collections. In one collection,
the key is the name; in the other, the key is the salary. In your program, you need
to define different element and key-type functions for hashing, comparison, and so
on.

You then need to define two classes, SalaryOps and NameOps, which are derived
from ISOps and which must override appropriate element and key-type methods.

During the construction of the two different sets you specify the two different
operations instances.

36 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Polymorphic Use of Collections

Chapter 5. Polymorphic Use of Collections

This chapter describes how you can use polymorphism in the Collection Classes.

Introduction to Polymorphism
Polymorphism allows you to take an abstract view of an object or function argument
and use any concrete objects or arguments that are derived from this abstract view.
The collection properties defined in “Flat Collections” on page 18 define such
abstract views. They are represented in the form of the class hierarchy in Figure 4
on page 26.

Polymorphic use of collections differs from polymorphism of the element type.

Polymorphic use of collections means that a function can specify an abstract
collection type for its argument, for example ISACollection, and then accept any
concrete collections given as its actual argument.

Each abstract class is defined by its functions and their behavior. The most
abstract view of a collection is a container without any ordering or any specific
element or key properties. Elements can be added to a collection, and a collection
can be iterated over. A polymorphic function on collections might be to print all
elements, such a function is given as an example on page 37.

Example
interface JobPrinter : SOMObject {

void print (in ISACollection jobs) ;

 // ...

 };

interface Job : SOMObject {

 // ...

 };

// use JobId as the key within a Job
interface JobId : SOMObject {

 // ...

 };

... put C++ implementation stubs for print here...

 ISKeySet running;
 JobPrinter printer = JobPrinterNew(0,0);

 // create Job instances and add to running Key Set...

 _print(printer,ev,running);

 Copyright IBM Corp. 1995, 1997 37

 Polymorphic Use of Collections

The print method of JobPrinter is coded to process objects of type
ISACollection. ISKeySet is derived from ISACollection and can be used as
parameter to the print method.

Collections whose elements define equality or key equality provide, in addition to
the common collection functions, functions for retrieving element occurrences by a
given element or key value. Ordered collections provide the notion of a
well-defined ordering of the element occurrences, either by an element ordering
relation or by explicit positioning of elements within a sequence. They define
operations for positional element access. Sorted collections provide no further
functions, but define a more specific behavior, namely that the elements or their
keys are sorted.

These properties are combined through multiple inheritance; the abstract collection
class ISAEqualitySortedCollection, for example, combines the abstract concepts
of element equality and of being sorted, which implies being ordered. If a
polymorphic function uses this class as its argument type, the arguments will be
sorted, and the function can use functions like contains() that are only defined for
collections with element equality.

38 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Exception Handling

 Chapter 6. Exception Handling

This chapter describes the exception-handling facilities provided by member
functions of the Collection Class Library. The following topics are discussed in this
chapter.

¹ Introduction to exception handling
¹ Preconditions and defined behavior
¹ Levels of exception checking
¹ List of exceptions

Introduction to Exception Handling
An exception is a user, logic, or system error that is detected by a function that
does not itself deal with the error, but passes the error to a handling function.
Exceptions can result from two major sources:

¹ The violation of a precondition
¹ The occurrence of an internal system failure or system restriction

In this chapter, two kinds of functions are discussed. A called function is a
Collection Class function that may throw an exception. A calling function is a
function that calls a Collection Class function. The calling function may be a
Collection Class function or a function you have defined.

It is the responsability of the collection class user to check the SOM environment
structure after every collection method call for possible exceptions. In case the
_major field of the current environment has a value other than USER_EXCEPTION the
SOM function somExceptionId() must be called to inspect the exception code. It is
also the user's responsability to free the exception space by calling
somExceptionFree().

Exceptions Caused by Violated Preconditions
A precondition of a called function is a condition that the function requires to be
true when it is called. The calling function must assure that this condition holds.
The called function implementation may assume that the condition holds without
further checking it. If a precondition does not hold, the called function's behavior is
undefined.

If you want to make your programs more robust and to locate errors in the test
phase, the functions your program calls should check to ensure that their
preconditions hold. The Collection Class Library enables this checking through a
specific collection initializer method. Because this checking often requires
significant overhead, it is turned off by default. You need only use it while you are
testing the system and verifying that preconditions are always met.

A call to a function that violates the function's preconditions has two possible
results:

¹ If the called function checks its preconditions, the function will provide an
exception within the current environment structure.

¹ If the function does not check its preconditions, the behavior of the function is
undefined.

 Copyright IBM Corp. 1995, 1997 39

 List of Exceptions

Exceptions Caused by System Failures and Restrictions
System failures and restrictions are different from precondition violations. You
cannot usually anticipate them, and you have no opportunity to verify that such
situations, for example storage overflow, will not occur.

Levels of Exception Checking
Some preconditions are more difficult to check than others. Consider the following
possible preconditions:

1. A cursor for a linked collection implementation still points to an element of a
given collection.

2. A collection is not empty.

In the production version of a program, it may be less efficient to check the first
precondition than the second.

List of Exceptions
The Collection Class Library defines the following exceptions:

Notes:

1. All exceptions contain the prefix ::ISOM; for example,
::ISOMICursorInvalidException

2. The exception string is returned by somExceptionId() and there is no value
returned from somExceptionValue()

 IApplicatorOverrideException
The current applicator argument does not have a valid applyTo() method. You
must subclass from ISApplicator and override the applyTo() method. Then you
must create an instance of your applicator class which must be specified in the
current collection method call.

 IComparatorOverrideException
The current comparator argument does not have a valid compare() method. You
must subclass from ISComparator and override the compare() method. Then you
must create an instance of your comparator class which must be specified in the
current collection method call.

 ICursorInvalidException
Two cursor properties may lead to the ICursorInvalidException:

¹ Every time a cursor is created, you must specify the collection that it belongs
to. If a function takes a cursor as an argument (such as add(), setToFirst(),
and locate()), the function can only be applied to the collection that the cursor
belongs to. If the function is applied to another collection, the result is an
ICursorInvalidException.

¹ If a function takes a cursor as an input argument (such as elementAt(),
removeAt(), and replaceAt()), the cursor must be valid. A cursor is valid if it
actually refers to some element contained in the collection. You can use the
isValid() function to determine if a cursor is valid.

40 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 List of Exceptions

 IEmptyException
Occurs when a function tries to access an element of an empty collection.
Functions that might cause this exception include firstElement() and
removeFirstElement().

 IFullException
Occurs when a function tries to add an element to a bounded collection that is
already full. Functions that might cause this exception include add() and
addAsFirst().

 IIdenticalCollectionException
Occurs when the function addAllFrom() is called with the source collection being
the same as the target collection.

 IInvalidObjectException
A method called for the current collection failed. Most likely the collection initializer
failed. Check if a valid initializer was used. Make sure that the no exception
occured during collection initializing by checking the SOM environment structure
after the initializer call.

 IInvalidReplacementException
Occurs when, during a replaceAt() function, the replacing element has different
positioning properties (see “Replacing Elements” on page 29) than the positioning
properties of the element to be replaced.

 IKeyAlreadyExistsException
Occurs when a function attempts to add an element to a map or sorted map that
already has a different element with the same key. Functions that might cause this
exception include add and addAllFrom().

 INotBoundedException
Occurs when the function maxNumberOfElements() is applied to a collection that is
not bounded.

 INotContainsKeyException
Occurs when the function elementWithKey() is applied to a collection that does not
contain an element with the specified key.

 IOpsInUseException
The specified operations object within the current initializer call is not valid for this
collection. Most likely it is already used for another collection. Each collection must
have its own unique operations object instance. You must not use the same
operations instance for more than one collection.

 IOutOfCollectionMemoryException
Occurs when a function cannot obtain the space that it requires. This exception is
not the result of a precondition violation. Functions that add an element to a
collection, including add() and addAsFirst(), can cause this exception.

 Chapter 6. Exception Handling 41

 List of Exceptions

 IPositionInvalidException
Occurs when a function specifies a position that is not valid in a collection. The
functions that might cause this exception include elementAtPosition(),
removeAtPosition(), and setToPosition().

 IPredicateOverrideException
The current predicate argument does not have a valid evaluateFor() method. You
must subclass from ISPredicate and override the evaluateFor() method. Then you
must create an instance of your predicate class which must be specified in the
current collection method call.

 IRemoteCollectionException
Is not allowed to specify a remote collection as one of the arguments in the current
method call.

 INoSOMObjectException
A specified argument which is supposed to be a SOM object is invalid. It is either
a NIL pointer or the internally called somIsObj() call failed.

 IUserApplicatorException
An exception occured within the user provided code of the overridden
ISApplicator method applyTo().

 IUserComparatorException
An exception occured within the user provided code of the overridden
ISComparator method compare().

 IUserOpsException
An exception occured within the user provided code of an overridden ISOps
method.

 IUserPredicateException
An exception occured within the user provided code of the overridden ISPredicate
method evaluateFor().

42 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

Reference: SOM Cross-language Collection Classes - Flat
Collections

Chapter 7. Introduction to Flat Collections 45
Terms Used . 45

Chapter 8. Flat Collection Member Functions 47

Chapter 9. Bag . 73

Chapter 10. Deque . 75

Chapter 11. Equality Sequence . 77

Chapter 12. Heap . 79

Chapter 13. Key Bag . 81

Chapter 14. Key Set . 83

Chapter 15. Key Sorted Bag . 85

Chapter 16. Key Sorted Set . 87

Chapter 17. Map . 89

Chapter 18. Priority Queue . 91

Chapter 19. Queue . 93

Chapter 20. Relation . 95

Chapter 21. Sequence . 97

Chapter 22. Set . 99

Chapter 23. Sorted Bag . 101

Chapter 24. Sorted Map . 103

Chapter 25. Sorted Relation . 105

Chapter 26. Sorted Set . 107

Chapter 27. Stack . 109

 Copyright IBM Corp. 1995, 1997 43

44 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Flat Collections

Chapter 7. Introduction to Flat Collections

This chapter defines some of the terms used in describing the Collection Class
Library classes, details the format of chapters that describe individual collections,
and describes some types defined by the Collection Class Library.

 Terms Used
INTERF_BASE_NAME

For constructor declarations, this term is used in place of one of
several initializer methods as specified within the appropriate IDL.
For example, a constructor INTERF_BASE_NAME(...) for a Bag,
can really be _ISBag_withOpsnNumber(...) for a C application
programmer. You can find the actual names in the related IDL
files, for example, for a bag, in file sbag.idl. Depending on the
chosen arguments other initializer methods are possible

INTERF_NAME For member function declarations, this term is used in place of
the interface name arguments. For example, if you want to use:

void addIntersection (in INTERF_NAME collection1,
in INTERF_NAME collection2);

for a Bag, substitute ISABag for INTERF_NAME.

INTERF_CORE Denotes the core part of an interface name; for example, Bag is
the core part in ISBag and Map is the core part in ISMap

equal element Refers to equality of elements as defined by the equality
operation or ordering relation provided through the class object
inherited from ISOps when the collection is constructed. Where
both equality operation and ordering relation are provided, the
Collection Class Library may use either to determine element
equality.

given ... Refers to an argument of the described function, such as given
element, given key, or given collection.

iteration order The order in which elements are visited in allElementsDo() and
setToNext() or setToPrevious().

In ordered collections, the element at position 1 will be visited
first, then the element at position 2, and so on. Sorted
collections, in particular, are visited following the ordering relation
provided for the element type.

In collections that are not ordered, the elements are visited in an
arbitrary order. Each element is visited exactly once.

positioning property
The property of an element that is used to position the element in
a collection. For key collections, the positioning property is key
equality. For non-sequential collections with element equality, the
positioning property is element equality. Other collections have
no positioning property.

 Copyright IBM Corp. 1995, 1997 45

 Flat Collections

same key Refers to equality of keys as defined by the equality operation or
ordering relation provided for the key type. Where both equality
operation and ordering relation are provided, the Collection Class
Library may use either to determine key equality.

this collection The collection to which a function is applied. Contrast with the
given collection, which is an argument supplied to a function.
The collection is synonymous with this collection.

undefined cursor
A cursor that may or may not be valid; there is no way to know
whether the cursor is valid or not. An undefined cursor, even if it
remains valid, may refer to a different element than before, or
even to no element of the collection. Do not use cursors, once
they become undefined, in functions that require the cursor to
point to an element of the collection.

Notes:

1. None of the described interfaces are thread-safe.

2. SOM related arguments like the Environment pointer or additional arguments
used within initializer methods are not shown.

3. C and C++ programmers must include ssglobal with the language dependent
suffix before any further collection specific usage bindings are included. The
IDL filestem denotes the filename for the usage binding include file of a
specific collection.

4. Additional to the listed exceptions any method may return the exception
::ISOMIIInvalidObjectException. In case a method requires the specification
of a SOM Object argument the additional exception
::ISOMINoSOMObjectException could be returned.
::ISOMIRemoteCollectionException may be returned if a method allows the
specification of another collection as method argument.

5. Depending on the overwritten methods of the operation's interface ISOps,
several methods may raise the additional exception ::ISOMIUserOpsException.

6. Whenever a method name collides with a method used within an interface not
described in this document it is dependent on the used language bindings if
fully qualified method names must be used. The cross-language SOM
interfaces do not override the following:

 ¹ somDefaultCopyInit,
 ¹ somDefaultAssign
 ¹ somDefaultConstAssign
 ¹ somDefaultConstCopyInit

If the user uses the above methods, unpredictable behavior might occur.

7. If you are a C++ user, and a method requires the specification of an
ISACollection parameter, for example addAllFrom() , you must first cast the
parameter to void *.

46 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Flat Collection Member Functions

Chapter 8. Flat Collection Member Functions

 Initializer Methods
INTERF_BASE_NAME_withCNumber
 (inout somInitCtrl ctrl, in long number, in ICheck check);

INTERF_BASE_NAME_withCOps
 (inout somInitCtrl ctrl, in ISOPs ops, in ICheck check);

INTERF_BASE_NAME_withCOpsnNumber
 (inout somInitCtrl ctrl, in ISOPs ops, in long number, in ICheck check)

INTERF_BASE_NAME_withNumber
 (inout somInitCtrl ctrl, in long number);

INTERF_BASE_NAME_withOps
 (inout somInitCtrl ctrl, in ISOPs ops);

INTERF_BASE_NAME_withOpsnNumber
 (inout somInitCtrl ctrl, in ISOPs ops, in long number);

Constructs a collection, with numberOfElements is the estimated maximum number
of elements contained in the collection. The collection is unbounded and is initially
empty. If the estimated maximum is exceeded, the collection is automatically
enlarged.

INTERF_BASE_NAME_withINTERF_CORE
 (inout somInitCtrl ctrl, in INTERF_BASE_NAME collection);

Constructs a collection and copies all elements from the given
 collection into the collection as described for addAllFrom(),
 in “addAllFrom” on page 48.

Notes:

1. Most collections require the specification of the ops argument. It defines
ordering relations for elements as well as for keys which are required when
storing elements within collections.

2. The check parameter can be set to eCheck, which chooses an internal
implementation variant with extensive precondition checkings.

 Exceptions

 ¹ IOpsInUseException

 Exceptions

 ¹ IOutOfCollectionMemoryException

 Destructor
Removes all elements from the collection. Refer to the OS/390 V1R3.0
SOMobjects User's Guide for information on how to delete a SOMObject.

Side Effects: All cursors of the collection become undefined.

 Copyright IBM Corp. 1995, 1997 47

 Flat Collection Member Functions

 add
boolean add (in SOMObject element) ;

boolean addWithCursor (in SOMObject element,
in ISCursor cursor) ;

If the collection is unique (with respect to elements or keys) and the element or key
is already contained in the collection, the cursor is set to the existing element in the
collection without adding the element. Otherwise, it adds the element to the
collection and sets the cursor to the added element. In sequential collections, the
given element is added as the last element. In sorted collections, the element is
added at a position determined by the element or key value. Adding an element
internally copies a pointer to the element into the collection. See “contains” on
page 55 for the definition of element or key containment. See “Adding Elements”
on page 28 for potential problems associated with an add().

 Preconditions

¹ The cursor must belong to the collection.
¹ If the collection is bounded and unique, the element or key must exist or

(numberOfElements() < maxNumberOfElements()).
¹ If the collection is bounded and nonunique,

(numberOfElements() < maxNumberOfElements()).
¹ If the collection is a map or a sorted map and contains an element with the

same key as the given element, this element must be equal to the given
element.

Side Effects: If an element was added, all cursors of this collection, except the
given cursor, become undefined.

Return Value: Returns 1 if the element was added.

 Exceptions

 ¹ IOutOfCollectionMemoryException
 ¹ ICursorInvalidException
¹ IFullException, if the collection is bounded
¹ IKeyAlreadyExistsException, if the collection is a map or a sorted map

 addAllFrom
void addAllFrom (in ISACollection collection) ;

Adds (copies) all elements of the given collection to the collection. The elements
are added in the iteration order of the given collection. The elements are added
according to the definition of add for this collection. The given collection is not
changed.

Preconditions: Because the elements are added one by one, the following
preconditions are tested for each individual add operation:

¹ If the collection is bounded and unique, the element or key must exist or
(numberOfElements() < maxNumberOfElements()).

¹ If the collection is bounded and nonunique,
(numberOfElements() < maxNumberOfElements()).

48 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Flat Collection Member Functions

¹ If the collection is a map or a sorted map, and contains an element with the
same key as the given element, this element must be equal to the given
element.

Side Effects: If any elements were added, all cursors of this collection become
undefined.

 Exceptions

 ¹ IOutOfCollectionMemoryException
 ¹ IIdenticalCollectionException
¹ IFullException, if the collection is bounded
¹ IKeyAlreadyExistsException, if the collection is a map or a sorted map

 addAsFirst
void addAsFirst (in SOMObject element) ;

void addAsFirstWithCursor (in SOMObject element
in ISCursor cursor) ;

Adds the element to the collection as the first element in sequential order and sets
the cursor to the added element.

 Preconditions

¹ The cursor must belong to the collection.
¹ If the collection is bounded, (numberOfElements() < maxNumberOfElements()).

Side Effects: All cursors of this collection, except the given cursor, become
undefined.

 Exceptions

 ¹ ICursorInvalidException
 ¹ IOutOfCollectionMemoryException
¹ IFullException, if the collection is bounded

 addAsLast
void addAsLast (in SOMObject element) ;

void addAsLastWithCursor (in SOMObject element,
in ISCursor cursor) ;

Adds the element to the collection as the last element in sequential order and sets
the cursor to the added element.

 Preconditions

¹ The cursor must belong to the collection.
¹ If the collection is bounded, (numberOfElements() < maxNumberOfElements()).

Side Effects: All cursors of this collection, except the given cursor, become
undefined.

 Exceptions

 ¹ ICursorInvalidException
 ¹ IOutOfCollectionMemoryException

 Chapter 8. Flat Collection Member Functions 49

 Flat Collection Member Functions

¹ IFullException, if the collection is bounded

 addAsNext
void addAsNext (in SOMObject element,

in ISCursor cursor) ;

Adds the element to the collection as the element following the element pointed to
by the cursor and sets the cursor to the added element.

 Preconditions

¹ The cursor must belong to the collection and must point to an element of the
collection.

¹ If the collection is bounded, (numberOfElements() < maxNumberOfElements()).

Side Effects: All cursors of this collection, except the given cursor, become
undefined.

 Exceptions

 ¹ IOutOfCollectionMemoryException
 ¹ ICursorInvalidException
¹ IFullException, if the collection is bounded

 addAsPrevious
void addAsPrevious (in SOMObject element,

in ISCursor cursor) ;

Adds the element to the collection as the element preceding the element pointed to
by the cursor and sets the cursor to the added element.

 Preconditions

¹ The cursor must belong to the collection and must point to an element of the
collection.

¹ If the collection is bounded, (numberOfElements() < maxNumberOfElements()).

Side Effects: All cursors of this collection, except the given cursor, become
undefined.

 Exceptions

 ¹ IOutOfCollectionMemoryException
 ¹ ICursorInvalidException
¹ IFullException, if the collection is bounded

 addAtPosition
void addAtPosition (in unsigned long position,

in SOMObject element) ;

void addAtPositionWithCursor (in unsigned long position,
in SOMObject element, in ISCursor cursor) ;

Adds the element at the given position to the collection, and sets the cursor to the
added element. If an element exists at the given position, the new element is
added as the element preceding the existing element.

50 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Flat Collection Member Functions

 Preconditions

¹ The cursor must belong to the collection.
¹ (1 ≤ position ≤ numberOfElements + 1).
¹ If the collection is bounded, (numberOfElements() < maxNumberOfElements()).

Side Effects: All cursors of this collection, except the given cursor, become
undefined.

 Exceptions

 ¹ IOutOfCollectionMemoryException
 ¹ ICursorInvalidException
 ¹ IPositionInvalidException
¹ IFullException, if the collection is bounded

 addDifference
void addDifference (in INTERF_NAME collection1,

in INTERF_NAME collection2) ;

Creates the difference between the two given collections, and adds this difference
to the collection. The contents of the added elements, not the pointers to those
elements, are copied.

Note: For a definition of the difference between two collections, see
“differenceWith” on page 56.

Preconditions: Because the elements are added one by one, the following
preconditions are tested for each individual addition.

¹ If the collection is bounded and unique, the element or key must exist or
(numberOfElements() < maxNumberOfElements()).

¹ If the collection is bounded and nonunique,
(numberOfElements() < maxNumberOfElements()).

¹ If the collection is a map or a sorted map and contains an element with the
same key as the given element, this element must be equal to the given
element.

Side Effects: If any elements were added, all cursors of this collection become
undefined.

 Exceptions

 ¹ IOutOfCollectionMemoryException
¹ IFullException, if the collection is bounded
¹ IKeyAlreadyExistsException, if the collection is a map or a sorted map

 addIntersection
void addIntersection (in INTERF_NAME collection1,

in INTERF_NAME collection2) ;

Creates the intersection of the two given collections, and adds this intersection to
the collection.

Note: For a definition of the intersection of two collections, see “intersectionWith”
on page 58.

 Chapter 8. Flat Collection Member Functions 51

 Flat Collection Member Functions

Preconditions: Because the elements are added one by one, the following
preconditions are tested for each individual addition.

¹ If the collection is bounded and unique, the element or key must exist or
(numberOfElements() < maxNumberOfElements()).

¹ If the collection is bounded and nonunique,
(numberOfElements() < maxNumberOfElements()).

¹ If the collection is a map or a sorted map and contains an element with the
same key as the given element, this element must be equal to the given
element.

Side Effects: If any elements were added, all cursors of this collection become
undefined.

 Exceptions

 ¹ IOutOfCollectionMemoryException
¹ IFullException, if the collection is bounded
¹ IKeyAlreadyExistsException, if the collection is a map or a sorted map

 addOrReplaceElementWithKey
boolean addOrReplaceElementWithKey (

in SOMObject element);

boolean addOrReplaceElementWithKeyWithCursor (
in SOMObject element, in ISCursor cursor) ;

If an element is contained in the collection where the key is equal to the key of the
given element, the cursor is set to this element in the collection and replaces it with
the given element. Otherwise, it adds the given element to the collection, and sets
the cursor to the added element. If the given element is added, the contents of the
element, not a pointer to it, is added.

 Preconditions

¹ The cursor must belong to the collection.
¹ If the collection is bounded, an element with the given key must be contained in

the collection, or (numberOfElements() < maxNumberOfElements()).

Side Effects: If the element was added, all cursors of this collection, except the
given cursor, become undefined.

Return Value: Returns 1 if the element was added. Returns 0 if the element was
replaced.

 Exceptions

 ¹ IOutOfMemoryException
 ¹ ICursorInvalidException
¹ IFullException, if the collection is bounded

52 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Flat Collection Member Functions

 addUnion
void addUnion (in INTERF_NAME collection1,

in INTERF_NAME collection2) ;

Creates the union of the two given collections, and adds this union to the collection.

Note: For a definition of the union of two collections, see “unionWith” on page 71.

Preconditions: Because the elements are added one by one, the following
preconditions are tested for each individual addition.

¹ If the collection is bounded and unique, the element or key must exist or
(numberOfElements() < maxNumberOfElements()).

¹ If the collection is bounded and nonunique,
(numberOfElements() < maxNumberOfElements()).

¹ If the collection is a map or a sorted map and contains an element with the
same key as the given element, this element must be equal to the given
element.

Side Effects: If any elements were added, all cursors of this collection become
undefined.

 Exceptions

 ¹ IOutOfCollectionMemoryException
¹ IFullException, if the collection is bounded
¹ IKeyAlreadyExistsException, if the collection is a map or a sorted map

 allElementsDo
boolean allElementsDo (in ISApplicator applicator) ;

Calls the applyTo() method of the given applicator for all elements of the collection
until the applyTo() function returns 0. The elements are visited in iteration order.
(For further details, see “Iteration Using Applicators.”)

Notes:

1. The applyTo() function must not remove elements from or add elements to the
collection. If you want to remove elements, you can use the removeAll()
function with a property argument. For further information, see
“removeAllWithPredicate” on page 66.

2. The applyTo() method must not manipulate the element in the collection in a
way that changes the positioning property of the element.

Return Value: Returns 1 if the applyTo() method returns 1 for every element it is
applied to.

 Exceptions

 ¹ IApplicatorOverrideException
 ¹ IUserApplicatorException

 Chapter 8. Flat Collection Member Functions 53

 Flat Collection Member Functions

 anyElement
SOMObject anyElement () ;

Returns a SOMObject pointer to an arbitrary element of the collection.

Precondition: The collection must not be empty.

 Exceptions

 ¹ IEmptyException

 assign
void assign (in INTERF_NAME collection) ;

Copies the given collection to the collection. Removes all elements from the
collection and adds the elements from the given collection as described for
“addAllFrom” on page 48.

 Preconditions

¹ If the collection is bounded, numberOfElements() of the given collection must be
less than maxNumberOfElements() of this collection.

Side Effects: All cursors of this collection become undefined.

 Exceptions

 ¹ IOutOfCollectionMemoryException
¹ IFullException, if the collection is bounded

 compare
long compare (in INTERF_NAME collection,

in ISComparator comparator) ;

Compares the collection with the given collection. Comparison yields <0 if the
collection is less than the given collection, 0 if the collection is equal to the given
collection, and >0 if the collection is greater than the given collection. Comparison
is defined by the first pair of corresponding elements, in both collections, that are
not equal. If such a pair exists, the collection with the greater element is the
greater one. Otherwise, the collection with more elements is the greater one.

Notes:

1. The compare method of the user's ISComparator subclass object must return a
result according to the following rules:

>0 if (element1 > element2)
0 if (element1 == element2)
<0 if (element1 < element2)

Return Value: Returns the result of the collection comparison.

 Exceptions

 ¹ IComparatorOverrideException
 ¹ IUserComparatorException

54 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Flat Collection Member Functions

 contains
boolean contains (in SOMObject element) ;

Returns 1 if the collection contains an element equal to the given element.

 containsAllFrom
boolean containsAllFrom (in ISACollection collection) ;

Returns 1 if all the elements of the given collection are contained in the collection.
The definition of containment is described in “contains.”

 containsAllKeysFrom
boolean containsAllKeysFrom (in ISACollection collection) ;

Returns 1 if all of the keys of the given collection are contained in the collection.

 containsElementWithKey
boolean containsElementWithKey (in SOMObject key) ;

Returns 1 if the collection contains an element with the same key as the given key.

 copy
void copy (in ISACollection collection) ;

Copies the given collection to this collection, essentially copy() removes all
elements from this collection, and adds the elements from the given collection. For
information on how adding is done, see “addAllFrom” on page 48.

Note: The given collection may be of a concrete type other than the collection
itself. In this case, copying implicitly performs a conversion. If, for example, the
given collection is a bag and the collection itself is a set, elements with multiple
occurrences in the copied bag will only occur once in the resulting set.

Preconditions: Because the elements are copied one by one, the following
preconditions are tested for each individual copy operation:

¹ If the collection is bounded and unique, the element or key must exist or
(numberOfElements() < maxNumberOfElements()).

¹ If the collection is bounded and nonunique,
(numberOfElements() < maxNumberOfElements()).

¹ If the collection is a map or a sorted map and contains an element with the
same key as the given element, this element must be equal to the given
element.

Side Effects: All cursors of this collection become undefined.

 Exceptions

 ¹ IOutOfCollectionMemoryException
¹ IFullException, if the collection is bounded
¹ IKeyAlreadyExistsException, if the collection has unique keys. This exception

may be thrown, for example, when copying a bag into a map.

 Chapter 8. Flat Collection Member Functions 55

 Flat Collection Member Functions

 deque
void Deque () ;

void DequeWithElement (in SOMObject* element) ;

Copies the first element of the collection to the given element, and removes it from
the collection.

Precondition: The collection must not be empty.

Side Effects: All cursors of this collection become undefined.

 Exceptions

 ¹ IEmptyException

 differenceWith
void differenceWith (in INTERF_NAME collection) ;

Makes the collection the difference between the collection and the given collection.
The difference of A and B (A minus B) is the set of elements that are contained in
A but not in B. (and conversely as well).

The following rule applies for bags with duplicate elements:

If bag P contains the element X m times and bag Q contains the element X n
times, the difference of P and Q contains the element X m-n times if m > n, and
zero times if m≤n.

Side Effects: If any elements were removed, all cursors of this collection become
undefined.

 elementAt
SOMObject elementAt (in ISCursor cursor) ;

Returns a SOMObject pointer to the element pointed to by the given cursor.

Note: Do not manipulate the element or the key of the element in the collection in
a way that changes the positioning property of the element.

Precondition: The cursor must belong to the collection and must point to an
element of the collection.

 Exceptions

 ¹ ICursorInvalidException

 elementAtPosition
SOMObject elementAtPosition (

unsigned long position) ;

Returns the element at the given position in the collection.

Position 1 specifies the first element.

56 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Flat Collection Member Functions

Position must be a valid position in the collection; that is,
(1 ≤ position ≤ numberOfElements()).

 Precondition: (1 ≤ position ≤ numberOfElements()).

 Exceptions

 ¹ IPositionInvalidException

 elementWithKey
SOMObject elementWithKey (in SOMObject key) ;

Returns the element specified by the key.

Notes:

Do not manipulate the element in the collection in a way that changes the
positioning property of the element.

1. If there are several elements with the given key, an arbitrary one is returned.

Precondition: The given key is contained in the collection.

 Exceptions

 ¹ INotContainsKeyException

 enqueue
void enqueue (in SOMObject element) ;

void enqueueWithCursor (in SOMObject element,
in ISCursor cursor) ;

Adds the element to the collection, and sets the cursor to the added element. For
ordinary queues, the given element is added as the last element. For priority
queues, the element is added at a position determined by the ordering relation
provided for the element or key type.

 Preconditions

¹ The cursor must belong to the collection.
¹ If the collection is bounded, (numberOfElements() < maxNumberOfElements()).

Side Effects: All cursors of this collection except the given cursor become
undefined.

 Exceptions

 ¹ IOutOfCollectionMemoryException
 ¹ ICursorInvalidException
¹ IFullException, if the collection is bounded

 Chapter 8. Flat Collection Member Functions 57

 Flat Collection Member Functions

 equal
boolean equal (in INTERF_NAME collection) ;

Returns 1 if the given collection is equal to the collection. Two collections are
equal if the number of elements in each collection is the same, and if the condition
for the collection is in conformance with the following list:

Type of Collection Condition

Unique Elements If the collections have unique elements, any element that
occurs in one collection must occur in the other collection.

Non-Unique Elements If an element has n occurrences in one collection, it must
have exactly n occurrences in the other collection.

Sequential The ordering of the elements is the same for both
collections.

 firstElement
SOMObject firstElement () ;

Returns the first element of the collection.

Precondition: The collection must not be empty.

 Exceptions

 ¹ IEmptyException

 intersectionWith
void intersectionWith (in INTERF_NAME collection) ;

Makes the collection the intersection of the collection and the given collection. The
intersection of A and B is the set of elements that is contained in both A and B.

The following rule applies for bags with duplicate elements: If bag P contains the
element X m times and bag Q contains the element X n times, the intersection of P
and Q contains the element X MIN(m,n) times.

Side Effects: If any elements were removed, all cursors of this collection become
undefined.

 isBounded
boolean isBounded () ;

Returns 1 if the collection is bounded.

 isEmpty
boolean isEmpty () ;

Returns 1 if the collection is empty.

58 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Flat Collection Member Functions

 isFirst
boolean isFirst (in ISCursor cursor) ;

Returns 1 if the given cursor points to the first element of the collection.

Preconditions: The cursor must belong to the collection and must point to an
element of the collection.

 Exceptions

 ¹ ICursorInvalidException

 isFull
boolean isFull () ;

Returns 1 if the collection is bounded and contains the maximum number of
elements; that is, if (numberOfElements() == maxNumberOfElements()).

 isLast
boolean isLast (in ISCursor cursor) ;

Returns 1 if the given cursor points to the last element of the collection.

Preconditions: The cursor must belong to the collection and must point to an
element of the collection.

 Exceptions

 ¹ ICursorInvalidException

 key
SOMObject key (in SOMObject element) ;

Returns the key object of the given element using the Key() method provided by
the operations class instance used within the constructor of this collection instance.

 lastElement
SOMObject lastElement () ;

Returns the last element of the collection.

Precondition: The collection must not be empty.

 Exceptions

 ¹ IEmptyException

 locate
boolean locate (in SOMObject element,

in ISCursor cursor) ;

Locates an element in the collection that is equal to the given element. Sets the
cursor to point to the element in the collection, or invalidates the cursor if no such
element exists.

 Chapter 8. Flat Collection Member Functions 59

 Flat Collection Member Functions

If the collection contains several such elements, the first element in iteration order
is located.

Precondition: The cursor must belong to the collection.

Return Value: Returns 1 if an element was found.

 Exceptions

 ¹ ICursorInvalidException

 locateElementWithKey
boolean locateElementWithKey (in SOMObject key,

in ISCursor cursor) ;

Locates an element in the collection with the same key as the given key. Sets the
cursor to point to the element in the collection, or invalidates the cursor if no such
element exists.

If the collection contains several such elements, the first element in iteration order
is located.

Precondition: The cursor must belong to the collection.

Return Value: Returns 1 if an element was found.

 Exceptions

 ¹ ICursorInvalidException

 locateFirst
boolean locateFirst (in SOMObject element,

in ISCursor cursor) ;

Locates the first element in iteration order in the collection that is equal to the given
element. Sets the cursor to the located element, or invalidates the cursor if no
such element exists.

Precondition: The cursor must belong to the collection.

Return Value: Returns 1 if an element was found.

 Exceptions

 ¹ ICursorInvalidException

 locateLast
boolean locateLast (in SOMObject element,

in ISCursor cursor) ;

Locates the last element in iteration order in the collection that is equal to the given
element. Sets the cursor to the located element, or invalidates the cursor if no
such element exists.

Precondition: The cursor must belong to the collection.

60 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Flat Collection Member Functions

Return Value: Returns 1 if an element was found.

 Exceptions

 ¹ ICursorInvalidException

 locateNext
bolean locateNext (in SOMObject element,

in ISCursor cursor) ;

Locates the next element in iteration order in the collection that is equal to the
given element, starting at the element next to the one pointed to by the given
cursor. Sets the cursor to point to the element in the collection. The cursor is
invalidated if the end of the collection is reached and no more occurrences of the
given element are left to be visited.

Note: If you code a call to locateFirst() and a set of calls to locateNext(), each
occurrence of an element will be visited exactly once in iteration order.

Precondition: The cursor must belong to the collection and must point to an
element of the collection.

Return Value: Returns 1 if an element was found.

 Exceptions

 ¹ ICursorInvalidException

 locateNextElementWithKey
boolean locateNextElementWithKey (

in SOMObject key, in ISCursor cursor) ;

Locates the next element in iteration order in the collection with the given key,
starting at the element next to the one pointed to by the given cursor. Sets the
cursor to point to the element in the collection. The cursor is invalidated if the end
of the collection is reached and no more occurrences of such an element are left to
be visited.

Note: If you code a call to locateFirst() and a set of calls to
locateNextElementWithKey(), each occurrence of an element will be visited exactly
once in iteration order.

Preconditions: The cursor must belong to the collection and must point to an
element of the collection.

Return Value: Returns 1 if an element was found.

 Exceptions

 ¹ ICursorInvalidException

 Chapter 8. Flat Collection Member Functions 61

 Flat Collection Member Functions

 locateOrAdd
boolean locateOrAdd (in SOMObject element) ;

boolean locateOrAddWithCursor (in SOMObject element,
in ISCursor cursor) ;

Locates an element in the collection that is equal to the given element; See
“locate” on page 59 for details on locate(). If no such element is found,
locateOrAdd() adds the element as described in “add” on page 48. The cursor is
set to the located or added element.

Note: This method may be more efficient than using locate() followed by a
conditionally called add().

 Preconditions

¹ The cursor must belong to the collection.
¹ If the collection is a map or a sorted map and contains an element with the

same key as the given element, this element must be equal to the given
element.

¹ The element or key must exist, or
(numberOfElements() < maxNumberOfElements()).

Side Effects: If the element was added, all cursors of this collection, except the
given cursor, become undefined.

Return Value: Returns 1 if the element was located. Returns 0 if the element
could not be located but had to be added.

 Exceptions

 ¹ IOutOfCollectionMemoryException
 ¹ ICursorInvalidException
¹ IFullException, if the collection is bounded
¹ IKeyAlreadyExistsException, if the collection is a map or a sorted map

 locateOrAddElementWithKey
boolean locateOrAddElementWithKey (

in SOMObject element) ;

boolean locateOrAddElementWithKeyWithCursor (
in SOMObject element; in ISCursor cursor) ;

Locates an element in the collection with the given key as described for the
locateElementWithKey() function. If no such element exists,
locateOrAddElementWithKey() adds the element as described in “add” on page 48.
The cursor is set to the located or added element.

 Preconditions

¹ If the collection is bounded and an element with the given key is not already
contained, (numberOfElements() < maxNumberOfElements()).

¹ The cursor must belong to the collection.

Side Effects: If the element was added, all cursors of this collection, except the
given cursor, become undefined.

62 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Flat Collection Member Functions

Return Value: Returns 1 if the element was located. Returns 0 if the element
could not be located but had to be added.

 Exceptions

 ¹ IOutOfCollectionMemoryException
 ¹ ICursorInvalidException
¹ IFullException, if the collection is bounded

 locatePrevious
boolean locatePrevious (in SOMObject element,

in ISCursor cursor) ;

Locates the previous element in iteration order that is equal to the given element,
beginning at the element previous to the one specified by the given cursor and
moving in reverse iteration order through the elements. Sets the cursor to the
located element, or invalidates the cursor if no such element exists.

Preconditions: The cursor must belong to the collection and must point to an
element of the collection.

Return Value: Returns 1 if an element was found.

 Exceptions

 ¹ ICursorInvalidException

 maxNumberOfElements
unsigned long maxNumberOfElements () ;

Returns the maximum number of elements the collection can contain.

Precondition: The collection is bounded.

 Exceptions

 ¹ INotBoundedException

 newCursor
ISCursor newCursor () ;

Creates an ISCursor for the collection and returns a pointer to the cursor. The
cursor is initially not valid.

 Exceptions

 ¹ IOutOfCollectionMemoryException

 newElementCursor
ISElementCursor newElementCursor () ;

Creates an ISElementCursor for the collection and returns a pointer to the cursor.
The cursor is initially not valid.

 Chapter 8. Flat Collection Member Functions 63

 Flat Collection Member Functions

 Exceptions

 ¹ IOutOfCollectionMemoryException

 newOrderedCursor
ISOrderedCursor newOrderedCursor () ;

Creates an ISOrderedCursor for the collection and returns a pointer to the cursor.
The cursor is initially not valid.

 Exceptions

 ¹ IOutOfCollectionMemoryException

 notEqual
boolean notEqual (in INTERF_NAME collection) ;

Returns 1 if the given collection is not equal to the collection. For a definition of
equality for collections, see “equal” on page 58.

 numberOfDifferentElements
unsigned long numberOfDifferentElements () ;

Returns the number of different elements in the collection.

 numberOfDifferentKeys
unsigned long numberOfDifferentKeys () ;

Returns the number of different keys in the collection.

 numberOfElements
unsigned long numberOfElements () ;

Returns the number of elements the collection contains.

 numberOfElementsWithKey
unsigned long numberOfElementsWithKey (

in SOMObject key) ;

Returns the number of elements in the collection with the given key.

 numberOfOccurrences
unsigned long numberOfOccurrences (

in SOMObject element) ;

Returns the number of occurrences of the given element in the collection.

 pop
void pop () ;

void popWithElement (in SOMObject* element) ;

Copies the last element of the collection to the given element, and removes it from
the collection.

64 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Flat Collection Member Functions

Precondition: The collection must not be empty.

Side Effects: All cursors of this collection become undefined.

 Exceptions

 ¹ IEmptyException

 position
unsigned long position (in ISCursor cursor) ;

Determines the position of the current element. Position 1 specifies the first
element.

Precondition: The cursor must belong to the collection, and the cursor must point
to an element of the collection.

 Exceptions

 ¹ ICursorInvalidException

 push
void push (in SOMObject element) ;

void pushWithCursor (in SOMObject element,
in ISCursor cursor) ;

Adds the element to the collection as the last element (as defined for “add” on
page 48), and sets the cursor to the added element.

 Preconditions

¹ The cursor must belong to the collection.
¹ If the collection is bounded, (numberOfElements() < maxNumberOfElements()).

Side Effects: All cursors of this collection, except the given cursor, become
undefined.

 Exceptions

 ¹ IOutOfCollectionMemoryException
 ¹ ICursorInvalidException

 remove
boolean remove (in SOMObject element) ;

Removes an element in the collection that is equal to the given element. If no such
element exists, the collection remains unchanged. In collections with nonunique
elements, an arbitrary occurrence of the given element will be removed.

Side Effects: If an element was removed, all cursors of this collection become
undefined.

Return Value: Returns 1 if an element was removed.

 Chapter 8. Flat Collection Member Functions 65

 Flat Collection Member Functions

 removeAll
void removeAll () ;

Removes all elements from the collection.

 Exceptions

 ¹ IPredicateOverrideException
 ¹ IUserPredicateException

Side Effects: All cursors of this collection become undefined.

 removeAllWithPredicate
unsigned long removeAllWithPredicate (

in ISPredicate predicate) ;

Removes all elements from this collection for which the given property function
returns 1.

Side Effects: If any elements were removed, all cursors of this collection become
undefined.

Return Value: The number of elements removed.

 removeAllElementsWithKey
unsigned long removeAllElementsWithKey (in SOMObject key) ;

Removes all elements from the collection with the same key as the given key.

Side Effects: If any elements were removed, all cursors of this collection become
undefined.

Return Value: The number of elements removed.

 removeAllOccurrences
unsigned long removeAllOccurrences (in SOMObject element) ;

Removes all elements from the collection that are equal to the given element, and
returns the number of elements removed.

Side Effects: If any elements were removed, all cursors of this collection become
undefined.

 removeAt
void removeAt (in ISCursor cursor) ;

Removes the element pointed to by the given cursor. The given cursor is
invalidated.

Preconditions: The cursor must belong to the collection and must point to an
element of the collection.

Side Effects: All cursors of this collection, except the given cursor, become
undefined.

66 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Flat Collection Member Functions

 Exceptions

 ¹ ICursorInvalidException

 removeAtPosition
void removeAtPosition (in unsigned long position) ;

Removes the element from the collection that is at the given position.

The first element of the collection has position 1.

Precondition: Position must be a valid position in the collection; that is,
(1 ≤ position ≤ numberOfElements()).

Side Effects: All cursors of this collection become undefined.

 Exceptions

 ¹ IPositionInvalidException

 removeElementWithKey
boolean removeElementWithKey (in SOMObject key) ;

Removes an element from the collection with the same key as the given key. If no
such element exists, the collection remains unchanged. In collections with
nonunique elements, an arbitrary occurrence of such an element will be removed.

Side Effects: If an element was removed, all cursors of this collection become
undefined.

Return Value: Returns 1 if an element was removed.

 removeFirst
void removeFirst () ;

Removes the first element from the collection.

Precondition: The collection must not be empty.

Side Effects: All cursors of this collection become undefined.

 Exceptions

 ¹ IEmptyException

 removeLast
void removeLast () ;

Removes the last element from the collection.

Precondition: The collection must not be empty.

Side Effects: All cursors of this collection become undefined.

 Chapter 8. Flat Collection Member Functions 67

 Flat Collection Member Functions

 Exceptions

 ¹ IEmptyException

 replaceAt
void replaceAt (in ISCursor cursor,

in SOMObject element) ;

Replaces the element pointed to by the cursor with the given element.

 Preconditions

¹ The cursor must belong to the collection and must point to an element of the
collection.

¹ The given element must have the same positioning property as the replaced
element.

 Exceptions

 ¹ ICursorInvalidException
 ¹ IInvalidReplacementException

 replaceElementWithKey
boolean replaceElementWithKey (in SOMObject element) ;

boolean replaceElementWithKeyWithCursor (in SOMObject element,
in ISCursor cursor) ;

Replaces an element with the same key as the given element by the given
element, and sets the cursor to this element. If no such element exists, it
invalidates the cursor. In collections with nonunique elements, an arbitrary
occurrence of such an element will be replaced.

Precondition: The cursor must belong to the collection.

Return Value: Returns 1 if an element was replaced.

 Exceptions

 ¹ ICursorInvalidException

 setToFirst
boolean setToFirst (in ISCursor cursor) ;

Sets the cursor to the first element of the collection in iteration order. If the
collection is empty (if no first element exists), it invalidates the given cursor.

Depending on the final language used this method must be used in its fully
qualified version because the Cursor interface supports the same method.

Precondition: The cursor must belong to the collection.

Return Value: Returns 1 if the collection is not empty.

68 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Flat Collection Member Functions

 Exceptions

 ¹ ICursorInvalidException

 setToLast
boolean setToLast (in ISCursor cursor) ;

Sets the cursor to the last element of the collection in iteration order. If the
collection is empty (if no last element exists), the given cursor is no longer valid.

Depending on the final language used this method must be used in its fully
qualified version because the Cursor interface supports the same method.

Precondition: The cursor must belong to the collection.

Return Value: Returns 1 if the collection is not empty.

 Exceptions

 ¹ ICursorInvalidException

 setToNext
boolean setToNext (in ISCursor cursor) ;

Sets the cursor to the next element in the collection in iteration order. If no more
elements are left to be visited, the given cursor will no longer be valid.

Depending on the final language used this method must be used in its fully
qualified version because the Cursor interface supports the same method.

Precondition: The cursor must belong to the collection and must point to an
element.

Return Value: Returns 1 if there is a next element.

 Exceptions

 ¹ ICursorInvalidException

 setToNextDifferentElement
boolean setToNextDifferentElement (

in ISCursor cursor) ;

Sets the cursor to the next element in iteration order in the collection that is
different from the element pointed to by the given cursor. If no more elements are
left to be visited, the given cursor will no longer be valid.

Precondition: The cursor must belong to the collection and must point to an
element of the collection.

Return Value: Returns 1 if a subsequent element was found that is different.

 Exceptions

 ¹ ICursorInvalidException

 Chapter 8. Flat Collection Member Functions 69

 Flat Collection Member Functions

 setToNextWithDifferentKey
boolean setToNextWithDifferentKey (in ISCursor cursor) ;

Sets the cursor to the next element in the collection in iteration order with a key
different from the key of the element pointed to by the given cursor. If no such
element exists, the given cursor is no longer valid.

Preconditions: The cursor must belong to the collection and must point to an
element of the collection.

Return Value: Returns 1 if a subsequent element was found whose key is
different from the current key.

 Exceptions

 ¹ ICursorInvalidException

 setToPosition
void setToPosition (in unsigned long position,

in ISCursor cursor) ;

Sets the cursor to the element at the given position. Position 1 specifies the first
element.

 Precondition

¹ The cursor must belong to the collection.
¹ Position must be a valid position in the collection; that is,

(1 ≤ position ≤ numberOfElements()).

 Exceptions

 ¹ ICursorInvalidException
 ¹ IPositionInvalidException

 setToPrevious
boolean setToPrevious (in ISCursor cursor) ;

Sets the cursor to the previous element in iteration order, or invalidates the cursor if
no such element exists.

Depending on the final language used this method must be used in its fully
qualified version because the Cursor interface supports the same method.

Preconditions: The cursor must belong to the collection and must point to an
element of the collection.

Return Value: Returns 1 if a previous element exists.

 Exceptions

 ¹ ICursorInvalidException

70 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Flat Collection Member Functions

 sort
void sort (in ISComparator comparator) ;

Sorts the collection so that the elements occur in ascending order. The relation of
two elements is defined by the compare method, which you provide when
subclassing from ISComparator.

Note: The Compare method must deliver a result according to the following rules:

>0 if (element1 > element2)
0 if (element1 == element2)
<0 if (element1 < element2)

Side Effects: All cursors of this collection become undefined.

 top
SOMObject top () ;

Returns the last SOMObject element of the collection.

Precondition: The collection must not be empty.

 Exceptions

 ¹ IEmptyException

 unionWith
void unionWith (in INTERF_NAME collection) ;

Makes the collection the union of the collection and the given collection. The union
of A and B is the set of elements that are members of A or B or both.

The following rule applies for bags with duplicate elements: If bag P contains the
element X m times and bag Q contains the element X n times, the union of P and
Q contains the element X m+n times.

Preconditions: Because the elements from the given collection are added to the
collection one by one, the following preconditions are tested for each individual add
operation :

¹ If the collection is bounded and unique, the element or key must exist or
(numberOfElements() < maxNumberOfElements()).

¹ If the collection is bounded and nonunique,
(numberOfElements() < maxNumberOfElements()).

¹ If the collection is a map or a sorted map and contains an element with the
same key as the given element, this element must be equal to the given
element.

Side Effects: If any elements were added to the collection, all cursors of this
collection become undefined.

 Exceptions

 ¹ IOutOfCollectionMemoryException
¹ IFullException, if the collection is bounded
¹ IKeyAlreadyExistsException, if the collection is a map or a sorted map

 Chapter 8. Flat Collection Member Functions 71

 Flat Collection Member Functions

72 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Bag

 Chapter 9. Bag

A Bag is an unordered collection of zero or more elements with no key. Multiple
elements are supported. A request to add an element that already exists is not
ignored.

Figure 4 on page 26 gives an overview of the properties of a Bag and its
relationship to other flat collections.

An example of using a Bag is a program for entering observations on species of
plants and animals found in a river. Each time you spot a plant or an animal in the
river, you enter the name of the species into the collection. If you spot a species
twice during an observation period, the species is added twice, because a Bag
supports multiple elements. You can locate the name of a species that you have
observed, and you can determine the number of observations of that species;
however, you cannot sort the collection by species (because a Bag is an unordered
collection). To sort the elements of a Bag you should use a Sorted Bag instead.

The following rule applies for duplicates: If Bag P contains the element X m times
and Bag Q contains the element X n times, then the union of P and Q contains the
element X m+n times, the intersection of P and Q contains the element X MIN(m,n)
times, and the difference of P and Q contains the element X m-n times if m is > n,
and zero times if m is ≤ n.

 Derivation
Collection
 Equality Collection
 Bag

Interface Name Filestem

ISBag sbag

 Members
All member functions of flat collections are described in Chapter 7, “Introduction to
Flat Collections” on page 45. The following members are provided for Bag:

Method Page Method Page

add 48 isBounded 58
addAllFrom 48 isEmpty 58
addDifference 51 isFull 59
addIntersection 51 locate 59
addUnion 53 locateNext 61
allElementsDo 53 locateOrAdd 62
anyElement 54 maxNumberOfElements 63
assign 54 newCursor 63
contains 55 newElementCursor 63
containsAllFrom 55 notEqual 64
copy 55 numberOfDifferentElements 64
Destructor 47 numberOfElements 64
differenceWith 56 numberOfOccurrences 64
elementAt 56 remove 65
equal 58 removeAllOccurrences 66
Initializer Method 47 removeAll 66
intersectionWith 58 removeAt 66

 Copyright IBM Corp. 1995, 1997 73

 Bag

Method Page Method Page

replaceAt 68 setToNextDifferentElement 69
setToFirst 68 unionWith 71
setToNext 69

You can use an ISElementCursor with a Bag. The members for ISElementCursor
are described in Chapter 29, “Cursor” on page 115.

 Required Operations
For ISBag, the operations listed below are required for the element type. You can
either use the default operations from ISOps or override them with your own
implementation.

Element Type

 ¹ Assign()
 ¹ Equal()
 ¹ Compare()

74 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Deque

 Chapter 10. Deque

A Deque or double-ended queue is a sequence with restricted access. It is an
ordered collection of elements with no key and no element equality. The elements
are arranged so that each collection has a first and a last element, each element
except the last has a next element, and each element but the first has a previous
element. You can only add or remove the first or last element.

The type and value of the elements are irrelevant, and have no effect on the
behavior of the collection.

An example of using a Deque is a program for managing a lettuce warehouse.
Cases of lettuce arriving into the warehouse are registered at one end of the queue
(the “fresh” end) by the receiving department. The shipping department reads the
other end of the queue (the “old” end) to determine which case of lettuce to ship
next. If an order was to come in for very fresh lettuce, which is sold at a premium,
the shipping department reads the “fresh” end of the queue to select the freshest
case of lettuce available.

 Derivation
Collection
 Ordered Collection
 Sequential Collection
 Sequence
 Deque

Note that Deque is based on sequence but is not actually. See “Restricted Access”
for further details.

Interface Name Filestem

ISDeque sdqu

 Members
All members of flat collections are described in Chapter 7, “Introduction to Flat
Collections” on page 45. The following members are provided for Deque:

Method Page Method Page

add 48 isFull 59
addAllFrom 48 isLast 59
addAsFirst 49 lastElement 59
addAsLast 49 maxNumberOfElements 63
allElementsDo 53 newCursor 63
anyElement 54 newElementCursor 63
assign 54 newOrderedCursor 64
compare 54 numberOfElements 64
copy 55 position 65
Destructor 47 removeAll 66
elementAt 56 removeFirst 67
elementAtPosition 56 removeLast 67
firstElement 58 setToFirst 68
Initializer Method 47 setToLast 69
isBounded 58 setToNext 69
isEmpty 58 setToPosition 70
isFirst 59 setToPrevious 70

 Copyright IBM Corp. 1995, 1997 75

 Deque

You can use an ISOrderedCursor with a Deque. The members for ISOrderedCursor
are described in Chapter 29, “Cursor” on page 115.

 Required Operations
For ISDeque, the operations listed below are required for the element type. You
can either use the default operations from ISOps or override them with your own
implementation.

Element Type

 ¹ Assign()

A coding example for a Deque is provided in the appendix in “Coding Example for
Deque” on page 149.

76 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Equality Sequence

 Chapter 11. Equality Sequence

An Equality Sequence is an ordered collection of elements. The elements are
arranged so that each collection has a first and a last element, each element
except the last has a next element, and each element but the first has a previous
element. An Equality Sequence supports element equality, which gives you the
ability, for example, to search for particular elements.

An example of using an Equality Sequence is a program that calculates members
of the Fibonacci sequence and places them in a collection with multiple elements of
the same value being allowed. For example, the sequence begins with two
instances of the value 1. You can search for a given element, for example 8, and
find out what element follows it in the sequence. Element equality allows you to
accomplish this using the locate() and setToNext() functions.

 Derivation
Collection
 Equality Collection
 Sequential Collection
 Equality Sequence

Figure 2 on page 19 illustrates the properties of an Equality Sequence and its
relationship to other flat collections.

Interface Name Filestem

ISEqualitySequence ses

 Members
All members of flat collections are described in Chapter 7, “Introduction to Flat
Collections” on page 45. The following members are provided for Equality
Sequence:

Method Page Method Page

add 48 isEmpty 58
addAllFrom 48 isFirst 59
addAsFirst 49 isFull 59
addAsLast 49 isLast 59
addAsNext 50 lastElement 59
addAsPrevious 50 locate 59
addAtPosition 50 locateFirst 60
allElementsDo 53 locateLast 60
anyElement 54 locateNext 61
assign 54 locateOrAdd 62
compare 54 locatePrevious 63
contains 55 maxNumberOfElements 63
containsAllFrom 55 newCursor 63
copy 55 newElementCursor 63
Destructor 47 newOrderedCursor 64
elementAt 56 notEqual 64
elementAtPosition 56 numberOfElements 64
equal 58 numberOfOccurrences 64
firstElement 58 position 65
Initializer Method 47 remove 65
isBounded 58 removeAll 66

 Copyright IBM Corp. 1995, 1997 77

 Equality Sequence

Method Page Method Page

removeAllOccurrences 66 setToNext 69
removeAt 66 setToPosition 70
removeAtPosition 67 setToPrevious 70
removeFirst 67 sort 71
removeLast 67
replaceAt 68
setToFirst 68
setToLast 69

You can use an ISOrderedCursor with an Equality Sequence. The members for
ISOrderedCursor are described in Chapter 29, “Cursor” on page 115.

 Required Operations
For ISEqualitySequence, the operations listed below are required for the element
type. You can either use the default operations from ISOps or override them with
your own implementation.

Element Type

 ¹ Assign()
 ¹ Equal()

78 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Heap

 Chapter 12. Heap

A Heap is an unordered collection of zero or more elements with no key. Element
equality is not supported, while multiple elements are supported. The type and
value of the elements are irrelevant, and have no effect on the behavior of the
Heap.

You can compare using a Heap collection to managing the scrap metal entering a
scrapyard. Pieces of scrap are placed in the Heap in an arbitrary location, and an
element can be added multiple times (for example, you could have a rear left
fender from a particular kind of car). When a customer requests a certain amount
of scrap, elements are removed from the Heap in an arbitrary order until the
required amount is reached. You cannot search for a specific piece of scrap
except by examining each piece of scrap in the Heap and manually comparing it to
the piece you are looking for.

Figure 2 on page 19 illustrates the properties of a Heap and its relationship to
other flat collections.

 Derivation
Collection
 Heap

Interface Name Filestem

ISHeap shp

 Members
All members of flat collections are described in Chapter 7, “Introduction to Flat
Collections” on page 45. The following members are provided for Heap:

Method Page Method Page

add 48 maxNumberOfElements 63
addAllFrom 48 newCursor 63
allElementsDo 53 newElementCursor 63
anyElement 54 numberOfElements 64
assign 54 removeAll 66
copy 55 removeAt 66
Destructor 47 replaceAt 68
elementAt 56 setToFirst 68
Initializer Method 47 setToNext 69
isBounded 58
isEmpty 58
isFull 59

You can use an ISElementCursor with a Heap. The members for ISElementCursor.
are described in Chapter 29, “Cursor” on page 115.

 Copyright IBM Corp. 1995, 1997 79

 Heap

 Required Operations
For ISHeap, the operations listed below are required for the element type. You can
either use the default operations from ISOps or override them with your own
implementation.

Element Type

 ¹ Assign()

80 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Key Bag

 Chapter 13. Key Bag

A key bag is an unordered collection of zero or more elements that have a key.
Multiple elements are supported.

An example of using a Key Bag is a program that manages the distribution of
combination locks to members of a fitness club. The element key is the number
that is printed on the back of each combination lock. Each element also has data
members for the club member's name, membership number, and so on. When
you join the club, you are given one of the available combination locks, and your
name, membership number, and the number on the combination lock are entered
into the collection. Because a given number on a combination lock may appear on
several locks, the program allows the same lock number to be added to the
collection multiple times. When you return a lock because you are leaving the club,
the program finds each element whose key matches your lock's serial number, and
deletes one such element that has your name associated with it.

Figure 3 on page 23 illustrates the differences in behavior between map, relation,
key set, and key bag when identical elements and elements with the same key are
added.

 Derivation
Collection
 Key Collection
 Key Bag

Figure 2 on page 19 gives an overview of the properties of a key bag and its
relationship to other flat collections.

Interface Name Filestem

ISKeyBag skb

 Members
All members of flat collections are described in Chapter 7, “Introduction to Flat
Collections” on page 45. The following members are provided for key bag:

Method Page Method Page

add 48 locateElementWithKey 60
addAllFrom 48 locateNextElementWithKey 61
addOrReplaceElementWithKey 52 locateOrAddElementWithKey 62
allElementsDo 53 maxNumberOfElements 63
anyElement 54 newCursor 63
assign 54 newElementCursor 63
containsAllKeysFrom 55 numberOfDifferentKeys 64
containsElementWithKey 55 numberOfElements 64
copy 55 numberOfElementsWithKey 64
Destructor 47 removeAll 66
elementAt 56 removeAllElementsWithKey 66
elementWithKey 57 removeAt 66
Initializer Method 47 removeElementWithKey 67
isBounded 58 replaceAt 68
isEmpty 58 replaceElementWithKey 68
isFull 59 setToFirst 68
key 59 setToNext 69

 Copyright IBM Corp. 1995, 1997 81

 Key Bag

Method Page

setToNextWithDifferentKey 70

You can use an ISElementCursor with a KeyBag. The members for
ISElementCursor are described in Chapter 29, “Cursor” on page 115.

 Required Operations
For ISKeyBag, the operations listed below are required for the element type and key
type. You can either use the default operations from ISOps or override them with
your own implementation.

Element Type

 ¹ Assign()
 ¹ Key()

Key Type

 ¹ KeyEqual
 ¹ KeyHash

A coding example for a key bag is provided in the appendix in “Coding Example for
Key Bag” on page 156.

82 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Key Set

 Chapter 14. Key Set

A Key Set is an unordered collection of zero or more elements that have a key;
element equality is not supported and only unique elements are supported, in terms
of their key.

An example of using a Key Set is a program that allocates rooms to patrons
checking into a hotel. The room number serves as the element's key, and the
patron's name is a data member of the element. When you check in at the front
desk, the clerk pulls a room key from the board, and enters that key's number and
your name into the collection. When you return the key at check-out time, the
record for that key is removed from the collection. You cannot add an element to
the collection that is already present, because there is only one key for each room.
If you attempt to add an element that is already present, the add() function returns
false to indicate that the element was not added.

Figure 3 on page 23 illustrates the differences in behavior between map, relation,
key set, and key bag when identical elements and elements with the same key are
added.

Figure 2 on page 19 gives an overview of the properties of a Key Set and its
relationship to other flat collections.

 Derivation
Collection
 Key Collection
 Key Set

Interface Name Filestem

ISKeySet sks

 Members
All members of flat collections are described in Chapter 7, “Introduction to Flat
Collections” on page 45. The following members are provided for Key Set:

Method Page Method Page

add 48 locateOrAddElementWithKey 62
addAllFrom 48 maxNumberOfElements 63
addOrReplaceElementWithKey 52 newCursor 63
allElementsDo 53 newElementCursor 63
anyElement 54 numberOfElements 64
assign 54 removeAll 66
containsAllKeysFrom 55 removeAt 66
containsElementWithKey 55 removeElementWithKey 67
copy 55 replaceAt 68
Destructor 47 replaceElementWithKey 68
elementAt 56 setToFirst 68
elementWithKey 57 setToNext 69
Initializer Method 47
isBounded 58
isEmpty 58
isFull 59
key 59
locateElementWithKey 60

 Copyright IBM Corp. 1995, 1997 83

 Key Set

You can also an ISElementCursor with a KeySet. The members for
ISElementCursor are described in Chapter 29, “Cursor” on page 115.

 Required Operations
For ISKeySet, the operations listed below are required for the element type and key
type. You can either use the default operations from ISOps or override them with
your own implementation.

Element Type

 ¹ Assign()
 ¹ Key()

Key Type

 ¹ KeyCompare

84 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Key Sorted Bag

Chapter 15. Key Sorted Bag

A Key Sorted Bag is an ordered collection of zero or more elements that have a
key. Elements are sorted according to the value of their key field; element equality
is not supported while multiple elements are.

An example of using a Key Sorted Bag is a program that maintains a list of
families, sorted by the number of family members in each family. The key is the
number of family members. You can add an element whose key is already in the
collection (because two families can have the same number of members), and you
can generate a list of families sorted by size; however, you cannot locate a family
except by its key, because a Key Sorted Bag does not support element equality.

Figure 2 on page 19 gives an overview of the properties of a Key Sorted Bag and
its relationship to other flat collections.

 Derivation
 Collection
 Ordered Collection
 Key Collection Sorted Collection

Key Sorted Collection
Key Sorted Bag

Interface Name Filestem

ISKeySortedBag sksb

 Members
All members of flat collections are described in Chapter 7, “Introduction to Flat
Collections” on page 45. The following members are provided for Key Sorted Bag:

Method Page Method Page

add 48 locateElementWithKey 60
addAllFrom 48 locateNextElementWithKey 61
addOrReplaceElementWithKey 52 locateOrAddElementWithKey 62
allElementsDo 53 maxNumberOfElements 63
anyElement 54 newCursor 63
assign 54 newElementCursor 63
compare 54 newOrderedCursor 64
containsAllKeysFrom 55 numberOfDifferentKeys 64
containsElementWithKey 55 numberOfElements 64
copy 55 numberOfElementsWithKey 64
Destructor 47 position 65
elementAt 56 removeAll 66
elementAtPosition 56 removeAllElementsWithKey 66
elementWithKey 57 removeAt 66
firstElement 58 removeAtPosition 67
Initializer Method 47 removeElementWithKey 67
isBounded 58 removeFirst 67
isEmpty 58 removeLast 67
isFirst 59 replaceAt 68
isFull 59 replaceElementWithKey 68
isLast 59 setToFirst 68
key 59 setToLast 69
lastElement 59 setToNext 69

 Copyright IBM Corp. 1995, 1997 85

 Key Sorted Bag

Method Page Method Page

setToNextWithDifferentKey 70 setToPrevious 70
setToPosition 70

You can use an ISOrderedCursor with a KeySorted Bag. The members for
ISOrderedCursor are described in Chapter 29, “Cursor” on page 115.

 Required Operations
For ISKeySortedBag, the operations listed below are required for the element type
and key type. You can either use the default operations from ISOps or override
them with your own implementation.

Element Type

 ¹ Assign()
 ¹ Key()

Key Type

 ¹ KeyCompare

86 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Key Sorted Set

Chapter 16. Key Sorted Set

A Key Sorted Set is an ordered collection of zero or more elements that have a
key. Elements are sorted according to the value of their key field. Element
equality is not supported and only elements with unique keys are supported;
requests to add an element whose key already exists are ignored.

An example of using a Key Sorted Set is a program that keeps track of canceled
credit card numbers and the individuals to whom they are issued. Each card
number occurs only once, and the collection is sorted by card number. When a
merchant enters a customer's card number into a point-of-sale terminal, the
collection is checked to see if that card number is listed in the collection of
canceled cards. If it is found, the name of the individual is shown, and the
merchant is given directions for contacting the credit card company. If the card
number is not found, the transaction can proceed because the card is considered to
be valid. A list of canceled cards is printed out each month, sorted by card
number, and distributed to all merchants who do not have an automatic
point-of-sale terminal installed.

Figure 2 on page 19 gives an overview of the properties of a Key Sorted Set and
its relationship to other flat collections.

 Derivation
 Collection
 Ordered Collection
 Key Collection Sorted Collection

Key Sorted Collection
Key Sorted Set

Interface Name Filestem

ISKeySortedSet skss

 Members
All members of flat collections are described in Chapter 7, “Introduction to Flat
Collections” on page 45. The following members are provided for Key Sorted Set:

Method Page Method Page

add 48 isFirst 59
addAllFrom 48 isFull 59
addOrReplaceElementWithKey 52 isLast 59
allElementsDo 53 key 59
anyElement 54 lastElement 59
assign 54 locateElementWithKey 60
compare 54 locateNextElementWithKey 61
containsAllKeysFrom 55 locateOrAddElementWithKey 62
containsElementWithKey 55 maxNumberOfElements 63
copy 55 newCursor 63
Destructor 47 newElementCursor 63
elementAt 56 newOrderedCursor 64
elementAtPosition 56 numberOfElements 64
elementWithKey 57 position 65
firstElement 58 removeAll 66
Initializer Method 47 removeAt 66
isBounded 58 removeAtPosition 67
isEmpty 58 removeElementWithKey 67

 Copyright IBM Corp. 1995, 1997 87

 Key Sorted Set

Method Page Method Page

removeFirst 67 setToNext 69
removeLast 67 setToPosition 70
replaceAt 68 setToPrevious 70
replaceElementWithKey 68
setToFirst 68
setToLast 69

You can use an ISOrderedCursor with a KeySortedSet. The members for
ISOrderedCursor are described in Chapter 29, “Cursor” on page 115.

 Required Operations
For ISKeySortedSet, the operations listed below are required for the element type
and key type. You can either use the default operations from ISOps or override
them with your own implementation.

Element Type

 ¹ Assign()
 ¹ Key()

Key Type

 ¹ KeyCompare

88 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Map

 Chapter 17. Map

A Map is an unordered collection of zero or more elements that have a key.
Element equality is supported and the values of the elements are relevant.

Only elements with unique keys are supported. A request to add an element
whose key already exists in another element of the collection causes an exception
to be thrown and the request to add a duplicate element is ignored.

An example of using a Map is a program that translates integer values between the
ranges of 0 and 20 to their written equivalents, or between written numbers and
their numeric values. Two Maps are created, one with the integer values as keys,
one with the written equivalents as keys. You can enter a number, and that
number is used as a key to locate the written equivalent. You can enter a written
equivalent of a number, and that text is used as a key to locate the value. A given
key always matches only one element. You cannot add an element with a key of 1
or “one” if that element is already present in the collection.

Figure 3 on page 23 illustrates the differences in behavior between Map, relation,
key set, and key bag when identical elements and elements with the same key are
added.

Figure 2 on page 19 gives an overview of the properties of a Map and its
relationship to other flat collections.

 Derivation
 Collection
 Key Collection Equality Collection

Equality Key Collection
 Map

Interface Name Filestem

ISMap smap

 Members
All members of flat collections are described in Chapter 7, “Introduction to Flat
Collections” on page 45. The following members are provided for Map:

Method Page Method Page

add 48 differenceWith 56
addAllFrom 48 elementAt 56
addDifference 51 elementWithKey 57
addIntersection 51 equal 58
addOrReplaceElementWithKey 52 Initializer Method 47
addUnion 53 intersectionWith 58
allElementsDo 53 isBounded 58
anyElement 54 isEmpty 58
assign 54 isFull 59
contains 55 key 59
containsAllFrom 55 locate 59
containsAllKeysFrom 55 locateElementWithKey 60
containsElementWithKey 55 locateOrAdd 62
copy 55 locateOrAddElementWithKey 62
Destructor 47 maxNumberOfElements 63

 Copyright IBM Corp. 1995, 1997 89

 Map

Method Page Method Page

newCursor 63 replaceAt 68
newElementCursor 63 replaceElementWithKey 68
notEqual 64 setToFirst 68
numberOfElements 64 setToNext 69
remove 65 unionWith 71
removeAll 66
removeAt 66
removeElementWithKey 67

You can use an ISElementCursor with a SortedMap The members for
ISElementCursor are described in Chapter 29, “Cursor” on page 115.

 Required Operations
For ISMap, the operations listed below are required for the element type and key
type. You can either use the default operations from ISOps or override them with
your own implementation.

Element Type

 ¹ Assign()
 ¹ Equal()
 ¹ Key()

Key Type

 ¹ KeyCompare

90 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Priority Queue

 Chapter 18. Priority Queue

A Priority Queue is a key sorted bag with restricted access. It is an ordered
collection of zero or more elements. Keys and multiple elements are supported
and element equality is not supported.

When an element is added, it is placed in the queue according to its key value or
priority. The highest priority is indicated by the lowest key value and you can only
remove the element with the highest priority. Within the Priority Queue, elements
are sorted according to ascending key values, as in other key collections. You can
only remove the element with the lowest key value.

For elements with equal priority, the Priority Queue has a first-in, first-out behavior.

An example of a Priority Queue is a program used to assign priorities to service
calls in a heating repair firm. When a customer calls with a problem, a record with
the customer's name and the seriousness of the situation is placed in a Priority
Queue. When a service person becomes available, customers are chosen by the
program beginning with those whose situation is most severe. In this example, a
serious problem such as a nonfunctioning furnace would be indicated by a low
value for the priority, and a minor problem such as a noisy radiator would be
indicated by a high value for the priority.

 Derivation
Key Sorted Collection

Key Sorted Bag
 Priority Queue

Note that Priority Queue is based on key sorted bag but is not actually derived from
it or from the other classes shown above. The diagram does not show all bases of
Priority Queue. See Figure 4 on page 26 for a complete illustration. See
“Restricted Access” for further details.

Interface Name Filestem

ISPriorityQueue spqu

 Members
All members of flat collections are described in Chapter 7, “Introduction to Flat
Collections” on page 45. The following members are provided for Priority Queue:

Method Page Method Page

add 48 elementAtPosition 56
addAllFrom 48 elementWithKey 57
allElementsDo 53 enqueue 57
anyElement 54 firstElement 58
assign 54 Initializer Method 47
compare 54 isBounded 58
containsAllKeysFrom 55 isEmpty 58
containsElementWithKey 55 isFirst 59
copy 55 isFull 59
Destructor 47 isLast 59
dequeue 56 key 59
elementAt 56 lastElement 59

 Copyright IBM Corp. 1995, 1997 91

 Priority Queue

Method Page Method Page

locateElementWithKey 60 setToLast 69
locateNextElementWithKey 61 setToNext 69
locateOrAddElementWithKey 62 setToNextWithDifferentKey 70
maxNumberOfElements 63 setToPosition 70
newCursor 63 setToPrevious 70
newElementCursor 63
newOrderedCursor 64
numberOfDifferentKeys 64
numberOfElements 64
numberOfElementsWithKey 64
position 65
removeAll 66
removeFirst 67
setToFirst 68

You can use an ISOrderedCursor with a PriorityQueue. The members for
ISOrderedCursor are described in Chapter 29, “Cursor” on page 115.

 Required Operations
For ISPriorityQueue, the operations listed below are required for the element type
and key type. You can either use the default operations from ISOps or override
them with your own implementation.

Element Type

 ¹ Assign()
 ¹ Key()

Key Type

 ¹ KeyCompare

92 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Queue

 Chapter 19. Queue

A Queue is a sequence with restricted access. It is an ordered collection of
elements with no key and no element equality. The elements are arranged so that
each collection has a first and a last element, each element except the last has a
next element, and each element but the first has a previous element. The type and
value of the elements are irrelevant, and have no effect on the behavior of the
collection.

You can only add an element as the last element, and you can only remove the
first element. Consequently, the elements of a Queue are in chronological order.

A Queue is characterized by a first-in, first-out (FIFO) behavior.

An example of using a Queue is a program that processes requests for parts at the
cash sales desk of a warehouse. A request for a part is added to the Queue when
the customer's order is taken, and is removed from the Queue when an order
picker receives the order form for the part. Using a Queue collection in such an
application ensures that all orders for parts are processed on a first-come
first-served basis.

 Derivation
Collection
 Ordered Collection
 Sequential Collection
 Sequence
 Queue

Note that Queue is based on sequence but is not actually derived from it or from
the other classes shown above. See “Restricted Access” for further details.

Interface Name Filestem

ISQueue squ

 Members
All members of flat collections are described in Chapter 7, “Introduction to Flat
Collections” on page 45. The following members are provided for Queue:

Method Page Method Page

add 48 isBounded 58
addAllFrom 48 isEmpty 58
addAsLast 49 isFirst 59
allElementsDo 53 isFull 59
anyElement 54 isLast 59
assign 54 lastElement 59
compare 54 maxNumberOfElements 63
copy 55 newCursor 63
dequeue 56 newElementCursor 63
Destructor 47 newOrderedCursor 64
elementAt 56 numberOfElements 64
elementAtPosition 56 position 65
enqueue 57 removeAll 66
firstElement 58 removeFirst 67
Initializer Method 47 setToFirst 68

 Copyright IBM Corp. 1995, 1997 93

 Queue

Method Page Method Page

setToLast 69 setToNext 69
setToPosition 70
setToPrevious 70

You can use an ISOrderedCursor with a Queue. The members for ISOrderedCursor
are described in Chapter 29, “Cursor” on page 115.

 Required Operations
For ISQueue, the operations listed below are required for the element type. You
can either use the default operations from ISOps or override them with your own
implementation.

Element Type

 ¹ Assign()

94 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Relation

 Chapter 20. Relation

A Relation is an unordered collection of zero or more elements that have a key.
Element equality is supported, and the values of the elements are relevant.

The keys of the elements are not unique. You can add an element whether or not
there is already an element in the collection with the same key.

Figure 3 on page 23 illustrates the differences in behavior between map, Relation,
key set, and key bag when identical elements and elements with the same key are
added.

An example of using a Relation is a program that maintains a list of all your
relatives, with an individual's relationship, to you, as the key. You can add an aunt,
uncle, grandmother, daughter, father-in-law, and so on. You can add an aunt even
if an aunt is already in the collection, because you can have several relatives who
have the same relationship to you. (For unique relationships such as mother or
father, your program would have to check the collection to make sure it did not
already contain a family member with that key, before adding the family member.)
You can locate a member of the family, but the family members are not in any
particular order.

Figure 2 on page 19 gives an overview of the properties of a relation and its
relationship to other flat collections.

 Derivation
 Collection
Key Collection Equality Collection

Equality Key Collection
 Relation

Interface Name Filestem

ISRelation srel

 Members
All members of flat collections are described in Chapter 7, “Introduction to Flat
Collections” on page 45. The following members are provided for relation:

Method Page Method Page

add 48 elementAt 56
addAllFrom 48 elementWithKey 57
addDifference 51 equal 58
addIntersection 51 Initializer Method 47
addOrReplaceElementWithKey 52 intersectionWith 58
addUnion 53 isBounded 58
allElementsDo 53 isEmpty 58
anyElement 54 isFull 59
assign 54 key 59
contains 55 locate 59
containsAllFrom 55 locateElementWithKey 60
containsAllKeysFrom 55 locateNextElementWithKey 61
containsElementWithKey 55 locateOrAdd 62
copy 55 locateOrAddElementWithKey 62
Destructor 47 maxNumberOfElements 63
differenceWith 56 newCursor 63

 Copyright IBM Corp. 1995, 1997 95

 Relation

Method Page Method Page

newElementCursor 63 removeAt 66
notEqual 64 removeElementWithKey 67
numberOfDifferentKeys 64 replaceAt 68
numberOfElements 64 replaceElementWithKey 68
numberOfElementsWithKey 64 setToFirst 68
remove 65 setToNext 69
removeAll 66 setToNextWithDifferentKey 70
removeAllElementsWithKey 66 unionWith 71

You can use an ISElementCursor with a Relation. The members for
ISElementCursor are described in Chapter 29, “Cursor” on page 115.

 Required Operations
For ISRelation, the operations listed below are required for the element type and
key type. You can either use the default operations from ISOps or override them
with your own implementation.

Element Type

 ¹ Assign()
 ¹ Equal()
 ¹ Key()

Key Type

 ¹ KeyEqual
 ¹ KeyHash

96 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Sequence

 Chapter 21. Sequence

A Sequence is an ordered collection of elements. The elements are arranged so
that each collection has a first and a last element, each element except the last has
a next element, and each element but the first has a previous element.

The type and value of the elements are irrelevant, and have no effect on the
behavior of the collection. Elements can be added and deleted from any position in
the collection. Elements can be retrieved or replaced. A Sequence does not
support element equality or a key. If you require element equality for a Sequence,
you can use an equality Sequence. See Chapter 11, “Equality Sequence” on
page 77 for further details.

An example of a Sequence is a program that maintains a list othe words in a
paragraph. The order of the words is obviously important, and you can add or
remove words at a given position, but you cannot search for individual words
except by iterating through the collection and comparing each word to the word you
are searching for. You can add a word that is already present in the Sequence,
because a given word may be used more than once in a paragraph.

Figure 2 on page 19 illustrates the properties of a LIST and its relationship to
other flat collections.

 Derivation
Collection
 Ordered Collection
 Sequential Collection
 Sequence

Interface Name Filestem

ISSequence sseq

 Members
All members of flat collections are described in Chapter 7, “Introduction to Flat
Collections” on page 45. The following members are provided for LIST:

Method Page Method Page

add 48 isBounded 58
addAllFrom 48 isEmpty 58
addAsFirst 49 isFirst 59
addAsLast 49 isFull 59
addAsNext 50 isLast 59
addAsPrevious 50 lastElement 59
addAtPosition 50 maxNumberOfElements 63
allElementsDo 53 newCursor 63
anyElement 54 newElementCursor 63
assign 54 newOrderedCursor 64
compare 54 numberOfElements 64
copy 55 position 65
Destructor 47 removeAll 66
elementAt 56 removeAt 66
elementAtPosition 56 removeAtPosition 67
firstElement 58 removeFirst 67
Initializer Method 47 removeLast 67

 Copyright IBM Corp. 1995, 1997 97

 Sequence

Method Page Method Page

replaceAt 68 setToPosition 70
setToFirst 68 setToPrevious 70
setToLast 69 sort 71
setToNext 69

You can use an ISOrderedCursor with a Sequence. The members for
ISOrderedCursor are described in Chapter 29, “Cursor” on page 115.

 Required Operations
For ISSequence, the operations listed below are required for the element type and
key type. You can either use the default operations from ISOps or override them
with your own implementation.

Element Type

 ¹ Assign()

98 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Set

 Chapter 22. Set

A Set is an unordered collection of zero or more elements with no key. Element
equality is supported, and the values of the elements are relevant.

Only unique elements are supported. A request to add an element that already
exists is ignored.

An example of a Set is a program that creates a packing list for a box of free
samples to be sent to a warehouse customer. The program searches a database
of in-stock merchandise, and selects ten items at random whose price is below a
threshold level. Each item is then added to the Set. The Set does not allow an
item to be added if it is already present in the collection, ensuring that a customer
does not get two samples of a single product. The Set is not sorted, and elements
of the Set cannot be located by key.

Figure 2 on page 19 gives an overview of the properties of a set and its
relationship to other flat collections.

The Set also offers typical set functions such as union, intersection, and difference.

 Derivation
Collection
 Equality Collection
 Set

Interface Name Filestem

ISSet sset

 Members
All members of flat collections are described in Chapter 7, “Introduction to Flat
Collections” on page 45. The following members are provided for set:

Method Page Method Page

add 48 isEmpty 58
addAllFrom 48 isFull 59
addDifference 51 locate 59
addIntersection 51 locateOrAdd 62
addUnion 53 maxNumberOfElements 63
allElementsDo 53 newCursor 63
anyElement 54 newElementCursor 63
assign 54 notEqual 64
contains 55 numberOfElements 64
containsAllFrom 55 remove 65
copy 55 removeAll 66
Destructor 47 removeAt 66
differenceWith 56 replaceAt 68
elementAt 56 setToFirst 68
equal 58 setToNext 69
Initializer Method 47 unionWith 71
intersectionWith 58
isBounded 58

 Copyright IBM Corp. 1995, 1997 99

 Set

You can use an ISElementCursor with a Set. The members for ISElementCursor
are described in Chapter 29, “Cursor” on page 115.

 Required Operations
For ISSet, the operations listed below are required for the element type. You can
either use the default operations from ISOps or override them with your own
implementation.

Element Type

 ¹ Assign()
 ¹ Compare()
 ¹ Equal()

A coding example for a Set is provided in the appendix in “Coding Example for Set”
on page 168.

100 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Sorted Bag

 Chapter 23. Sorted Bag

A Sorted Bag is an ordered collection of zero or more elements with no key. Both
element equality and multiple elements are supported.

An example of using a Sorted Bag is a program for entering observations on the
types of stones found in a riverbed. Each time you find a stone on the riverbed,
you enter the stone's mineral type into the collection. You can enter the same
mineral type for several stones, because a Sorted Bag supports multiple elements.
You can search for stones of a particular mineral type, and you can determine the
number of observations of stones of that type. You can also display the contents of
the collection, sorted by mineral type, if you want a complete list of observations
made to date.

Figure 2 on page 19 gives an overview of the properties of a Sorted Bag and its
relationship to other flat collections.

 Derivation
 Collection
 Ordered Collection
Equality Collection Sorted Collection

Equality Sorted Collection
 Sorted Bag

Interface Name Filestem

ISSortedBag ssb

 Members
All members of flat collections are described in Chapter 7, “Introduction to Flat
Collections” on page 45. The following members are provided for Sorted Bag:

Method Page Method Page

add 48 isFirst 59
addAllFrom 48 isFull 59
addDifference 51 isLast 59
addIntersection 51 lastElement 59
addUnion 53 locate 59
allElementsDo 53 locateNext 61
anyElement 54 locateOrAdd 62
assign 54 maxNumberOfElements 63
compare 54 newCursor 63
contains 55 newElementCursor 63
containsAllFrom 55 newOrderedCursor 64
copy 55 notEqual 64
Destructor 47 numberOfDifferentElements 64
differenceWith 56 numberOfElements 64
elementAt 56 numberOfOccurrences 64
elementAtPosition 56 position 65
equal 58 remove 65
firstElement 58 removeAll 66
Initializer Method 47 removeAllOccurrences 66
intersectionWith 58 removeAt 66
isBounded 58 removeAtPosition 67
isEmpty 58 removeFirst 67

 Copyright IBM Corp. 1995, 1997 101

 Sorted Bag

Method Page Method Page

removeLast 67 setToNextDifferentElement 69
replaceAt 68 setToPosition 70
setToFirst 68 setToPrevious 70
setToLast 69 unionWith 71
setToNext 69

You can use an ISOrderedCursor with a SortedBag. The members for
ISOrderedCursor are described in Chapter 29, “Cursor” on page 115.

 Required Operations
For ISSortedBag, the operations listed below are required for the element type.
You can either use the default operations from ISOps or override them with your
own implementation.

Element Type

 ¹ Assign()
 ¹ Compare()
 ¹ Equal()

102 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Sorted Map

 Chapter 24. Sorted Map

A Sorted Map is an ordered collection of zero or more elements that have a key.
Element equality is supported and the values of the elements are relevant.
Elements are sorted by the value of their keys.

Only elements with unique keys are supported. A request to add an element
whose key already exists in another element of the collection causes an exception
to be thrown. A request to add a duplicate element is ignored.

An example of using a Sorted Map is a program that matches the names of rivers
and lakes to their coordinates on a topographical map. The river or lake name is
the key. You cannot add a lake or river to the collection if it is already present in
the collection. You can display a list of all lakes and rivers, sorted by their names,
and you can locate a given lake or river by its key, to determine its coordinates.

Figure 2 on page 19 gives an overview of the properties of a Sorted Map and its
relationship to other flat collections.

 Derivation
Equality Key Collection Equality Sorted Collection

Equality Key Sorted Collection
 Sorted Map

The diagram does not show all bases of Sorted Map. See Figure 4 for a complete
illustration.

Interface Name Filestem

ISSortedMap ssm

 Members
All members of flat collections are described in Chapter 7, “Introduction to Flat
Collections” on page 45. The following members are provided for Sorted Maps:

Method Page Method Page

add 48 elementWithKey 57
addAllFrom 48 equal 58
addDifference 51 firstElement 58
addIntersection 51 Initializer Method 47
addOrReplaceElementWithKey 52 intersectionWith 58
addUnion 53 isBounded 58
allElementsDo 53 isEmpty 58
anyElement 54 isFirst 59
assign 54 isFull 59
compare 54 isLast 59
contains 55 key 59
containsAllFrom 55 lastElement 59
containsAllKeysFrom 55 locate 59
containsElementWithKey 55 locateElementWithKey 60
copy 55 locateNext 61
Destructor 47 locateNextElementWithKey 61
differenceWith 56 locateOrAdd 62
elementAt 56 locateOrAddElementWithKey 62
elementAtPosition 56 maxNumberOfElements 63

 Copyright IBM Corp. 1995, 1997 103

 Sorted Map

Method Page Method Page

newCursor 63 removeFirst 67
newElementCursor 63 removeLast 67
newOrderedCursor 64 replaceAt 68
notEqual 64 replaceElementWithKey 68
numberOfElements 64 setToFirst 68
position 65 setToLast 69
remove 65 setToNext 69
removeAll 66 setToPosition 70
removeAt 66 setToPrevious 70
removeAtPosition 67 unionWith 71
removeElementWithKey 67

You can use an ISOrderedCursor with a SortedMap. The members for
ISOrderedCursor are described in Chapter 29, “Cursor” on page 115.

 Required Operations
For ISSortedMap, the operations listed below are required for the element type and
key type. You can either use the default operations from ISOps or override them
with your own implementation.

Element Type

 ¹ Assign()
 ¹ Equal()
 ¹ Key()

Key Type

 ¹ KeyCompare

104 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Sorted Relation

 Chapter 25. Sorted Relation

A Sorted Relation is an ordered collection of zero or more elements that have a
key. The elements are sorted by the value of their key. Element equality is
supported, and the values of the elements are relevant.

The keys of the elements are not unique. You can add an element whether or not
there is already an element in the collection with the same key.

An example of using a Sorted Relation is a program used by telephone operators
to provide directory assistance. The computerized directory is a Sorted Relation
whose key is the name of the individual or business associated with a telephone
number. When a caller requests the number of a given person or company, the
operator enters the name of that person or company to access the phone number.
The collection can have multiple identical keys, because two individuals or
companies might have the same name. The collection is sorted alphabetically,
because once a year it is used as the source material for a printed telephone
directory.

Figure 2 on page 19 gives an overview of the properties of a Sorted Relation and
its relationship to other flat collections.

 Derivation
Equality Key Collection Equality Collection

Equality Key Sorted Collection
 Sorted Relation

The diagram does not show all bases of Sorted Relation. See Figure 4 on
page 26 for a complete illustration.

Interface Name Filestem

ISSortedRelation ssr

 Members
All members of flat collections are described in Chapter 7, “Introduction to Flat
Collections” on page 45. The following members are provided for Sorted Relation:

Method Page Method Page

add 48 differenceWith 56
addAllFrom 48 elementAt 56
addDifference 51 elementAtPosition 56
addIntersection 51 elementWithKey 57
addOrReplaceElementWithKey 52 equal 58
addUnion 53 firstElement 58
allElementsDo 53 Initializer Method 47
anyElement 54 intersectionWith 58
assign 54 isBounded 58
compare 54 isEmpty 58
contains 55 isFirst 59
containsAllFrom 55 isFull 59
containsAllKeysFrom 55 isLast 59
containsElementWithKey 55 key 59
copy 55 lastElement 59
Destructor 47 locate 59

 Copyright IBM Corp. 1995, 1997 105

 Sorted Relation

Method Page Method Page

locateElementWithKey 60 removeAllElementsWithKey 66
locateNext 61 removeAt 66
locateNextElementWithKey 61 removeAtPosition 67
locateOrAdd 62 removeElementWithKey 67
locateOrAddElementWithKey 62 removeFirst 67
maxNumberOfElements 63 removeLast 67
newCursor 63 replaceAt 68
newElementCursor 63 replaceElementWithKey 68
newOrderedCursor 64 setToFirst 68
notEqual 64 setToLast 69
numberOfDifferentKeys 64 setToNext 69
numberOfElements 64 setToNextWithDifferentKey 70
numberOfElementsWithKey 64 setToPosition 70
position 65 setToPrevious 70
remove 65 unionWith 71
removeAll 66

You can use an ISOrderedCursor with a SortedRelation. The members for
ISOrderedCursor are described in Chapter 29, “Cursor” on page 115.

 Required Operations
For ISSortedRelation, the operations listed below are required for the element
type and key type. You can either use the default operations from ISOps or
override them with your own implementation.

Element Type

 ¹ Assign()
 ¹ Equal()
 ¹ Key()

Key Type

 ¹ KeyCompare

106 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Sorted Set

 Chapter 26. Sorted Set

A Sorted Set is an ordered collection of zero or more elements with element
equality but no key. Only unique elements are supported and a request to add an
element that already exists is ignored. The value of the elements is relevant.

The elements of a Sorted Set are ordered such that the value of each element is
less than or equal to the value of its successor.

The element with the smallest value currently in a Sorted Set is called the first
element. The element with the largest value is called the last element. When an
element is added, it is placed in the Sorted Set according to the defined ordering
relation.

An example of using a Sorted Set is a program that tests numbers to see if they
are prime. Two complementary Sorted Sets are used, one for prime numbers, and
one for nonprime numbers. When you enter a number, the program first looks in
the set of nonprime numbers. If the value is found there, the number is nonprime.
If the value is not found there, the program looks in the set of prime numbers. If
the value is found there, the number is prime. Otherwise the program determines
whether the number is prime or nonprime, and places it in the appropriate Sorted
Set. The program can also display a list of prime or nonprime numbers, beginning
at the first prime or nonprime following a given value, because the numbers in a
Sorted Set are sorted from smallest to largest.

Figure 2 on page 19 gives an overview of the properties of a sorted set and its
relationship to other flat collections.

 Derivation
 Collection
Ordered Collection
 Sorted Collection Equality Collection

Equality Sorted Collection
 Sorted Set

Interface Name Filestem

ISSortedSet sss

 Members
All members of flat collections are described in Chapter 7, “Introduction to Flat
Collections” on page 45. The following members are provided for Sorted Sets:

Method Page Method Page

add 48 containsAllFrom 55
addAllFrom 48 copy 55
addDifference 51 Destructor 47
addIntersection 51 differenceWith 56
addUnion 53 elementAt 56
allElementsDo 53 elementAtPosition 56
anyElement 54 equal 58
assign 54 firstElement 58
compare 54 Initializer Method 47
contains 55 intersectionWith 58

 Copyright IBM Corp. 1995, 1997 107

 Sorted Set

Method Page Method Page

isBounded 58 remove 65
isEmpty 58 removeAll 66
isFirst 59 removeAt 66
isFull 59 removeAtPosition 67
isLast 59 removeFirst 67
lastElement 59 removeLast 67
locate 59 replaceAt 68
locateNext 61 setToFirst 68
locateOrAdd 62 setToLast 69
maxNumberOfElements 63 setToNext 69
newCursor 63 setToPosition 70
newElementCursor 63 setToPrevious 70
newOrderedCursor 64 unionWith 71
notEqual 64
position 65

You can use an ISOrderedCursor with a SortedSet. The members for
ISOrderedCursor are described in Chapter 29, “Cursor” on page 115.

 Required Operations
For the default interface variant ISSortedSet, the operations listed below are
required for the element type and key type. You can either use the default
operations from ISOps or override them with your own implementation.

Element Type

 ¹ Assign()
 ¹ Compare()
 ¹ Equal()

A coding example for a Sorted Set is provided in the appendix in “Coding Example
for Sorted Set” on page 175.

108 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Stack

 Chapter 27. Stack

A Stack is a sequence with restricted access, it is an ordered collection of elements
with no key and no element equality. The elements are arranged so that each
collection has a first and a last element, each element except the last has a next
element, and each element but the first has a previous element. The type and
value of the elements are irrelevant and have no effect on the behavior of the
Stack.

Elements are added to and deleted from the top of the Stack. Consequently, the
elements of a Stack are in reverse chronological order.

A Stack is characterized by a last-in, first-out (LIFO) behavior.

An example of using a Stack is a program that keeps track of daily tasks that you
have begun to work on but that have been interrupted. When you are working on a
task and something else comes up that is more urgent, you enter a description of
the interrupted task and where you stopped it into your program, and the task is
pushed onto the Stack. Whenever you complete a present task, you ask the
program for the most recently saved task that was interrupted. This task is popped
off the Stack, and you resume your work where you left off. When you attempt to
pop an item off the Stack and no item is available, you have completed all your
tasks and you can go home.

 Derivation
Collection
 Ordered Collection
 Sequential Collection
 Sequence
 Stack

Note that Stack is based on sequence but is not actually derived from it or from the
other classes shown above. See “Restricted Access” for further details.

Interface Name Filestem

ISStack sstk

 Members
All members of flat collections are described in Chapter 7, “Introduction to Flat
Collections” on page 45. The following members are provided for Stack:

Method Page Method Page

add 48 firstElement 58
addAllFrom 48 Initializer Method 47
addAsLast 49 isBounded 58
allElementsDo 53 isEmpty 58
anyElement 54 isFirst 59
assign 54 isFull 59
compare 54 isLast 59
copy 55 lastElement 59
Destructor 47 maxNumberOfElements 63
elementAt 56 newCursor 63
elementAtPosition 56 newElementCursor 63

 Copyright IBM Corp. 1995, 1997 109

 Stack

Method Page Method Page

newOrderedCursor 64 setToLast 69
numberOfElements 64 setToNext 69
pop 64 setToPosition 70
position 65 setToPrevious 70
push 65 top 71
removeAll 66
removeLast 67
setToFirst 68

You can use an ISOrderedCursor with a Stack. The members for ISOrderedCursor
are described in Chapter 29, “Cursor” on page 115.

 Required Operations
For ISStack, the operations listed below are required for the element type. You
can either use the default operations from ISOps or override them with your own
implementation.

Element Type

 ¹ Assign()

A coding example for a Stack is provided in the appendix in “Coding Example for
Stack” on page 186.

110 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

Reference : SOM Cross-language Collection Classes -
Auxiliary Classes

Chapter 28. Global . 113

Chapter 29. Cursor . 115
Public Member Functions . 115

Chapter 30. Applicator . 119

Chapter 31. Comparator . 121

Chapter 32. Predicate . 123

Chapter 33. Operations . 125

 Copyright IBM Corp. 1995, 1997 111

112 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Global

 Chapter 28. Global

The module SSGlobal is intended to simplify the include mechanism for C and C++
application programmers. It is used to automatically include language usage
bindings for applicators, cursors, comparators, predicates, and operations.

The include of ssglobal.h for a C application programmer should precede the first
include statement for a specific collection.

 IDL filestem
ssglobal

 Copyright IBM Corp. 1995, 1997 113

 Global

114 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Cursor

 Chapter 29. Cursor

Each collection class defines its own cursor class. All of these cursor classes are
derived from one of the following classes:

 ¹ ISElementCursor
 ¹ ISOrderedCursor

ISOrderedCursor is derived from ISElementCursor, and ISElementCursor is in turn
derived from ISCursor. Only cursors of ordered collections are derived from
ISOrderedCursor. Cursors from unordered collections are derived from
ISElementCursor, and only know the member functions from ISElementCursor and
ISCursor.

This chapter describes the general member functions of these three cursor classes
as well as the specific member functions provided for specific collections. You can
obtain cursor objects by using the collection member newCursor(),
newElementCursor(), or newOrderedCursor(). The newCursor() member creates a
cursor of the collection to which it is applied.

Each cursor object is associated with a collection object. A cursor function merely
calls the corresponding function for this collection.

 IDL filestem
 ¹ scursor
 ¹ secursor
 ¹ socursor

C and C++ application programmers include the appropriate ssglobal include file in
order to receive the binding definitions for all cursors.

 Members
The cursor classes define the following methods:

Method Page Method Page

copy 116 equal 116
isValid 116 setToFirst 116
invalidate 116 setToLast 117
element 116 setToNext 117
notEqual 116 setToPrevious 117

Public Member Functions

 Constructor
A cursor should be constructed only by calling the collection methods newCursor,
newElementCursor, or newOrderedCursor.

 Copyright IBM Corp. 1995, 1997 115

 Cursor

 copy
void copy (in ISCursor cursor) ;

Copies the given cursor to this cursor. This cursor now points to where the given
cursor points.

Precondition: The given cursor and this cursor must refer to the same collection
type.

Note: This precondition cannot be checked.

 isValid
booleann isValid () ;

Returns 1 if the cursor points to an element of the associated collection.

 invalidate
void invalidate () ;

Invalidates the cursor; that is, it no longer points to an element of the associated
collection.

 element
SOMObject element () ;

Returns a constant reference to the element of the associated collection to which
the cursor points.

Precondition: The cursor must point to an element of the associated collection.

 Exception: ICursorInvalidException

 notEqual
boolean notEqual (in ISCursor cursor) ;

Returns 1 if the cursor does not point to the same element (of the same collection)
as the given cursor.

 equal
boolean equal (in ISCursor cursor) ;

Returns 1 if the cursor points to the same element (of the same collection) as the
given cursor.

 setToFirst
boolean setToFirst () ;

Sets the cursor to the first element of the associated collection in iteration order.
Invalidates the cursor if the collection is empty (if no first element exists).

Return Value: Returns 1 if the associated collection is not empty.

116 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Cursor

 setToLast
boolean setToLast () ;

Sets the cursor to the last element of the associated collection in iteration order.
Invalidates the cursor if the collection is empty (no last element exists); this
function is only available for cursors of ordered collections.

Return Value Returns 1 if the associated collection was not empty.

 setToNext
boolean setToNext () ;

Sets the cursor to the next element in the associated collection in iteration order,
and the cursor is invalidated if there are no more elements left to be visited.

Return Value Returns 1 if there was a next element.

Precondition: The cursor must point to an element of the associated collection.

 Exception: ICursorInvalidException

 setToPrevious
boolean setToPrevious () ;

Sets the cursor to the previous element of the associated collection in iteration
order and it invalidates the cursor if no such element exists. This function is only
available for cursors of ordered collections.

Return Value: Returns 1 if a previous element exists.

Precondition: The cursor must point to an element of the associated collection.

 Exception: ICursorInvalidException

 Chapter 29. Cursor 117

 Cursor

118 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Applicator

 Chapter 30. Applicator

The interface ISApplicator acts as an abstract class. You must not create an
instance of this class.

You must inherit from this class and create an appropriate instance. Whenever a
collection method requires an ISApplicator argument the created instance must be
used in the collection's method call.

 IDL filestem
sappl

C and C++ application programmers include the appropriate ssglobal include file in
order to receive the binding definitions for the applicator.

 Members
The applicator class defines the following methods:

 applyTo
boolean applyTo (in SOMObject element) ;

The user must override this method while subclassing from this interface.

The application programmer defines the return value when overwriting the applyTo
method in the derived class.

 Exception

 ¹ IApplicatorOverrideException
 ¹ IUserApplicatorException

 Example

/* aSet is an instance of any Set variant... */
/* SetApplicator is derived from ISApplicator */
/* with an overridden applyTo() method... */

 SetApplicator applicator;
 ...
applicator = _somNew(_SetApplicator);

 ...
 _allElementsDo(aSet,ev,applicator);
 ...

 Copyright IBM Corp. 1995, 1997 119

 Applicator

120 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Comparator

 Chapter 31. Comparator

The interface ISComparator acts as an abstract class. You must inherit from this
class whenever a collection method requires an ISComparator argument.

 IDL filestem
scomp

C and C++ application programmers include the appropriate ssglobal include file in
order to receive the binding definitions for the comparator.

 Members
The comparator class defines the following methods:

 compare
boolean compare (in SOMObject element) ;

The user must override this method while subclassing from this interface.

The application programmer defines the return value when overwriting the applyTo
method in the derived class.

 Exception

 ¹ IComparatorOverrideException
 ¹ IUserComparatorException

 Example

/* aSet is an instance of any Set variant... */
/* SetComparator is derived from ISComparator */
/* with an overridden compare method */

 SetComparator comparator;
 ...

comparator = _somNew(_SetComparator);
 ...
 ISASet_sort(aSet,ev,comparator);
 ...

 Copyright IBM Corp. 1995, 1997 121

 Comparator

122 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Predicate

 Chapter 32. Predicate

The interface ISPredicate acts as an abstract class. You must not create an
instance of this class.

You must inherit from this class and create an appropriate instance. Whenever a
collection method requires an ISPredicate argument the created instance must be
used in the collection's method call.

 IDL filestem
spred

C and C++ application programmers include the appropriate ssglobal include file in
order to receive the binding definitions for the predicate.

 Members
The predicate class defines the following methods:

 evaluateFor
boolean evaluateFor (in SOMObject element) ;

The user must override this method while subclassing from this interface.

The application programmer defines the return value when overwriting the
evaluateFor method in the derived class.

 Exception

 ¹ IPredicateOverrideException
 ¹ IUserPredicateException

 Example
/* IDL: */

interface SetPredicate : ISPredicate {

...
evaluateFor : override;
...
}

/* aSet is an instance of any Set variant */
/* SetPredicate is derived from ISPredicate */
/* with an overridden evaluateFor() method */
 ...
 SetPredicate predicate;
 ...

predicate = _somNew(_SetPredicate);
 ...
 _removeAllWithPredicate(aSet,ev,predicate);
 ...

 Copyright IBM Corp. 1995, 1997 123

 Predicate

124 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Ops

 Chapter 33. Operations

The operations class ISOps represents the generic class for operations on
collectible elements and keys, and acts as an abstract class. You must not create
an instance of this class.

You must inherit from this interface and create a appropriate instance. An instance
of an ISOps derived interface must be specified within the initializer method of a
specific collection.

You should override several of below methods which are called internally from the
SOM Collection Classes implementation.

You must not destroy any of the created operations instances. The fate of an
operations instance is the responsability of the collection which is using it.

Although you must not specify an operations instance in multiple collections,
internally it can occur that several collections use the same operations instance;
this happens when a collection is used to construct another collection. The
operations object disappears when the last using collection is deleted.

 IDL filestem
ssops

C and C++ application programmers include the appropriate ssglobal include file in
order to receive the binding definitions for operations.

 Members
The operations class define the following methods:

 Assign
void Assign (inout SOMObject e1, in SOMObject e2) ;

You may override this method in order to define a different implementation. In the
normal case the default behavior is sufficient for standard usage.

 Compare
long Compare (in SOMObject e1, in SOMObject e2) ;

The default implementation of the provided Compare() operation is a comparison of
pointers to e1 and e2. You should override this method for non key collections in
order to define the ordering relation between elements. Usually this method calls
other methods defined for the element SOMObject.

 Equal
boolean Equal (in SOMObject e1, in SOMObject e2) ;

The default implementation of the provided Equal() operation is a comparison of
pointers to e1 and e2. You should override this method for non key collections like
maps and relations in order to define the equality relation between elements.
Usually this method calls other methods defined for the element SOMObject.

 Copyright IBM Corp. 1995, 1997 125

 Ops

 Hash
long Hash (in SOMObject e1, in unsigned long value) ;

The default implementation of the provided Hash() always returns the value -1.
You should override this method in order to define a hash function for a non key
collection implementation variant based on a hash function. Usually this method
calls other methods defined for the element SOMObject.

 Key
SOMObject Key (in SOMObject element) ;

This method is required for key collections only. The default Key operation always
returns the element. You should override this method in order to extract a key
object from stored element within a collection. Usually this method calls another
method defined for element SOMObject.

 KeyCompare
long KeyCompare (in SOMObject k1, in SOMObject k2) ;

This method is required for key collections only. The default implementation of the
provided KeyCompare() operation is a comparison of pointers to k1 and k2. You
should override this method in order to define the ordering relation for keys.
Usually this method calls other methods defined for the key SOMObject.

 KeyEqual
boolean KeyEqual (in SOMObject k1, in SOMObject k2) ;

This method is required for key collections Key Bag and Relation. The default
implementation of the provided KeyEqual() operation is a comparison of pointers to
k1 and k2. You should override this method in order to define the equality relation.
Usually this method calls other methods defined for the key SOMObject.

 KeyHash
long KeyHash (in SOMObject key, in unsigned long value) ;

The default implementation of the provided KeyHash() always returns the value -1.
This method is required for key collections only. You should override this method
in order to define a hash function for a collection implementation variant based on a
hash function. Usually this method calls other methods defined for the key
SOMObject.

126 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

Reference : SOM Cross-language Collection Classes -
Abstract Classes

Chapter 34. Collection . 129

Chapter 35. Equality Collection . 131

Chapter 36. Key Collection . 133

Chapter 37. Ordered Collection . 135

Chapter 38. Sorted Collection . 137

Chapter 39. Sequential Collection . 139

Chapter 40. Equality Key Collection . 141

Chapter 41. Key Sorted Collection . 143

Chapter 42. Equality Sorted Collection . 145

Chapter 43. Equality Key Sorted Collection 147

 Copyright IBM Corp. 1995, 1997 127

128 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Collection

 Chapter 34. Collection

 Derivation
Collection does not have any bases. Because collection is an abstract class, it
cannot be used to create any objects. The following abstract classes are derived
from collection:

 ¹ Key collection
 ¹ Equality collection
 ¹ Ordered collection

The concrete class heap is defined by collection.

Figure 4 on page 26 shows the relationship of collection to the class hierarchy.

IDL Stem Interface Name

sacllct ISACollection

 Members
The following methods are provided for Collection:

Method Page Method Page

add 48 maxNumberOfElements 63
addAllFrom 48 newCursor 63
anyElement 54 newElementCursor 63
copy 54 numberOfElements 64
elementAt 56 removeAll 66
elementAtPosition 56 removeAt 66
isBounded 58 replaceAt 68
isEmpty 58 setToFirst 68
isFull 59 setToNext 69

 Copyright IBM Corp. 1995, 1997 129

 Collection

130 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Equality Collection

 Chapter 35. Equality Collection

Because equality collection acts as an abstract class, it must not be used to create
any objects. The equality collection defines the interfaces for the property of
element equality.

 Derivation
Collection
 Equality Collection

The following abstract classes are derived from equality collection:

¹ Equality key collection
¹ Equality sorted collection

The following concrete classes are defined by equality collection:

 ¹ Set
 ¹ Bag
 ¹ Equality Sequence

Figure 4 on page 26 shows the relationship of equality collection to the class
hierarchy.

IDL Stem Interface Name

saequal ISAEqualityCollection

 Members
The equality collection class defines the following member functions, described in
Chapter 7, “Introduction to Flat Collections” on page 45:

Method Page Method Page

contains 55 locateOrAdd 62
containsAllFrom 55 numberOfOccurrences 64
locate 59 remove 65
locateNext 61 removeAllOccurrences 66

 Copyright IBM Corp. 1995, 1997 131

 Equality Collection

132 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Key Collection

 Chapter 36. Key Collection

Because key collection acts as an abstract class, it must not be used to create any
objects. The key collection inherits from collection and defines the interfaces for
the key property.

 Derivation
Collection
 Key Collection

The following abstract classes are derived from key collection:

¹ Equality key collection
¹ Key sorted collection

The following concrete classes are defined by key collection:

 ¹ Key set
 ¹ Key bag

Figure 4 on page 26 shows the relationship of key collection to the class
hierarchy.

IDL Stem Interface Name

sakey ISAKeyCollection

 Members
The key collection class defines the following member functions, described in
Chapter 7, “Introduction to Flat Collections” on page 45:

Method Page Method Page

addOrReplaceElementWithKey 52 locateOrAddElementWithKey 62
containsAllKeysFrom 55 numberOfDifferentKeys 64
containsElementWithKey 55 numberOfElementsWithKey 64
elementWithKey 57 removeAllElementsWithKey 66
key 59 removeElementWithKey 67
locateElementWithKey 60 replaceElementWithKey 68
locateNextElementWithKey 61 setToNextWithDifferentKey 70

 Copyright IBM Corp. 1995, 1997 133

 Key Collection

134 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Ordered Collection

 Chapter 37. Ordered Collection

Because ordered collection acts as an abstract class, it must not be used to create
any objects. The ordered collection defines the interfaces for the property of
ordered elements.

 Derivation
Collection
 Ordered Collection

The following abstract classes are derived from ordered collection:

 ¹ Sorted collection
 ¹ Sequential collection

Figure 4 on page 26 shows the relationship of ordered collection to the class
hierarchy.

IDL Stem Interface Name

saorder ISAOrderedCollection

 Members
The ordered collection class defines the following member functions, described in
Chapter 7, “Introduction to Flat Collections” on page 45:

Method Page Method Page

elementAtPosition 56 removeAtPosition 67
firstElement 58 removeFirst 67
isFirst 59 removeLast 67
isLast 59 setToLast 69
lastElement 59 setToPosition 70
newOrderedCursor 64 setToPrevious 70
positionAt 65

 Copyright IBM Corp. 1995, 1997 135

 Ordered Collection

136 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Sorted Collection

 Chapter 38. Sorted Collection

Because sorted collection acts as an abstract class, it must not be used to create
any objects. The sorted collection inherits from ordered collection and defines the
interfaces for the properties of sorted elements.

 Derivation
Collection
 Ordered Collection
 Sorted Collection

The following abstract classes are derived from sorted collection:

¹ Equality sorted collection
¹ Key sorted collection

Figure 4 on page 26 shows the relationship of sorted collection to the class
hierarchy.

IDL Stem Interface Name

sasrt ISASortedCollection

 Members
The sorted collection class inherits all its members from its bases.

 Copyright IBM Corp. 1995, 1997 137

 Sorted Collection

138 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Sequential Collection

 Chapter 39. Sequential Collection

Because sequential collection acts as an abstract class, it must not be used to
create any objects. The sequential collection inherits from ordered collection and
defines the interfaces for the properties of ordered elements.

 Derivation
Collection
 Ordered Collection
 Sequential Collection

The following concrete classes are defined by sequential collection:

 ¹ Sequence
 ¹ Equality sequence

Figure 4 on page 26 shows the relationship of sequential collection to the class
hierarchy.

IDL Stem Interface Name

sasqntl ISASequentialCollection

 Members
Sequential collection defines the following member functions:

Method Page Method Page

addAsFirst 49 addAtPosition 50
addAsLast 49 position 65
addAsNext 50 sort 71
addAsPrevious 50

 Copyright IBM Corp. 1995, 1997 139

 Sequential Collection

140 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Equality Key Collection

Chapter 40. Equality Key Collection

Because equality key collection acts as an abstract class, it must not be used to
create any objects. It defines the interfaces for the following properties:

 ¹ Element equality
 ¹ Key equality

 Derivation
 Collection
 Equality Collection Key Collection

Equality Key Collection

Equality key sorted collection is an abstract class that is derived from equality key
collection. The following concrete classes are defined by equality key collection:

 ¹ Map
 ¹ Relation

Figure 4 on page 26 shows the relationship of equality key collection to the whole
class hierarchy.

IDL Stem Interface Name

saeqkey ISAEqualityCollection

 Members
All the members of equality key sorted collection are inherited from its base
classes.

 Copyright IBM Corp. 1995, 1997 141

 Equality Key Collection

142 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Key Sorted Collection

Chapter 41. Key Sorted Collection

Because key sorted collection acts as an abstract class, it must not be used to
create any objects. The key sorted collection inherits from sorted collection and
key collection. It defines the interfaces for the following properties:

 ¹ Key equality
 ¹ Sorted elements

 Derivation
 Collection
 Ordered Collection
 Key Collection Sorted Collection

Key Sorted Collection

The equality key sorted collection is an abstract class that is derived from key
sorted collection. The following concrete classes are defined by key sorted
collection:

¹ Key sorted set
¹ Key sorted bag

Figure 4 on page 26 shows the relationship of key sorted collection to the class
hierarchy.

IDL Stem Interface Name

saksrt ISAKeySortedCollection

 Members
The key sorted collection class inherits all member functions from its base classes.

 Copyright IBM Corp. 1995, 1997 143

 Key Sorted Collection

144 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Equality Sorted Collection

Chapter 42. Equality Sorted Collection

Because equality sorted collection acts as an abstract class, it must not be used to
create any objects. It defines the interfaces for the following properties:

 ¹ Element equality
 ¹ Sorted elements

 Derivation
 Collection
 Ordered Collection
 Equality Collection Sorted Collection

Equality Sorted Collection

Equality key sorted collection is an abstract class that is derived from equality
sorted collection. The following concrete classes are defined by equality sorted
collection:

 ¹ Sorted set
 ¹ Sorted bag

Figure 4 on page 26 shows the relationship of equality sorted collection to the
class hierarchy.

IDL Stem Interface Name

saeqsrt ISAEqualitySortedCollection

 Members
All members of equality sorted collection are inherited from its base classes.

 Copyright IBM Corp. 1995, 1997 145

 Equality Sorted Collection

146 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Equality Key Sorted Collection

Chapter 43. Equality Key Sorted Collection

Equality key sorted collection is an abstract class that defines the interfaces for the
following properties:

 ¹ Element equality
 ¹ Key equality
 ¹ Sorted elements

Because equality key sorted collection acts as an abstract class, it must not be
used to create any objects.

 Derivation
Equality key sorted collection is derived from the following three abstract classes:

¹ Key sorted collection
¹ Equality sorted collection
¹ Equality key sorted collection

For information on the bases of these classes, see Figure 4 on page 26

The following concrete classes are defined by equality key sorted collection:

 ¹ Sorted map
 ¹ Sorted relation

Figure 4 on page 26 shows the relationship of equality key sorted collection to the
class hierarchy.

IDL Stem Interface Name

saeksrt ISAEqualityKeySortedCollection

 Members
All the members of equality key sorted collection are inherited from its base
classes.

 Copyright IBM Corp. 1995, 1997 147

 Equality Key Sorted Collection

148 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

Appendix A. Coding Samples: Source Code and Header Files

Coding Example for Deque
The following program uses the default deque class, ISDeque, to create a deque. It
fills the deque with characters by adding them to the back end. The program then
removes the characters from alternating ends of the deque (beginning with the front
end) until the deque is empty.

The program uses the applicator interface, ISApplicator, when printing the
collection. It uses the addAsLast() function to fill the deque and the
numberOfElements() function to determine the deque's size. It uses the functions
firstElement(), removeFirst(), lastElement(), and removeLast() to empty the
deque.

-------------------------------- exp3ele.idl ---------------------------
#ifndef CHAROBJECT_IDL
#define CHAROBJECT_IDL

#include <somobj.idl>

interface CharObject :SOMObject
{

attribute char charValue;

void CharObject_withChar(inout somInitCtrl ctrl,
in char aChar) ;

void print_charValue() ;

#if defined __SOMIDL__
implementation
{
releaseorder : CharObject_withChar, _get_charValue,

_set_charValue, print_charValue ;

CharObject_withChar : init ;
somDefaultInit : override ;
somDestruct : override ;

dllname = "letterdq.dll" ;

passthru C_h_before = "#include <string.h>" ;

};
#endif // __SOMIDL__

};

#endif // CHAROBJECT_IDL

-------------------------- exp3ops.idl ----------------------------
#ifndef CHAROBJECTSOPS_IDL
#define CHAROBJECTSOPS_IDL

#include <ssops.idl>

interface CharObjectsOps : ISOps
{

 Copyright IBM Corp. 1995, 1997 149

#if defined __SOMIDL__
implementation
{
Assign : override ;
Compare : override ;
Equal : override ;

somDefaultInit : override ;
somDestruct : override ;

dllname = "exp3.dll" ;

passthru C_h_before = "#include <charObj.h>";
};

#endif //# __SOMIDL__

};
#endif //# CHAROBJECTSOPS_IDL

-------------------------- exp3appl.idl ----------------------
#ifndef PRAPPL_IDL
#define PRAPPL_IDL

#include <sappl.idl>

interface PrintAppl : ISApplicator
{

#if defined __SOMIDL__
implementation
{

somDefaultInit : override ;
somDestruct : override ;
applyTo : override ;

dllname= "exp3.dll" ;

passthru C_h_before = "#include <ssglobal.h>"
 "#include <exp3ele.h>";

};
#endif // __SOMIDL__

};

#endif // PRAPPL_IDL

-------------------------- exp3ele.c ---------------------------
/*
 * This file was generated by the SOM Compiler and Emitter Framework.
 * Generated using:
 * SOM Emitter emitctm.dll: 2.41
 */

#ifndef SOM_Module_charobj_Source
#define SOM_Module_charobj_Source
#endif
#define CharObject_Class_Source

#ifdef _MVS
#include <DD:IH(exp3ele)>
#else

150 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

#include "exp3ele.ih"
#endif

SOM_Scope void SOMLINK CharObject_withChar(CharObject somSelf,
 Environment *ev,
 somInitCtrl* ctrl,
 char aChar)
{

CharObjectData *somThis; /* set in BeginInitializer */
 somInitCtrl globalCtrl;
 somBooleanVector myMask;
 CharObjectMethodDebug("CharObject","CharObject_withChar");
 CharObject_BeginInitializer_CharObject_withChar;

 CharObject_Init_SOMObject_somDefaultInit(somSelf, ctrl);

somThis->charValue = aChar ;
}

SOM_Scope void SOMLINK print_charValue(CharObject somSelf, Environment *ev)
{

CharObjectData *somThis = CharObjectGetData(somSelf);
 CharObjectMethodDebug("CharObject","print_charValue");

somPrintf("%s" , & (somThis->charValue)) ;
}

SOM_Scope void SOMLINK somDefaultInit(CharObject somSelf, somInitCtrl* ctrl)
{

CharObjectData *somThis; /* set in BeginInitializer */
 somInitCtrl globalCtrl;
 somBooleanVector myMask;
 CharObjectMethodDebug("CharObject","somDefaultInit");
 CharObject_BeginInitializer_somDefaultInit;

 CharObject_Init_SOMObject_somDefaultInit(somSelf, ctrl);

 /*
Just overridden with default for performance reasons

 */
}

SOM_Scope void SOMLINK somDestruct(CharObject somSelf, octet doFree,
 somDestructCtrl* ctrl)
{

CharObjectData *somThis; /* set in BeginDestructor */
 somDestructCtrl globalCtrl;
 somBooleanVector myMask;
 CharObjectMethodDebug("CharObject","somDestruct");
 CharObject_BeginDestructor;

 /*
Just overridden with default for performance reasons

 */

 CharObject_EndDestructor;
}

-------------------------- exp3ops.c -------------------------------

/*
 * This file was generated by the SOM Compiler.
 * Generated using:
 * SOM incremental update: 2.41
 */

/*
 * This file was generated by the SOM Compiler and Emitter Framework.
 * Generated using:

 Appendix A. Coding Samples: Source Code and Header Files 151

 * SOM Emitter emitctm.dll: 2.41
 */

#ifndef SOM_Module_charobjsops_Source
#define SOM_Module_charobjsops_Source
#endif
#define CharObjectsOps_Class_Source

#ifdef _MVS
#include <DD:IH(exp3ops)>
#else
#include "exp3ops.ih"
#endif

SOM_Scope void SOMLINK Assign(CharObjectsOps somSelf, Environment *ev,
SOMObject e1, SOMObject e2)

{
/* CharObjectsOpsData *somThis = CharObjectsOpsGetData(somSelf); */

char val2 ;

 CharObjectsOpsMethodDebug("CharObjectsOps","Assign");

val2 = __get_charValue(e2, ev) ;
__set_charValue(e1, ev, val2) ;

}

SOM_Scope long SOMLINK Compare(CharObjectsOps somSelf, Environment *ev,
SOMObject e1, SOMObject e2)

{
/* CharObjectsOpsData *somThis = CharObjectsOpsGetData(somSelf); */

char val1 ;
char val2 ;

 CharObjectsOpsMethodDebug("CharObjectsOps","Compare");

val1 = __get_charValue(e1, ev) ;
val2 = __get_charValue(e2, ev) ;
return (val1 - val2) ;

}

SOM_Scope boolean SOMLINK Equal(CharObjectsOps somSelf, Environment *ev,
SOMObject e1, SOMObject e2)

{
/* CharObjectsOpsData *somThis = CharObjectsOpsGetData(somSelf); */

char val1 ;
char val2 ;

 CharObjectsOpsMethodDebug("CharObjectsOps","Equal");

val1 = __get_charValue(e1, ev) ;
val2 = __get_charValue(e2, ev) ;
return (val1 == val2) ;

}

SOM_Scope void SOMLINK somDefaultInit(CharObjectsOps somSelf,
 somInitCtrl* ctrl)
{

CharObjectsOpsData *somThis; /* set in BeginInitializer */
 somInitCtrl globalCtrl;
 somBooleanVector myMask;
 CharObjectsOpsMethodDebug("CharObjectsOps","somDefaultInit");
 CharObjectsOps_BeginInitializer_somDefaultInit;

 CharObjectsOps_Init_ISOps_somDefaultInit(somSelf, ctrl);

152 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 /*
Just overridden with default for performance reasons

 */
}

SOM_Scope void SOMLINK somDestruct(CharObjectsOps somSelf, octet doFree,
 somDestructCtrl* ctrl)
{

CharObjectsOpsData *somThis; /* set in BeginDestructor */
 somDestructCtrl globalCtrl;
 somBooleanVector myMask;
 CharObjectsOpsMethodDebug("CharObjectsOps","somDestruct");
 CharObjectsOps_BeginDestructor;

 /*
Just overridden with default for performance reasons

 */

 CharObjectsOps_EndDestructor;
}

-------------------------- exp3appl.c ----------------------
/*
 * This file was generated by the SOM Compiler and Emitter Framework.
 * Generated using:
 * SOM Emitter emitctm.dll: 2.41
 */

#ifndef SOM_Module_prappl_Source
#define SOM_Module_prappl_Source
#endif
#define PrintAppl_Class_Source

#ifdef _MVS
#include <DD:IH(exp3appl)>
#else
#include "exp3appl.ih"
#endif

SOM_Scope void SOMLINK somDefaultInit(PrintAppl somSelf, somInitCtrl* ctrl)
{

PrintApplData *somThis; /* set in BeginInitializer */
 somInitCtrl globalCtrl;
 somBooleanVector myMask;
 PrintApplMethodDebug("PrintAppl","somDefaultInit");
 PrintAppl_BeginInitializer_somDefaultInit;

 PrintAppl_Init_ISApplicator_somDefaultInit(somSelf, ctrl);

 /*
Just overidden for performance reasons

 */
}

SOM_Scope void SOMLINK somDestruct(PrintAppl somSelf, octet doFree,
 somDestructCtrl* ctrl)
{

PrintApplData *somThis; /* set in BeginDestructor */
 somDestructCtrl globalCtrl;
 somBooleanVector myMask;
 PrintApplMethodDebug("PrintAppl","somDestruct");
 PrintAppl_BeginDestructor;

 /*
Jusr overidden for performance reasons

 */

 Appendix A. Coding Samples: Source Code and Header Files 153

 PrintAppl_EndDestructor;
}

SOM_Scope boolean SOMLINK applyTo(PrintAppl somSelf, Environment *ev,
 SOMObject element)
{

/* PrintApplData *somThis = PrintApplGetData(somSelf); */
 PrintApplMethodDebug("PrintAppl","applyTo");

CharObject_print_charValue(element , ev) ;

return (TRUE) ;

}

------------------------ exp3ini.c -----------------------------
#include <exp3ele.h>
#include <exp3ops.h>
#include <exp3appl.h>

#ifdef __IBMC__
#pragma linkage(SOMInitModule, system)
#endif

SOMEXTERN void SOMLINK SOMInitModule (long majorVersion,
 long minorVersion,
 string className)
{
CharObjectNewClass(CharObject_MajorVersion , CharObject_MinorVersion);
CharObjectsOpsNewClass(CharObjectsOps_MajorVersion , CharObjectsOps_MinorVersion);
PrintApplNewClass(PrintAppl_MajorVersion , PrintAppl_MinorVersion);

 return;
}

------------------------ exp3main.c ----------------------------

/*
 * This file was generated by the SOM Compiler and Emitter Framework.
 * Generated using:
 * SOM Emitter emitctm.dll: 2.41
 */

#ifndef SOM_Module_charobjsops_Source
#define SOM_Module_charobjsops_Source
#endif
#define CharObjectsOps_Class_Source

#ifdef _MVS
#include <DD:IH(exp3ops)>
#else
#include "exp3ops.ih"
#endif

SOM_Scope long SOMLINK Compare(CharObjectsOps somSelf,
 Environment *ev,

SOMObject e1, SOMObject e2)
{

/* CharObjectsOpsData *somThis = CharObjectsOpsGetData(somSelf); */

char val1 ;
char val2 ;

 CharObjectsOpsMethodDebug("CharObjectsOps","Compare");

val1 = __get_charValue(e1, ev) ;
val2 = __get_charValue(e2, ev) ;
return (val1 - val2) ;

}

154 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

SOM_Scope boolean SOMLINK Equal(CharObjectsOps somSelf,
 Environment *ev,

SOMObject e1, SOMObject e2)
{

/* CharObjectsOpsData *somThis = CharObjectsOpsGetData(somSelf); */

char val1 ;
char val2 ;

 CharObjectsOpsMethodDebug("CharObjectsOps","Equal");

val1 = __get_charValue(e1, ev) ;
val2 = __get_charValue(e2, ev) ;
return (val1 == val2) ;

}

SOM_Scope void SOMLINK somDefaultInit(CharObjectsOps somSelf,
 somInitCtrl* ctrl)
{

CharObjectsOpsData *somThis; /* set in BeginInitializer */
 somInitCtrl globalCtrl;
 somBooleanVector myMask;
 CharObjectsOpsMethodDebug("CharObjectsOps","somDefaultInit");
 CharObjectsOps_BeginInitializer_somDefaultInit;

 CharObjectsOps_Init_ISOps_somDefaultInit(somSelf, ctrl);

 /*
Just overridden with default for performance reasons

 */
}

SOM_Scope void SOMLINK somDestruct(CharObjectsOps somSelf,
 octet doFree,
 somDestructCtrl* ctrl)
{

CharObjectsOpsData *somThis; /* set in BeginDestructor */
 somDestructCtrl globalCtrl;
 somBooleanVector myMask;
 CharObjectsOpsMethodDebug("CharObjectsOps","somDestruct");
 CharObjectsOps_BeginDestructor;

 /*
Just overridden with default for performance reasons

 */

 CharObjectsOps_EndDestructor;
}

This program produces the following output:

Letterdq sample running ...
Adding characters to the back end of the queue : ...
Added to LetterDeque: T
Added to LetterDeque: e
Added to LetterDeque: q
Added to LetterDeque: i
Added to LetterDeque: k
Added to LetterDeque: b
Added to LetterDeque: o
Added to LetterDeque: n

 Appendix A. Coding Samples: Source Code and Header Files 155

Added to LetterDeque: f
Added to LetterDeque: x
Added to LetterDeque: j
Added to LetterDeque: m
Added to LetterDeque: s
Added to LetterDeque: o
Added to LetterDeque: e
Added to LetterDeque:
Added to LetterDeque:
Added to LetterDeque: a
Added to LetterDeque: y
Added to LetterDeque: d
Added to LetterDeque: g
Added to LetterDeque: .
Added to LetterDeque: o
Added to LetterDeque:
Added to LetterDeque: z
Added to LetterDeque: l
Added to LetterDeque: a
Added to LetterDeque: r
Added to LetterDeque: v
Added to LetterDeque:
Added to LetterDeque: p
Added to LetterDeque: u
Added to LetterDeque:
Added to LetterDeque: o
Added to LetterDeque:
Added to LetterDeque: w
Added to LetterDeque: r
Added to LetterDeque:
Added to LetterDeque: c
Added to LetterDeque: u
Added to LetterDeque:
Added to LetterDeque: h
Current number of elements in LetterDeque: 42
Content of LetterDeque:
Teqikbonfxjmsoe aydg.o zlarv pu o wr cu h
Reading from LetterDeque one element from front, one from back, and so on:
The quick brown fox jumps over a lazy dog.

Coding Example for Key Bag

The following program uses the default key bag class, ISKeyBag, to create a key
bag for storing observations made on animals. The key of the class is the name of
the animal. The program produces various reports regarding the observations.
Then it removes all the extinct animals, which are stored in a sequence, from the
key bag.

The program uses the add() function to fill the key bag and a Cursor to display the
observations. It uses the following functions to produce the reports:

 ¹ numberOfElements()

156 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 ¹ numberOfDifferentKeys()
 ¹ numberOfElementsWithKey()
 ¹ locateElementWithKey()
 ¹ setToNextElementWithKey()
 ¹ removeAllElementsWithKey()

------------- exp1ele.idl -------------------
#ifndef ANIMAL_IDL
#define ANIMAL_IDL

#include <somobj.idl>

interface AnimalsKey ;

interface Animal : SOMObject
{

void Animal_withNameAndProperty (inout somInitCtrl ctrl , in string aName , in
string aProperty) ;

string get_Name() ;
string get_Property() ;
AnimalsKey get_Key() ;
boolean equalAnimals(in Animal anotherAnimal) ;
void printAnimal() ;

#if defined __SOMIDL__
implementation
{

releaseorder : Animal_withNameAndProperty ,
get_Name , get_Property, get_Key,

 equalAnimals,
 printAnimal ;

Animal_withNameAndProperty : init ;
somDefaultInit : override ;
somDestruct : override ;

AnimalsKey nameKey ;
string property ;

dllname = "animal.dll" ;

passthru C_h_before = "#include <exp1key.h>" \
"#include <string.h>" ;

};
#endif //# __SOMIDL__

};
#endif //# ANIMAL_IDL

------------- exp1key.idl -----------------------
#ifndef ANIMALSKEY_IDL
#define ANIMALSKEY_IDL

#include <somobj.idl>

interface AnimalsKey : SOMObject
{

void AnimalsKey_withName (inout somInitCtrl ctrl , in string aName) ;

string get_Name() ;

 Appendix A. Coding Samples: Source Code and Header Files 157

#if defined __SOMIDL__
implementation
{

releaseorder : AnimalsKey_withName , get_Name ;

AnimalsKey_withName : init ;
somDefaultInit : override ;
somDestruct : override ;

string name ;

dllname = "exp1.dll" ;

passthru C_h_before = "#include <string.h>" ;
};
#endif //# __SOMIDL__

};
#endif //# ANIMALSKEY_IDL

------------- exp1ops.idl -----------------------
#ifndef ANIMALSOPS_IDL
#define ANIMALSOPS_IDL

#include <ssops.idl>

interface AnimalsOps : ISOps
{

#if defined __SOMIDL__
implementation
{
Key : override ;
KeyHash : override ;
KeyEqual : override ;

somDefaultInit : override ;
somDestruct : override ;

string name ;

dllname = "exp1.dll" ;

passthru C_h_before = "#include <ssglobal.h>"
 "#include <exp1ele.h>"

"#include <exp1key.h>" ;
};

#endif //# __SOMIDL__

};
#endif //# ANIMALSOPS_IDL

------------- exp1ele.c -------------------

/*
 * This file was generated by the SOM Compiler.
 * Generated using:
 * SOM incremental update: 2.41
 */

/*
 * This file was generated by the SOM Compiler and Emitter Framework.
 * Generated using:
 * SOM Emitter emitctm.dll: 2.41
 */

158 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

#ifndef SOM_Module_animal_Source
#define SOM_Module_animal_Source
#endif
#define Animal_Class_Source

#ifdef _MVS
#include <DD:IH(exp1ele)>
#else
#include "exp1ele.ih"
#endif

SOM_Scope void SOMLINK Animal_withNameAndProperty(Animal somSelf,
 Environment *ev,
 somInitCtrl* ctrl,
 string aName,
 string aProperty)
{

AnimalData *somThis; /* set in BeginInitializer */
 somInitCtrl globalCtrl;
 somBooleanVector myMask;

string ptr ;

 AnimalMethodDebug("Animal","Animal_withNameAndProperty");
 Animal_BeginInitializer_Animal_withNameAndProperty;

 Animal_Init_SOMObject_somDefaultInit(somSelf, ctrl);

 somThis->nameKey =
(AnimalsKey) AnimalsKeyNew_AnimalsKey_withName(ev, aName);

ptr = (string) SOMMalloc(strlen(aProperty) +1) ;
strcpy (ptr, aProperty) ;
somThis->property = ptr ;

}

SOM_Scope string SOMLINK get_Name(Animal somSelf, Environment *ev)
{

AnimalData *somThis = AnimalGetData(somSelf);
string retVal ;

 AnimalMethodDebug("Animal","get_Name");

retVal = (string) AnimalsKey_get_Name(somThis->nameKey,ev);
return (retVal) ;

}

SOM_Scope string SOMLINK get_Property(Animal somSelf, Environment *ev)
{

AnimalData *somThis = AnimalGetData(somSelf);
 AnimalMethodDebug("Animal","get_Property");
 return (somThis->property);
}

SOM_Scope AnimalsKey SOMLINK get_Key(Animal somSelf, Environment *ev)
{

AnimalData *somThis = AnimalGetData(somSelf);
 AnimalMethodDebug("Animal","get_Key");
 return (somThis->nameKey);
}

SOM_Scope boolean SOMLINK equalAnimals(Animal somSelf, Environment *ev,
 Animal anotherAnimal)
{

AnimalData *somThis = AnimalGetData(somSelf);
boolean retVal = FALSE ;

 string ptr1 ;
 string ptr2 ;
 string ptr3 ;
 string ptr4 ;
 AnimalMethodDebug("Animal","equalAnimals");

 Appendix A. Coding Samples: Source Code and Header Files 159

ptr1 = (string) Animal_get_Name (anotherAnimal , ev) ;
ptr2 = (string) AnimalsKey_get_Name (somThis->nameKey , ev) ;

ptr3 = (string) _get_Property(anotherAnimal , ev) ;
ptr4 = somThis->property ;

if (strcmp(ptr1,ptr2) && strcmp(ptr3, ptr4))
retVal = TRUE ;

 return (retVal);
}

/*
 * SOM_Scope void SOMLINK printAnimal(Animal somSelf, Environment *ev,
 * Animal anAnimal)
 */

/*
 * The prototype for printAnimal was replaced by the following prototype:
 */
SOM_Scope void SOMLINK printAnimal(Animal somSelf, Environment *ev)
{

AnimalData *somThis = AnimalGetData(somSelf);
 string ptr1;
 string ptr2;
 AnimalMethodDebug("Animal","printAnimal");

ptr1 = (string) Animal_get_Name(somSelf , ev) ;
ptr2 = (string) _get_Property(somSelf , ev) ;

somPrintf ("The %s is %s . \n", ptr1 , ptr2) ;

}

SOM_Scope void SOMLINK somDefaultInit(Animal somSelf, somInitCtrl* ctrl)
{

AnimalData *somThis; /* set in BeginInitializer */
 somInitCtrl globalCtrl;
 somBooleanVector myMask;
 AnimalMethodDebug("Animal","somDefaultInit");
 Animal_BeginInitializer_somDefaultInit;

 Animal_Init_SOMObject_somDefaultInit(somSelf, ctrl);

 /*
Just overridden with default for performance reasons

 */

}

SOM_Scope void SOMLINK somDestruct(Animal somSelf, octet doFree,
 somDestructCtrl* ctrl)
{

AnimalData *somThis; /* set in BeginDestructor */
 somDestructCtrl globalCtrl;
 somBooleanVector myMask;
 AnimalMethodDebug("Animal","somDestruct");
 Animal_BeginDestructor;

if (somThis->property != 0)
SOMFree (somThis->property) ;

if (somThis->nameKey != 0)
 _somFree(somThis->nameKey) ;

 Animal_EndDestructor;
}

160 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

------------- exp1key.c ---------------------
/*
 * This file was generated by the SOM Compiler and Emitter Framework.
 * Generated using:
 * SOM Emitter emitctm.dll: 2.41
 */

#ifndef SOM_Module_animalskey_Source
#define SOM_Module_animalskey_Source
#endif
#define AnimalsKey_Class_Source

#ifdef _MVS
#include <DD:IH(exp1key)>
#else
#include "exp1key.ih"
#endif

SOM_Scope void SOMLINK AnimalsKey_withName(AnimalsKey somSelf,
 Environment *ev,
 somInitCtrl* ctrl,
 string aName)
{

AnimalsKeyData *somThis; /* set in BeginInitializer */
 somInitCtrl globalCtrl;
 somBooleanVector myMask;

string ptr ;

 AnimalsKeyMethodDebug("AnimalsKey","AnimalsKey_withName");
 AnimalsKey_BeginInitializer_AnimalsKey_withName;

 AnimalsKey_Init_SOMObject_somDefaultInit(somSelf, ctrl);

ptr = (string) SOMMalloc(strlen(aName) +1) ;
strcpy (ptr, aName) ;
somThis->name = ptr ;

}

SOM_Scope string SOMLINK get_Name(AnimalsKey somSelf, Environment *ev)
{

AnimalsKeyData *somThis = AnimalsKeyGetData(somSelf);
 AnimalsKeyMethodDebug("AnimalsKey","get_Name");

 return (somThis->name);

}

SOM_Scope void SOMLINK somDefaultInit(AnimalsKey somSelf, somInitCtrl* ctrl)
{

AnimalsKeyData *somThis; /* set in BeginInitializer */
 somInitCtrl globalCtrl;
 somBooleanVector myMask;
 AnimalsKeyMethodDebug("AnimalsKey","somDefaultInit");
 AnimalsKey_BeginInitializer_somDefaultInit;

 AnimalsKey_Init_SOMObject_somDefaultInit(somSelf, ctrl);

 /*
Just overridden with default for performance reasons

 */
}

SOM_Scope void SOMLINK somDestruct(AnimalsKey somSelf, octet doFree,
 somDestructCtrl* ctrl)
{

AnimalsKeyData *somThis; /* set in BeginDestructor */

 Appendix A. Coding Samples: Source Code and Header Files 161

 somDestructCtrl globalCtrl;
 somBooleanVector myMask;
 AnimalsKeyMethodDebug("AnimalsKey","somDestruct");
 AnimalsKey_BeginDestructor;

if (somThis->name != 0)
 SOMFree(somThis->name) ;

 AnimalsKey_EndDestructor;
}

------------- exp1ops.c -----------------------

/*
 * This file was generated by the SOM Compiler.
 * Generated using:
 * SOM incremental update: 2.41
 */

/*
 * This file was generated by the SOM Compiler and Emitter Framework.
 * Generated using:
 * SOM Emitter emitctm.dll: 2.41
 */

#ifndef SOM_Module_animalsops_Source
#define SOM_Module_animalsops_Source
#endif
#define AnimalsOps_Class_Source

#ifdef _MVS
#include <DD:IH(exp1ops)>
#else
#include "exp1ops.ih"
#endif

SOM_Scope SOMObject SOMLINK Key(AnimalsOps somSelf, Environment *ev,
 SOMObject element)
{

AnimalsOpsData *somThis = AnimalsOpsGetData(somSelf);
 AnimalsOpsMethodDebug("AnimalsOps","Key");

return ((AnimalsKey)_get_Key(element, ev)) ;
}

SOM_Scope long SOMLINK KeyHash(AnimalsOps somSelf, Environment *ev,
SOMObject key, unsigned long value)

{
AnimalsOpsData *somThis = AnimalsOpsGetData(somSelf);
string ptr ;

 AnimalsOpsMethodDebug("AnimalsOps","KeyHash");
ptr = (string) AnimalsKey_get_Name(key,ev) ;
return (strlen(ptr) % value) ;

}

SOM_Scope boolean SOMLINK KeyEqual(AnimalsOps somSelf, Environment *ev,
SOMObject k1, SOMObject k2)

{
AnimalsOpsData *somThis = AnimalsOpsGetData(somSelf);
string ptr1 ;
string ptr2 ;

 AnimalsOpsMethodDebug("AnimalsOps","KeyEqual");
ptr1 = (string) AnimalsKey_get_Name(k1,ev) ;
ptr2 = (string) AnimalsKey_get_Name(k2,ev) ;

return (0 == strcmp(ptr1,ptr2)) ;
}

162 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

SOM_Scope void SOMLINK somDefaultInit(AnimalsOps somSelf, somInitCtrl* ctrl)
{

AnimalsOpsData *somThis; /* set in BeginInitializer */
 somInitCtrl globalCtrl;
 somBooleanVector myMask;
 AnimalsOpsMethodDebug("AnimalsOps","somDefaultInit");
 AnimalsOps_BeginInitializer_somDefaultInit;

 AnimalsOps_Init_ISOps_somDefaultInit(somSelf, ctrl);

 /*
Just overridden with default for performance reasons

 */
}

SOM_Scope void SOMLINK somDestruct(AnimalsOps somSelf, octet doFree,
 somDestructCtrl* ctrl)
{

AnimalsOpsData *somThis; /* set in BeginDestructor */
 somDestructCtrl globalCtrl;
 somBooleanVector myMask;
 AnimalsOpsMethodDebug("AnimalsOps","somDestruct");
 AnimalsOps_BeginDestructor;

 /*
Just overridden with default for performance reasons

 */

 AnimalsOps_EndDestructor;
}

------------- exp1ini.c --------------------

#include <exp1ele.h>
#include <exp1key.h>
#include <exp1ops.h>

#ifdef __IBMC__
#pragma linkage(SOMInitModule, system)
#endif

SOMEXTERN void SOMLINK SOMInitModule (long majorVersion,
 long minorVersion,
 string className)
{
 AnimalNewClass(Animal_MajorVersion , Animal_MinorVersion);
 AnimalsKeyNewClass(AnimalsKey_MajorVersion , AnimalsKey_MinorVersion);
 AnimalsOpsNewClass(AnimalsOps_MajorVersion , AnimalsOps_MinorVersion);
 return;
}

------------- exp1main.c --------------------
/*--*\
| exp1main.c - Example for the use of the ISKeyBag |
| """""""""""" |
| We keep a Key Bag of our observations on animals. Elements |
| handled in this Key Bag are of type animal, the key is the |
| a SOMObject which maintains the name of the animal. |
| This Key Bag allows us to efficiently access all observations|
| on an animal. |
| We use a Sequence to store the names of all extinct animals. |
| At last we remove all extinct animals from the Key Bag. |
--/

#include <stdio.h>
#include <assert.h>

#include <som.h>

#include <ssglobal.h>

 Appendix A. Coding Samples: Source Code and Header Files 163

#include <skb.h>
#include <sseq.h>
#include <exp1ele.h>
#include <exp1ops.h>

#define _OK; assert(ev->_major == NO_EXCEPTION)

extern int SOM_TraceLevel;

main(int argc) {

 /*
* Define Variables

 */

Environment * ev ;

 ISKeyBag observations ;
ISElementCursor observationsCur1 , observationsCur2 ;

 ISSequence extinctAnimals ;
 ISOrderedCursor extinctAnimalsCur ;

 AnimalsOps animalsOps ;
 Animal anObservation ;
 Animal anotherObservation ;
 AnimalsKey anObservationsKey ;
 AnimalsKey extinctAnimalsKey ;
 string anObservationsName ;
 string anObservationsProperty ;
 string anotherObservationsProperty ;

 unsigned long numberOfObservations ;
 unsigned long numberOfAnimals ;
 unsigned long numberOfObservationsOnAnimal ;

 boolean more ;

 /*
* Initialize Variables

 */

ev = somGetGlobalEnvironment() ;
 SOM_InitEnvironment(ev);

animalsOps = (AnimalsOps) AnimalsOpsNew() ;
observations = ISKeyBagNew_ISKeyBag_withOps(ev, animalsOps) ; _OK ;
observationsCur1 = (ISElementCursor) _newElementCursor(observations, ev) ; _OK ;
observationsCur2 = (ISElementCursor) _newElementCursor(observations, ev) ; _OK ;
extinctAnimals = ISSequenceNew_ISSequence_withNumber (ev ,100) ; _OK ;
extinctAnimalsCur = (ISOrderedCursor) _newOrderedCursor(extinctAnimals, ev) ; _OK ;

SOM_TraceLevel = 0;
if (argc==2) SOM_TraceLevel = 1;
somPrintf("\nAnimals Sample running...\n");

 /*
* Collect all observations on animals made

 */

anObservation = AnimalNew_Animal_withNameAndProperty(ev, "bear" , "heavy"); _OK ;
_add(observations, ev, anObservation) ; _OK ;

anObservation = AnimalNew_Animal_withNameAndProperty(ev, "bear" , "strong");_OK ;
_add(observations, ev, anObservation) ; _OK ;

164 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

anObservation = AnimalNew_Animal_withNameAndProperty(ev, "dinosaur" ,"heavy"); _OK ;
_add(observations, ev, anObservation) ; _OK ;

anObservation = AnimalNew_Animal_withNameAndProperty(ev, "dinosaur" ,"huge"); _OK ;
_add(observations, ev, anObservation) ; _OK ;

anObservation = AnimalNew_Animal_withNameAndProperty(ev, "dinosaur" ,"extinct"); _OK ;
_add(observations, ev, anObservation) ; _OK ;

anObservation = AnimalNew_Animal_withNameAndProperty(ev, "eagle" , "black");_OK ;
_add(observations, ev, anObservation) ; _OK ;

anObservation = AnimalNew_Animal_withNameAndProperty(ev, "eagle" , "strong");_OK ;
_add(observations, ev, anObservation) ; _OK ;

anObservation = AnimalNew_Animal_withNameAndProperty(ev, "lion" ,"dangerous") ; _OK ;
_add(observations, ev, anObservation) ; _OK ;

anObservation = AnimalNew_Animal_withNameAndProperty(ev, "lion" , "strong");_OK ;
_add(observations, ev, anObservation) ; _OK ;

anObservation = AnimalNew_Animal_withNameAndProperty(ev, "mammoth" , "longhaired") ; _OK ;
_add(observations, ev, anObservation) ; _OK ;

anObservation = AnimalNew_Animal_withNameAndProperty(ev, "mammoth" ,"extinct"); _OK ;
_add(observations, ev, anObservation) ; _OK ;

anObservation = AnimalNew_Animal_withNameAndProperty(ev, "sabre tooth tiger", "extinct"); _OK ;
_add(observations, ev, anObservation) ; _OK ;

anObservation = AnimalNew_Animal_withNameAndProperty(ev, "zebra" ,"striped"); _OK ;
_add(observations, ev, anObservation) ; _OK ;

 /*
* Print content of observations

 */

somPrintf ("\nAll our observations on animals: \n") ;

ISElementCursor_setToFirst (observationsCur1, ev); _OK ;

for (; _isValid (observationsCur1, ev);)
 {
 _OK ;

anObservation = (Animal) _element(observationsCur1 , ev) ; _OK ;
 somPrintf("\n") ;

_printAnimal(anObservation, ev) ; _OK ;
ISElementCursor_setToNext (observationsCur1, ev) ; _OK ;

 } ;

 /*
* Print number of observations

 */

numberOfObservations = _numberOfElements(observations , ev) ; _OK ;
somPrintf("\nNumber of observations on animals: %d \n" , numberOfObservations

) ; _OK ;

 /*
* Print number of different animals

 */

numberOfAnimals = _numberOfDifferentKeys(observations , ev) ; _OK ;
somPrintf("\nNumber of different animals observed : %d \n" , numberOfAnimals

) ; _OK ;

 /*
* Create set of extinct animals

 Appendix A. Coding Samples: Source Code and Header Files 165

 */

ISElementCursor_setToFirst(observationsCur1,ev) ; _OK ;

 do {

anObservation = (Animal) _element(observationsCur1,ev) ; _OK ;
anObservationsKey = (AnimalsKey) _get_Key(anObservation, ev) ; _OK ;
anObservationsName = (string) Animal_get_Name(anObservation, ev) ; _OK ;

numberOfObservationsOnAnimal = _numberOfElementsWithKey(observations, ev,
anObservationsKey); _OK ;

somPrintf("\nWe have %d observations on %s :\n" ,
numberOfObservationsOnAnimal, anObservationsName) ;

_locateElementWithKey(observations, ev, anObservationsKey,
observationsCur2); _OK ;

 do {
 _OK ;

anotherObservation = (Animal) _element(observationsCur2,ev) ;/*
_OK ; */

anotherObservationsProperty = (string)
_get_Property(anotherObservation, ev) ; _OK ;

somPrintf(" %s \n", anotherObservationsProperty) ;
if (0 == strcmp(anotherObservationsProperty, "extinct"))

 {
_add(extinctAnimals , ev , anObservationsKey); _OK ;

 }

more = _locateNextElementWithKey(observations, ev ,
anObservationsKey, observationsCur2) ;

} while (more);

more = _setToNextWithDifferentKey(observations, ev, observationsCur1); _OK ;

} while (more) ;

ISElementCursor_setToFirst (extinctAnimalsCur , ev) ; _OK ;

for (; _isValid (extinctAnimalsCur ,ev) ;)
 {

extinctAnimalsKey = (Animal) _element(extinctAnimalsCur, ev) ; _OK ;
_removeAllElementsWithKey(observations , ev, extinctAnimalsKey) ; _OK ;
ISElementCursor_setToNext(extinctAnimalsCur,ev) ; _OK ;

 };

somPrintf("\nAfter removing all observations on extinct animals: \n ") ;

ISElementCursor_setToFirst (observationsCur1 , ev) ; _OK ;
for (; _isValid (observationsCur1 ,ev) ;)

 {
anotherObservation = (Animal) _element(observationsCur1, ev) ; _OK ;

 somPrintf("\n") ;
_printAnimal(anotherObservation , ev) ; _OK ;
ISElementCursor_setToNext(observationsCur1 ,ev) ; _OK ;

 };

166 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

numberOfObservations = _numberOfElements(observations, ev) ; _OK ;
somPrintf("\nNumber of observations on animals: %d \n " ,

numberOfObservations) ;

numberOfAnimals = _numberOfDifferentKeys(observations , ev) ; _OK ;
somPrintf("\nNumber of different animals: %d \n " , numberOfAnimals) ;

 return 0;

}

This program produces the following output:

Animals Sample running...
All our observations on animals:
The lion is strong .
The lion is dangerous .
The bear is strong .
The bear is heavy .
The zebra is striped .
The eagle is strong .
The eagle is black .
The mammoth is extinct .
The mammoth is long haired .
The dinosaur is extinct .
The dinosaur is huge .
The dinosaur is heavy .
The sabre tooth tiger is extinct .
Number of observations on animals: 13
Number of different animals observed : 7
We have 2 observations on lion :
 strong
 dangerous
We have 2 observations on bear :
 strong
 heavy
We have 1 observations on zebra :
 striped
We have 2 observations on eagle :
 strong
 black
We have 2 observations on mammoth :
 extinct
 long haired
We have 3 observations on dinosaur :
 extinct
 huge
 heavy
We have 1 observations on sabre tooth tiger :
 extinct
All observations on extinct animals are removed.
These are the observation on not extinct animals :
The lion is strong .
The lion is dangerous .
The bear is strong .

 Appendix A. Coding Samples: Source Code and Header Files 167

The bear is heavy .
The zebra is striped .
The eagle is strong .
The eagle is black .
Number of observations on not extinct animals: 7

Number of different not extinct animals: 4

Coding Example for Set
The following program creates sets using the default class, ISSet. The odd set
contains all odd numbers less than ten. The prime set contains all prime numbers
less than ten. The program creates a set, oddPrime, that contains all the prime
numbers less than ten that are odd, by using the intersection of odd and prime. It
creates another set, evenPrime, that contains all the prime numbers less than ten
that are even, by using the difference of prime and oddPrime.

When printing the sets, the program uses the applicator interface, ISApplicator. It
uses the add() method to build the odd and prime sets. It uses the
addIntersection() and addDifference() methods to create the oddPrime and
evenPrime sets, respectively.

------------------------ exp2ele.idl -------------------
#ifndef LONGOBJECT_IDL
#define LONGOBJECT_IDL

#include <somobj.idl>

interface LongObject :SOMObject
{

attribute long longValue;

void LongObject_withLong(inout somInitCtrl ctrl,
in long aLong) ;

void print_longValue() ;

#if defined __SOMIDL__
implementation
{
releaseorder : LongObject_withLong, _get_longValue,

_set_longValue, print_longValue ;

LongObject_withLong : init ;
somDefaultInit : override ;
somDestruct : override ;

dllname = "exp2.dll" ;

};
#endif // __SOMIDL__

};

#endif // LONGOBJECT_IDL

------------------------ exp2ops.idl -----------------------
#ifndef LONGOBJECTSOPS_IDL
#define LONGOBJECTSOPS_IDL

#include <ssops.idl>

168 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

interface LongObjectsOps : ISOps
{

#if defined __SOMIDL__
implementation
{
Assign : override ;
Compare : override ;
Equal : override ;

somDefaultInit : override ;
somDestruct : override ;

dllname = "exp2.dll" ;

passthru C_h_before = "#include <ssglobal.h>"
 "#include <exp2ele.h>";
};

#endif //# __SOMIDL__

};
#endif //# LONGOBJECTSOPS_IDL

------------------------ exp2appl.idl -----------------
#ifndef PRAPPL_IDL
#define PRAPPL_IDL

#include <sappl.idl>

interface PrintAppl : ISApplicator
{

#if defined __SOMIDL__
implementation
{

somDefaultInit : override ;
somDestruct : override ;
applyTo : override ;

dllname= "exp2.dll" ;

passthru C_h_before = "#include <ssglobal.h>"
 "#include <exp2ele.h>";

};
#endif // __SOMIDL__

};

#endif // PRAPPL_IDL

------------------------ exp2ele.c -------------------
/*
 * This file was generated by the SOM Compiler and Emitter Framework.
 * Generated using:
 * SOM Emitter emitctm: 2.41
 */

#ifndef SOM_Module_longobj_Source
#define SOM_Module_longobj_Source
#endif
#define LongObject_Class_Source

 Appendix A. Coding Samples: Source Code and Header Files 169

#ifdef _MVS
#include <DD:IH(exp2ele)>
#else
#include "exp2ele.ih"
#endif

SOM_Scope void SOMLINK LongObject_withLong(LongObject somSelf,
 Environment *ev,
 somInitCtrl* ctrl,
 long aLong)
{

LongObjectData *somThis; /* set in BeginInitializer */
 somInitCtrl globalCtrl;
 somBooleanVector myMask;
 LongObjectMethodDebug("LongObject","LongObject_withLong");
 LongObject_BeginInitializer_LongObject_withLong;

 LongObject_Init_SOMObject_somDefaultInit(somSelf, ctrl);

somThis->longValue = aLong ;
}

SOM_Scope void SOMLINK print_longValue(LongObject somSelf, Environment *ev)
{

LongObjectData *somThis = LongObjectGetData(somSelf);
 LongObjectMethodDebug("LongObject","print_longValue");

somPrintf("%d \n", somThis->longValue) ;
}

SOM_Scope void SOMLINK somDefaultInit(LongObject somSelf, somInitCtrl* ctrl)
{

LongObjectData *somThis; /* set in BeginInitializer */
 somInitCtrl globalCtrl;
 somBooleanVector myMask;
 LongObjectMethodDebug("LongObject","somDefaultInit");
 LongObject_BeginInitializer_somDefaultInit;

 LongObject_Init_SOMObject_somDefaultInit(somSelf, ctrl);

 /*
Just overridden by default for performance reasons

 */
}

SOM_Scope void SOMLINK somDestruct(LongObject somSelf, octet doFree,
 somDestructCtrl* ctrl)
{

LongObjectData *somThis; /* set in BeginDestructor */
 somDestructCtrl globalCtrl;
 somBooleanVector myMask;
 LongObjectMethodDebug("LongObject","somDestruct");
 LongObject_BeginDestructor;

 /*
Just overridden by default for performance reasons

 */

 LongObject_EndDestructor;
}

------------------------ exp2ops.c -----------------------

/*
 * This file was generated by the SOM Compiler.
 * Generated using:
 * SOM incremental update: 2.41
 */

170 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

/*
 * This file was generated by the SOM Compiler and Emitter Framework.
 * Generated using:
 * SOM Emitter emitctm.dll: 2.41
 */

#ifndef SOM_Module_longobjsops_Source
#define SOM_Module_longobjsops_Source
#endif
#define LongObjectsOps_Class_Source

#ifdef _MVS
#include <DD:IH(exp2ops)>
#else
#include "exp2ops.ih"
#endif

SOM_Scope void SOMLINK Assign(LongObjectsOps somSelf, Environment *ev,
SOMObject e1, SOMObject e2)

{
/* LongObjectsOpsData *somThis = LongObjectsOpsGetData(somSelf); */

long val2 ;

 LongObjectsOpsMethodDebug("LongObjectsOps","Assign");
val2 = __get_longValue(e2, ev) ;
__set_longValue(e1, ev , val2) ;

}

SOM_Scope long SOMLINK Compare(LongObjectsOps somSelf, Environment *ev,
SOMObject e1, SOMObject e2)

{
/* LongObjectsOpsData *somThis = LongObjectsOpsGetData(somSelf); */

long val1 ;
long val2 ;

 LongObjectsOpsMethodDebug("LongObjectsOps","Compare");

val1 = __get_longValue(e1, ev) ;
val2 = __get_longValue(e2, ev) ;
return (val1 - val2) ;

}

SOM_Scope boolean SOMLINK Equal(LongObjectsOps somSelf, Environment *ev,
SOMObject e1, SOMObject e2)

{
/* LongObjectsOpsData *somThis = LongObjectsOpsGetData(somSelf); */

long val1 ;
long val2 ;

 LongObjectsOpsMethodDebug("LongObjectsOps","Equal");

val1 = __get_longValue(e1, ev) ;
val2 = __get_longValue(e2, ev) ;
return (val1 = val2) ;

}

SOM_Scope void SOMLINK somDefaultInit(LongObjectsOps somSelf,
 somInitCtrl* ctrl)
{

LongObjectsOpsData *somThis; /* set in BeginInitializer */
 somInitCtrl globalCtrl;
 somBooleanVector myMask;
 LongObjectsOpsMethodDebug("LongObjectsOps","somDefaultInit");
 LongObjectsOps_BeginInitializer_somDefaultInit;

 LongObjectsOps_Init_ISOps_somDefaultInit(somSelf, ctrl);

 Appendix A. Coding Samples: Source Code and Header Files 171

 /*
Just overidden with default for performance reasons

 */
}

SOM_Scope void SOMLINK somDestruct(LongObjectsOps somSelf, octet doFree,
 somDestructCtrl* ctrl)
{

LongObjectsOpsData *somThis; /* set in BeginDestructor */
 somDestructCtrl globalCtrl;
 somBooleanVector myMask;
 LongObjectsOpsMethodDebug("LongObjectsOps","somDestruct");
 LongObjectsOps_BeginDestructor;

 /*
Just overidden with default for performance reasons

 */

 LongObjectsOps_EndDestructor;
}

------------------------ exp2appl.c -----------------
/*
 * This file was generated by the SOM Compiler and Emitter Framework.
 * Generated using:
 * SOM Emitter emitctm.dll: 2.41
 */

#ifndef SOM_Module_prappl_Source
#define SOM_Module_prappl_Source
#endif
#define PrintAppl_Class_Source

#ifdef _MVS
#include <DD:IH(exp2appl)>
#else
#include "exp2appl.ih"
#endif

SOM_Scope void SOMLINK somDefaultInit(PrintAppl somSelf, somInitCtrl* ctrl)
{

PrintApplData *somThis; /* set in BeginInitializer */
 somInitCtrl globalCtrl;
 somBooleanVector myMask;
 PrintApplMethodDebug("PrintAppl","somDefaultInit");
 PrintAppl_BeginInitializer_somDefaultInit;

 PrintAppl_Init_ISApplicator_somDefaultInit(somSelf, ctrl);

 /*
Just overidden for performance reasons

 */
}

SOM_Scope void SOMLINK somDestruct(PrintAppl somSelf, octet doFree,
 somDestructCtrl* ctrl)
{

PrintApplData *somThis; /* set in BeginDestructor */
 somDestructCtrl globalCtrl;
 somBooleanVector myMask;
 PrintApplMethodDebug("PrintAppl","somDestruct");
 PrintAppl_BeginDestructor;

 /*
Just overidden for performance reasons

 */

172 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 PrintAppl_EndDestructor;
}

SOM_Scope boolean SOMLINK applyTo(PrintAppl somSelf, Environment *ev,
 SOMObject element)
{

/* PrintApplData *somThis = PrintApplGetData(somSelf); */
 PrintApplMethodDebug("PrintAppl","applyTo");

LongObject_print_longValue(element , ev) ;

return (TRUE) ;

}

------------------------ exp2ini.c ------------------
#include <exp2ele.h>
#include <exp2ops.h>
#include <exp2appl.h>

#ifdef __IBMC__
#pragma linkage(SOMInitModule, system)
#endif

SOMEXTERN void SOMLINK SOMInitModule (long majorVersion,
 long minorVersion,
 string className)
{
LongObjectNewClass(LongObject_MajorVersion , LongObject_MinorVersion);
LongObjectsOpsNewClass(LongObjectsOps_MajorVersion , LongObjectsOps_MinorVersion);
PrintApplNewClass(PrintAppl_MajorVersion , PrintAppl_MinorVersion);

 return;
}
------------------------ exp2main.c -----------------
#include <stdio.h>
#include <assert.h>

#include <som.h>

#include <ssglobal.h>

#include <sset.h>
#include <exp2ele.h>
#include <exp2ops.h>
#include <exp2appl.h>

#define _OK ; assert(ev->_major == NO_EXCEPTION)

#define _ERR ; assert(ev->_major == USER_EXCEPTION); \
ev->_major = NO_EXCEPTION; \

 somPrintf("\nexception: %s\n",somExceptionId(ev));

extern int SOM_TraceLevel ;

typedef ISSet LongSet ;

void List (char * , Environment * , LongSet) ;

int main (int argc)
{

Environment * ev ;

 Appendix A. Coding Samples: Source Code and Header Files 173

LongSet odd, prime ;
LongSet oddPrime , evenPrime;
LongObjectsOps longObjectsOpsOdd ;
LongObjectsOps longObjectsOpsPrime ;
LongObjectsOps longObjectsOpsOddPrime ;
LongObjectsOps longObjectsOpsEvenPrime ;

LongObject One ;
LongObject Two ;
LongObject Three ;
LongObject Five ;
LongObject Seven ;
LongObject Nine ;

long number ;

somPrintf("\nEvenOdd Sample running ... \n");

ev = (Environment *) somGetGlobalEnvironment() ;
 SOM_InitEnvironment(ev) ;

longObjectsOpsOdd
= (LongObjectsOps) LongObjectsOpsNew() ;

longObjectsOpsPrime
= (LongObjectsOps) LongObjectsOpsNew() ;

longObjectsOpsOddPrime
= (LongObjectsOps) LongObjectsOpsNew() ;

longObjectsOpsEvenPrime
= (LongObjectsOps) LongObjectsOpsNew() ;

odd = (LongSet) ISSetNew_ISSet_withOps(ev,longObjectsOpsOdd) ; _OK ;
prime = (LongSet) ISSetNew_ISSet_withOps(ev,longObjectsOpsPrime) ; _OK ;

oddPrime = (LongSet) ISSetNew_ISSet_withOps(ev,longObjectsOpsOddPrime) ; _OK ;
evenPrime = (LongSet) ISSetNew_ISSet_withOps(ev,longObjectsOpsEvenPrime) ; _OK ;

One = (LongObject) LongObjectNew_LongObject_withLong(ev, 1) ; _OK ;
Two = (LongObject) LongObjectNew_LongObject_withLong(ev, 2) ; _OK ;
Three = (LongObject) LongObjectNew_LongObject_withLong(ev, 3) ; _OK ;
Five = (LongObject) LongObjectNew_LongObject_withLong(ev, 5) ; _OK ;
Seven = (LongObject) LongObjectNew_LongObject_withLong(ev, 7) ; _OK ;
Nine = (LongObject) LongObjectNew_LongObject_withLong(ev, 9) ; _OK ;

SOM_TraceLevel = 0 ;
if(argc==2) SOM_TraceLevel = 1 ;

_add(odd,ev,One); _OK ;
number =_numberOfElements(odd,ev); _OK ;
_add(odd,ev,Three); _OK ;
number = _numberOfElements(odd,ev); _OK ;
_add(odd,ev,Five); _OK ;
number = _numberOfElements(odd,ev); _OK ;
 _add(odd,ev,Seven); _OK ;
number = _numberOfElements(odd,ev); _OK ;
_add(odd,ev,Nine); _OK ;
number =_numberOfElements(odd,ev); _OK ;

List("Odds less than 10: " , ev , odd) ; _OK ;

_add(prime,ev,Two); _OK ;
number =_numberOfElements(odd,ev); _OK ;
_add(prime,ev,Three); _OK ;
number =_numberOfElements(odd,ev); _OK ;
_add(prime,ev,Five); _OK ;
number =_numberOfElements(odd,ev); _OK ;
_add(prime,ev,Seven); _OK ;
number =_numberOfElements(odd,ev); _OK ;

List("Primes less than 10: ", ev, prime) ; _OK ;

174 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

_addIntersection(oddPrime, ev, odd , prime) ; _OK ;

List("Odd Primes less than 10: ", ev ,oddPrime);

_addDifference(evenPrime, ev, prime, oddPrime) ; _OK ;

List("Even primes less than 10: ", ev , evenPrime) ; _OK ;

return (0) ;

}

void List (char * aMessage, Environment * ev, LongSet aLongSet)
{

PrintAppl printAppl ;

printAppl = PrintApplNew() ;

somPrintf("%s \n" , aMessage) ;
_allElementsDo(aLongSet,ev,printAppl); _OK;
somPrintf("\n") ;

}

This program produces the following output:

EvenOdd Sample running ...
Odds less than 10:
1
3
5
7
9
Primes less than 10:
2
3
5
7
Odd Primes less than 10:
3
5
7
Even primes less than 10:
2

Coding Example for Sorted Set
The following program uses the default class, ISSortedSet, to create sorted lists of
planets with different properties. The program stores all planets in our solar
system, all heavy planets in our solar system, all bright planets in our solar system,
and all heavy or bright planets in our solar system in a number of sorted sets.
Each set sorts the planets by its distance from the sun.

 Appendix A. Coding Samples: Source Code and Header Files 175

It uses the allElementsDo() function to display the planets in each collection and
the unionWith() function when creating the bright-or-heavy planets category.

----------------------- exp5ele.idl -------------------
#ifndef PLANET_IDL
#define PLANET_IDL

#include <somobj.idl> //# Get general parent class definition

interface Planet : SOMObject {

 void Planet_withNameDistanceMassAndBrightness
(inout somInitCtrl ctrl, in string aName, in float aDist, in float aMass, in float aBright);

// Constructor to define a planet from name, distance, mass and brightness

boolean equalPlanets (in Planet anotherPlanet);
// For a Set we need to provide element equality.

long isSmaller (in Planet anotherPlanet);
// For a Sorted Set we need to provide element comparision.

 string name();
// Get method for the name of the planet

 boolean isHeavy();
// Method to determine, if the planet is heavier than earth

 boolean isBright();
// Method to determine, if the planet is bright

#ifdef __PRIVATE__
string get_plname ();

 float get_dist ();
// Private methods to get instance variables

#endif

#if defined __SOMIDL__
implementation
{

#ifdef __PRIVATE__
// Define instance variables
string plname; // name of the planet
float dist; // distance of the planet from the sun
float mass; // mass of the planet (multiples of the earths mass)
float bright; // brightness of the planet

#endif

releaseorder : Planet_withNameDistanceMassAndBrightness,
 equalPlanets,
 isSmaller,
 name,
 isHeavy,
 isBright,
 get_plname,
 get_dist;

Planet_withNameDistanceMassAndBrightness : init;

somDefaultInit : override ;
somDestruct : override ;

dllname = "planet.dll" ;

};
#endif //# SOM_IDL

};

176 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

#endif //# PLANET_IDL
----------------------- exp5ops.idl ----------------------
#ifndef PLANETOPS_IDL
#define PLANETOPS_IDL

#include <ssops.idl>

interface PlanetOps : ISOps
{

#if defined __SOMIDL__
implementation
{

Compare : override ;
Equal : override ;

 somDefaultInit : override ;
somDestruct : override ;

dllname = "exp5.dll" ;

passthru C_h_before = "#include <ssglobal.h>"
"#include <exp5ele.h>" ;

};

#endif //# __SOMIDL__

};
#endif //# PLANETOPS_IDL

----------------------- exp5appl.idl -------------------------
#ifndef SAYPLANETNAME_IDL
#define SAYPLANETNAME_IDL

#include <sappl.idl> //# Get general parent class definition
#include <exp5ele.idl> //# Get planet class definition

interface SayPlanetName : ISApplicator {

#if defined __SOMIDL__
implementation
{

somDefaultInit : override ;
somDestruct : override ;
applyTo : override ;

dllname = "exp5.dll" ;

passthru C_h_before = "#include <exp5ele.h>";

};
#endif //# SOM_IDL

};

#endif //# SAYPLANETNAME_IDL

----------------------- exp5ele.c --------------------

/*
 * This file was generated by the SOM Compiler.
 * Generated using:
 * SOM incremental update: 2.41
 */

/*
 * This file was generated by the SOM Compiler and Emitter Framework.
 * Generated using:
 * SOM Emitter emitctm.dll: 2.41

 Appendix A. Coding Samples: Source Code and Header Files 177

 */

#ifndef SOM_Module_planet_Source
#define SOM_Module_planet_Source
#endif
#define Planet_Class_Source

#ifdef _MVS
#include <DD:IH(exp5ele)>
#else
#include "exp5ele.ih"
#endif

/*
 * Constructor to define a planet from name, distance, mass and brightness
 */
SOM_Scope void SOMLINK Planet_withNameDistanceMassAndBrightness(Planet somSelf,
 Environment *ev,
 somInitCtrl* ctrl,
 string aName,
 float aDist,
 float aMass,
 float aBright)
{
 string ptr;

PlanetData *somThis; /* set in BeginInitializer */
 somInitCtrl globalCtrl;
 somBooleanVector myMask;
 PlanetMethodDebug("Planet","Planet_withNameDistanceMassAndBrightness");
 Planet_BeginInitializer_Planet_withNameDistanceMassAndBrightness;

 Planet_Init_SOMObject_somDefaultInit(somSelf, ctrl);

 /*
* local Planet initialization code added by programmer

 */

somThis -> dist = aDist;
somThis -> mass = aMass;
somThis -> bright = aBright;

ptr = (string) SOMMalloc(strlen(aName) +1) ;
strcpy (ptr, aName) ;
somThis->plname = ptr ;

}

/*
 * For a Set we need to provide element equality.
 */

SOM_Scope boolean SOMLINK equalPlanets(Planet somSelf, Environment *ev,
 Planet anotherPlanet)
{

boolean returnValue = FALSE ;
 string firstName ;
 string secondName ;

PlanetData *somThis = PlanetGetData(somSelf);
 PlanetMethodDebug("Planet","equalPlanets");

firstName = get_plname (somSelf , ev) ;
secondName = get_plname (anotherPlanet , ev) ;

/* Return statement to be customized: */
if (strcmp(firstName,secondName))

returnValue = TRUE ;

 return (returnValue);
}

178 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

/*
 * For a Sorted Set we need to provide element comparision.
 */

SOM_Scope long SOMLINK isSmaller(Planet somSelf, Environment *ev,
 Planet anotherPlanet)
{ float distance;

PlanetData *somThis = PlanetGetData(somSelf);
 PlanetMethodDebug("Planet","isSmaller");

/* Compare the distances of the planets */
distance = get_dist (anotherPlanet, ev);
if ((somThis -> dist) < distance) { return (-1); }

else { if ((somThis -> dist) > distance) { return (1); }
else { return (0); }

} /* endif */
}

/*
 * Get method for the name of the planet
 */

SOM_Scope string SOMLINK name(Planet somSelf, Environment *ev)
{

PlanetData *somThis = PlanetGetData(somSelf);
 PlanetMethodDebug("Planet","name");

/* Return the name of the planet */
return (get_plname (somSelf, ev)) ;

}

/*
 * Method to determine, if the planet is heavier than earth
 */

SOM_Scope boolean SOMLINK isHeavy(Planet somSelf, Environment *ev)
{

PlanetData *somThis = PlanetGetData(somSelf);
 PlanetMethodDebug("Planet","isHeavy");

/* Check if the mass of the planet is greater than 1.0 */
return ((somThis -> mass) > 1.0);

}

/*
 * Method to determine, if the planet is bright
 */

SOM_Scope boolean SOMLINK isBright(Planet somSelf, Environment *ev)
{

PlanetData *somThis = PlanetGetData(somSelf);
 PlanetMethodDebug("Planet","isBright");

/* Check the brightness of the planet */
return ((somThis -> bright) < 0.0);

}

SOM_Scope string SOMLINK get_plname(Planet somSelf, Environment *ev)
{

PlanetData *somThis = PlanetGetData(somSelf);
 PlanetMethodDebug("Planet","get_plname");

/* Return the name of the planet */
return (somThis -> plname);

}

/*
 * The prototype for get_dist was replaced by the following prototype:

 Appendix A. Coding Samples: Source Code and Header Files 179

 */
/*
 * Private methods to get instance variables
 */

SOM_Scope float SOMLINK get_dist(Planet somSelf, Environment *ev)
{

PlanetData *somThis = PlanetGetData(somSelf);
 PlanetMethodDebug("Planet","get_dist");

/* Return the distance of the planet */
return (somThis -> dist);

}

SOM_Scope void SOMLINK somDefaultInit(Planet somSelf, somInitCtrl* ctrl)
{

PlanetData *somThis; /* set in BeginInitializer */
 somInitCtrl globalCtrl;
 somBooleanVector myMask;
 PlanetMethodDebug("Planet","somDefaultInit");
 Planet_BeginInitializer_somDefaultInit;

 Planet_Init_SOMObject_somDefaultInit(somSelf, ctrl);

 /*
* local Planet initialization code added by programmer

 */
}

SOM_Scope void SOMLINK somDestruct(Planet somSelf, octet doFree,
 somDestructCtrl* ctrl)
{

PlanetData *somThis; /* set in BeginDestructor */
 somDestructCtrl globalCtrl;
 somBooleanVector myMask;
 PlanetMethodDebug("Planet","somDestruct");
 Planet_BeginDestructor;

/* Free the plname */
if (somThis->plname != 0)

SOMFree (somThis->plname) ;

 Planet_EndDestructor;
}

----------------------- exp5ops.c ----------------------
/*
 * This file was generated by the SOM Compiler and Emitter Framework.
 * Generated using:
 * SOM Emitter emitctm.dll: 2.41
 */

#ifndef SOM_Module_planetops_Source
#define SOM_Module_planetops_Source
#endif
#define PlanetOps_Class_Source

#ifdef _MVS
#include <DD:IH(exp5ops)>
#else
#include "exp5ops.ih"
#endif

SOM_Scope long SOMLINK Compare(PlanetOps somSelf, Environment *ev,
SOMObject e1, SOMObject e2)

{
/* PlanetOpsData *somThis = PlanetOpsGetData(somSelf); */

180 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 PlanetOpsMethodDebug("PlanetOps","Compare");

/* return (PlanetOps_parent_ISOps_Compare(somSelf, ev, e1, e2)); */

return (Planet_isSmaller (e1, ev, e2));
}

SOM_Scope boolean SOMLINK Equal(PlanetOps somSelf, Environment *ev,
SOMObject e1, SOMObject e2)

{
/* PlanetOpsData *somThis = PlanetOpsGetData(somSelf); */

 PlanetOpsMethodDebug("PlanetOps","Equal");

/* return (PlanetOps_parent_ISOps_Equal(somSelf, ev, e1, e2)); */

return (Planet_equalPlanets (e1, ev, e2));
}

SOM_Scope void SOMLINK somDefaultInit(PlanetOps somSelf, somInitCtrl* ctrl)
{

PlanetOpsData *somThis; /* set in BeginInitializer */
 somInitCtrl globalCtrl;
 somBooleanVector myMask;
 PlanetOpsMethodDebug("PlanetOps","somDefaultInit");
 PlanetOps_BeginInitializer_somDefaultInit;

 PlanetOps_Init_ISOps_somDefaultInit(somSelf, ctrl);

 /*
* local PlanetOps initialization code added by programmer

 */
}

SOM_Scope void SOMLINK somDestruct(PlanetOps somSelf, octet doFree,
 somDestructCtrl* ctrl)
{

PlanetOpsData *somThis; /* set in BeginDestructor */
 somDestructCtrl globalCtrl;
 somBooleanVector myMask;
 PlanetOpsMethodDebug("PlanetOps","somDestruct");
 PlanetOps_BeginDestructor;

 /*
* local PlanetOps deinitialization code added by programmer

 */

 PlanetOps_EndDestructor;
}

----------------------- exp5appl.c -------------------------

/*
 * This file was generated by the SOM Compiler.
 * Generated using:
 * SOM incremental update: 2.41
 */

/*
 * This file was generated by the SOM Compiler and Emitter Framework.
 * Generated using:
 * SOM Emitter emitctm.dll: 2.41
 */

#ifndef SOM_Module_sayplanetname_Source
#define SOM_Module_sayplanetname_Source
#endif
#define SayPlanetName_Class_Source

 Appendix A. Coding Samples: Source Code and Header Files 181

#ifdef _MVS
#include <DD:IH(exp5appl)>
#else
#include "exp5appl.ih"
#endif

SOM_Scope void SOMLINK somDefaultInit(SayPlanetName somSelf,
 somInitCtrl* ctrl)
{

SayPlanetNameData *somThis; /* set in BeginInitializer */
 somInitCtrl globalCtrl;
 somBooleanVector myMask;
 SayPlanetNameMethodDebug("SayPlanetName","somDefaultInit");
 SayPlanetName_BeginInitializer_somDefaultInit;

 SayPlanetName_Init_ISApplicator_somDefaultInit(somSelf, ctrl);

 /*
* local SayPlanetName initialization code added by programmer

 */
}

SOM_Scope void SOMLINK somDestruct(SayPlanetName somSelf, octet doFree,
 somDestructCtrl* ctrl)
{

SayPlanetNameData *somThis; /* set in BeginDestructor */
 somDestructCtrl globalCtrl;
 somBooleanVector myMask;
 SayPlanetNameMethodDebug("SayPlanetName","somDestruct");
 SayPlanetName_BeginDestructor;

 /*
* local SayPlanetName deinitialization code added by programmer

 */

 SayPlanetName_EndDestructor;
}

SOM_Scope boolean SOMLINK applyTo(SayPlanetName somSelf, Environment *ev,
 SOMObject element)
{

/* SayPlanetoNameData *somThis = SayPlanetNameGetData(somSelf); */
string planetsName ;

 SayPlanetNameMethodDebug("SayPlanetName","applyTo");

/* return (SayPlanetName_parent_ISApplicator_applyTo(somSelf,
 ev, element));
 */

planetsName = Planet_name (element, ev) ;
somPrintf(" Planet: %s \n ", planetsName);

 return (TRUE);
}
----------------------- exp5ini.c ----------------------

#include <exp5ele.h>
#include <exp5ops.h>
#include <exp5appl.h>

#ifdef __IBMC__
#pragma linkage(SOMInitModule, system)
#endif

SOMEXTERN void SOMLINK SOMInitModule (long majorVersion,
 long minorVersion,
 string className)
{
 PlanetNewClass(Planet_MajorVersion,
 Planet_MinorVersion);
 PlanetOpsNewClass(PlanetOps_MajorVersion,
 PlanetOps_MinorVersion);

182 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 SayPlanetNameNewClass(SayPlanetName_MajorVersion,
 SayPlanetName_MinorVersion);
 return;
}

----------------------- exp5main.c ----------------------
/*---*\
| exp5main.c - All known planets are handled in a Sorted Set. |
| """""""""" |
| This example creates several sorted sets of planets. |
| The sort order is based on each planets distance from |
| the sun. |
---/

#include <stdio.h>
#include <assert.h>

#include <som.h>

#include <ssglobal.h>

#include <sss.h>
#include <exp5ele.h>
#include <exp5ops.h>
#include <exp5appl.h>

#define _OK; assert(ev -> _major == NO_EXCEPTION)

extern int SOM_TraceLevel;

int main(int argc) {

 /*
* Define Variables

 */

Environment * ev ;
ISSortedSet allPlanets, heavyPlanets, brightPlanets ;

 ISOrderedCursor aPlanetCursor ;
 SayPlanetName showPlanet;
 Planet aPlanet;

PlanetOps planetOps , heavyPlanetOps , brightPlanetOps ;

 int number;

 /*
* Initialize Variables

 */

SOM_TraceLevel = 0;
if (argc == 2) SOM_TraceLevel = 1;

ev = somGetGlobalEnvironment() ;
 SOM_InitEnvironment(ev);

planetOps = (PlanetOps) PlanetOpsNew() ;
heavyPlanetOps = (PlanetOps) PlanetOpsNew() ;
brightPlanetOps = (PlanetOps) PlanetOpsNew() ;

showPlanet = (SayPlanetName) SayPlanetNameNew() ;

allPlanets = ISSortedSetNew_ISSortedSet_withOps(ev, planetOps) ; _OK ;
heavyPlanets = ISSortedSetNew_ISSortedSet_withOps(ev, heavyPlanetOps) ; _OK ;
brightPlanets = ISSortedSetNew_ISSortedSet_withOps(ev, brightPlanetOps) ; _OK ;

aPlanetCursor = (ISOrderedCursor) _newElementCursor(allPlanets, ev) ; _OK ;

 /*
* Define the Planets and fill the allPlanets set

 */

aPlanet = PlanetNew_Planet_withNameDistanceMassAndBrightness

 Appendix A. Coding Samples: Source Code and Header Files 183

(ev, "Earth", 149.60, 1.0000, 99.9); _OK ;
_add (allPlanets, ev, aPlanet); _OK ;

/* "Dummy Earth" to check if elements with an equal distance are not added. */
aPlanet = PlanetNew_Planet_withNameDistanceMassAndBrightness

(ev, "Earth2", 149.60, 1.0000, 99.9); _OK ;
_add (allPlanets, ev, aPlanet); _OK ;

aPlanet = PlanetNew_Planet_withNameDistanceMassAndBrightness
(ev, "Jupiter", 778.3, 317.818, -2.4); _OK ;

_add (allPlanets, ev, aPlanet); _OK ;

aPlanet = PlanetNew_Planet_withNameDistanceMassAndBrightness
(ev, "Mars", 227.9, 0.1078, -1.9); _OK ;

_add (allPlanets, ev, aPlanet); _OK ;

aPlanet = PlanetNew_Planet_withNameDistanceMassAndBrightness
(ev, "Mercury", 57.91, 0.0558, -0.2); _OK ;

_add (allPlanets, ev, aPlanet); _OK ;

aPlanet = PlanetNew_Planet_withNameDistanceMassAndBrightness
(ev, "Neptun", 4498.0, 17.216, +7.6); _OK ;

_add (allPlanets, ev, aPlanet); _OK ;

aPlanet = PlanetNew_Planet_withNameDistanceMassAndBrightness
(ev, "Pluto", 5910.0, 0.18, +14.7); _OK ;

_add (allPlanets, ev, aPlanet); _OK ;

aPlanet = PlanetNew_Planet_withNameDistanceMassAndBrightness
(ev, "Saturn", 1428.0, 95.112, +0.8); _OK ;

_add (allPlanets, ev, aPlanet); _OK ;

aPlanet = PlanetNew_Planet_withNameDistanceMassAndBrightness
(ev, "Uranus", 2872.0, 14.517, +5.8); _OK ;

_add (allPlanets, ev, aPlanet); _OK ;

aPlanet = PlanetNew_Planet_withNameDistanceMassAndBrightness
(ev, "Venus", 108.21, 0.8148, -4.1); _OK ;

_add (allPlanets, ev, aPlanet); _OK ;

 /*
* Check for heavy and bright planets

 */

ISOrderedCursor_setToFirst (aPlanetCursor, ev); _OK ;

for (; _isValid (aPlanetCursor, ev);)
 {
 _OK ;

if (_isHeavy((Planet) _elementAt(allPlanets, ev, aPlanetCursor), ev))
_add(heavyPlanets, ev, ((Planet) _elementAt(allPlanets, ev, aPlanetCursor))); _OK ;

if (_isBright((Planet) _elementAt(allPlanets, ev, aPlanetCursor), ev))
_add(brightPlanets, ev, ((Planet) _elementAt(allPlanets, ev, aPlanetCursor))); _OK ;

ISOrderedCursor_setToNext (aPlanetCursor, ev) ; _OK ;
 }

 /*
* Print the results

 */

somPrintf("\nAll Planets: \n"); _OK ;
number = _numberOfElements (allPlanets, ev); _OK ;
somPrintf("\nNumber of Planets: %d \n", number); _OK ;

_allElementsDo(allPlanets, ev, showPlanet); _OK ;

somPrintf("\nHeavy Planets: \n"); _OK ;
number = _numberOfElements (heavyPlanets, ev); _OK ;
somPrintf("\nNumber of Planets: %d \n", number); _OK ;

184 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

_allElementsDo(heavyPlanets, ev, showPlanet); _OK ;

somPrintf("\nBright Planets: \n"); _OK ;
number = _numberOfElements (brightPlanets, ev); _OK ;
somPrintf("\nNumber of Planets: %d \n", number); _OK ;

_allElementsDo(brightPlanets, ev, showPlanet); _OK ;

somPrintf("\nBright or Heavy Planets: \n"); _OK ;
_unionWith(brightPlanets, ev, heavyPlanets); _OK ;
number = _numberOfElements (brightPlanets, ev); _OK ;
somPrintf("\nNumber of Planets: %d \n", number); _OK ;

_allElementsDo(brightPlanets, ev, showPlanet); _OK ;

somPrintf("\n \n \n"); _OK ;
somPrintf("\nDid you notice that all these Sets are sorted"); _OK ;
somPrintf("\nin the same order"); _OK ;
somPrintf("\n (distance of planet from sun) ? \n \n \n"); _OK ;

return 0; _OK ;

 }

This program produces the following output:

All Planets:
Number of Planets: 9
 Planet: Mercury
 Planet: Venus
 Planet: Earth
 Planet: Mars
 Planet: Jupiter
 Planet: Saturn
 Planet: Uranus
 Planet: Neptun
 Planet: Pluto

Heavy Planets:
Number of Planets: 4
 Planet: Jupiter
 Planet: Saturn
 Planet: Uranus
 Planet: Neptun

Bright Planets:
Number of Planets: 4
 Planet: Mercury
 Planet: Venus
 Planet: Mars
 Planet: Jupiter

Bright or Heavy Planets:
Number of Planets: 7
 Planet: Mercury
 Planet: Venus
 Planet: Mars
 Planet: Jupiter
 Planet: Saturn

 Appendix A. Coding Samples: Source Code and Header Files 185

 Planet: Uranus
 Planet: Neptun

Did you notice that all these Sets are sorted
in the same order
 (distance of planet from sun) ?

Coding Example for Stack
The following program creates two stacks (Stack1 and Stack2) using the default
class, ISStack. It adds a number of words to Stack1, removes them from Stack1,
adds them to Stack2, and finally removes them from Stack2 so that they can be
printed. The push() and pop() functions are used for adding and removing
elements, respectively.

Between these stack operations the stacks are printed. To prevent the stack from
changing during printing, the program uses the constant version of the iterator
class, IConstantIterator with the allElementsDo() function. The words print in
the same order as they were originally added to Stack1.

Because of the nature of the stack class, the program must use the constant
iterator class, IConstantIterator, when printing the stacks. It uses the push() and
pop() functions for adding and removing elements, respectively. The
allElementsDo() function is used when the collection is printed.

----------------------------- exp4ele.idl ------------------------

#ifndef LONGOBJECT_IDL
#define LONGOBJECT_IDL

#include <somobj.idl>

interface StringObject :SOMObject
{

attribute string stringValue;

void StringObject_withString(inout somInitCtrl ctrl,
in string aString) ;

void print_stringValue() ;

#if defined __SOMIDL__
implementation
{
releaseorder : StringObject_withString,
 _get_stringValue,
 _set_stringValue,
 print_stringValue ;

StringObject_withString : init ;
stringValue : noget , noset ;
somDefaultInit : override ;
somDestruct : override ;

dllname = "exp4.dll" ;

passthru C_h_before = "#include <string.h>" ;

186 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

};
#endif // __SOMIDL__

};

#endif // LONGOBJECT_IDL

----------------------------- exp4appl.idl --------------
#ifndef PRAPPL_IDL
#define PRAPPL_IDL

#include <sappl.idl>

interface PrintAppl : ISApplicator
{

#if defined __SOMIDL__
implementation
{

somDefaultInit : override ;
somDestruct : override ;
applyTo : override ;

dllname= "exp4.dll" ;

passthru C_h_before = "#include <ssglobal.h>"
 "#include <exp4ele.h>";

};
#endif // __SOMIDL__

};

#endif // PRAPPL_IDL

----------------------------- exp4ele.c ------------------------

/*
 * This file was generated by the SOM Compiler and Emitter Framework.
 * Generated using:
 * SOM Emitter emitctm.dll: 2.41
 */

#ifndef SOM_Module_stringobj_Source
#define SOM_Module_stringobj_Source
#endif
#define StringObject_Class_Source

#ifdef _MVS
#include <DD:IH(exp4ele)>
#else
#include "exp4ele.ih"
#endif

/*
 *Method from the IDL attribute statement:
 *"attribute string stringValue"
 */

SOM_Scope string SOMLINK _get_stringValue(StringObject somSelf,
 Environment *ev)
{

StringObjectData *somThis = StringObjectGetData(somSelf);
 StringObjectMethodDebug("StringObject","_get_stringValue");

/* Return statement to be customized: */

 Appendix A. Coding Samples: Source Code and Header Files 187

return (somThis->stringValue) ;
}

/*
 *Method from the IDL attribute statement:
 *"attribute string stringValue"
 */

SOM_Scope void SOMLINK _set_stringValue(StringObject somSelf,
 Environment *ev,
 string stringValue)
{

StringObjectData *somThis = StringObjectGetData(somSelf);
 StringObjectMethodDebug("StringObject","_set_stringValue");

if(somThis->stringValue != 0)
 SOMFree(somThis->stringValue) ;

somThis->stringValue = (string) SOMMalloc(strlen (stringValue) +1);
strcpy (somThis->stringValue , stringValue) ;

}

SOM_Scope void SOMLINK StringObject_withString(StringObject somSelf,
 Environment *ev,
 somInitCtrl* ctrl,
 string aString)
{

StringObjectData *somThis; /* set in BeginInitializer */
 somInitCtrl globalCtrl;
 somBooleanVector myMask;
 StringObjectMethodDebug("StringObject","StringObject_withString");
 StringObject_BeginInitializer_StringObject_withString;
 StringObject_Init_SOMObject_somDefaultInit(somSelf, ctrl);

somThis->stringValue = (string) SOMMalloc(strlen (aString) +1);
strcpy (somThis->stringValue , aString) ;

}

SOM_Scope void SOMLINK print_stringValue(StringObject somSelf,
 Environment *ev)
{

StringObjectData *somThis = StringObjectGetData(somSelf);
 StringObjectMethodDebug("StringObject","print_stringValue");

somPrintf("%s \n" , somThis->stringValue) ;

}

SOM_Scope void SOMLINK somDefaultInit(StringObject somSelf,
 somInitCtrl* ctrl)
{

StringObjectData *somThis; /* set in BeginInitializer */
 somInitCtrl globalCtrl;
 somBooleanVector myMask;
 StringObjectMethodDebug("StringObject","somDefaultInit");
 StringObject_BeginInitializer_somDefaultInit;

 StringObject_Init_SOMObject_somDefaultInit(somSelf, ctrl);

 /*
Just overridden with Default for performance reasons

 */
}

SOM_Scope void SOMLINK somDestruct(StringObject somSelf, octet doFree,
 somDestructCtrl* ctrl)
{

StringObjectData *somThis; /* set in BeginDestructor */
 somDestructCtrl globalCtrl;

188 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 somBooleanVector myMask;
 StringObjectMethodDebug("StringObject","somDestruct");
 StringObject_BeginDestructor;

 if(somThis->stringValue !=0)
 SOMFree(somThis->stringValue) ;

 StringObject_EndDestructor;
}

----------------------------- exp4appl.c --------------
/*
 * This file was generated by the SOM Compiler and Emitter Framework.
 * Generated using:
 * SOM Emitter emitctm.dll: 2.41
 */

#ifndef SOM_Module_prappl_Source
#define SOM_Module_prappl_Source
#endif
#define PrintAppl_Class_Source

#ifdef _MVS
#include <DD:IH(exp4appl)>
#else
#include "exp4appl.ih"
#endif

SOM_Scope void SOMLINK somDefaultInit(PrintAppl somSelf, somInitCtrl* ctrl)
{

PrintApplData *somThis; /* set in BeginInitializer */
 somInitCtrl globalCtrl;
 somBooleanVector myMask;
 PrintApplMethodDebug("PrintAppl","somDefaultInit");
 PrintAppl_BeginInitializer_somDefaultInit;

 PrintAppl_Init_ISApplicator_somDefaultInit(somSelf, ctrl);

 /*
Just overidden for performance reasons

 */
}

SOM_Scope void SOMLINK somDestruct(PrintAppl somSelf, octet doFree,
 somDestructCtrl* ctrl)
{

PrintApplData *somThis; /* set in BeginDestructor */
 somDestructCtrl globalCtrl;
 somBooleanVector myMask;
 PrintApplMethodDebug("PrintAppl","somDestruct");
 PrintAppl_BeginDestructor;

 /*
Jusr overidden for performance reasons

 */

 PrintAppl_EndDestructor;
}

SOM_Scope boolean SOMLINK applyTo(PrintAppl somSelf, Environment *ev,
 SOMObject element)
{

/* PrintApplData *somThis = PrintApplGetData(somSelf); */
 PrintApplMethodDebug("PrintAppl","applyTo");

StringObject_print_stringValue(element , ev) ;

return (TRUE) ;

 Appendix A. Coding Samples: Source Code and Header Files 189

}

----------------------------- exp4ini.c -----------------
#include <exp4ele.h>
#include <exp4appl.h>

#ifdef __IBMC__
#pragma linkage(SOMInitModule, system)
#endif

SOMEXTERN void SOMLINK SOMInitModule (long majorVersion,
 long minorVersion,
 string className)
{
StringObjectNewClass(StringObject_MajorVersion , StringObject_MinorVersion);
PrintApplNewClass(PrintAppl_MajorVersion , PrintAppl_MinorVersion);

 return;
}
----------------------------- exp4main.c ----------------
#include <stdio.h>
#include <assert.h>

#include <som.h>

#include <ssglobal.h>

#include <sstk.h>
#include <exp4ele.h>
#include <exp4appl.h>

#define _OK ; assert(ev->_major == NO_EXCEPTION)

#define _ERR ; assert(ev->_major == USER_EXCEPTION); \
ev->_major = NO_EXCEPTION; \

 somPrintf("\nexception: %s\n",somExceptionId(ev));

extern int SOM_TraceLevel ;

int main (int argc)
{

Environment * ev ;

ISStack stack1 , stack2 ;
StringObject aStringObject ;
string aString ;
PrintAppl printAppl ;

somPrintf("\nPushPop Sample running ... \n");

SOM_TraceLevel = 0 ;
if(argc==2) SOM_TraceLevel = 1 ;

ev = (Environment *) somGetGlobalEnvironment() ;
 SOM_InitEnvironment(ev) ;

printAppl = (PrintAppl) PrintApplNew() ;

stack1 = ISStackNew_ISStack_withOps(ev , aStringOps) ; _OK ;
stack2 = ISStackNew_ISStack_withOps(ev , aStringOps) ; _OK ;

aStringObject = StringObjectNew_StringObject_withString(ev, "The") ; _OK ;
_push(stack1 , ev, aStringObject) ; _OK ;
aStringObject = StringObjectNew_StringObject_withString(ev ,"quick") ; _OK ;

190 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

_push(stack1 , ev, aStringObject) ; _OK ;
aStringObject = StringObjectNew_StringObject_withString(ev ,"brown") ; _OK ;
_push(stack1 , ev, aStringObject) ; _OK ;
aStringObject = StringObjectNew_StringObject_withString(ev, "fox") ; _OK ;
_push(stack1 , ev, aStringObject) ; _OK ;
aStringObject = StringObjectNew_StringObject_withString(ev , "jumps") ; _OK ;
_push(stack1 , ev, aStringObject) ; _OK ;
aStringObject = StringObjectNew_StringObject_withString(ev ,"over") ; _OK ;
_push(stack1 , ev, aStringObject) ; _OK ;
aStringObject = StringObjectNew_StringObject_withString(ev ,"a") ; _OK ;
_push(stack1 , ev, aStringObject) ; _OK ;
aStringObject = StringObjectNew_StringObject_withString(ev ,"lazy") ; _OK ;
_push(stack1 , ev, aStringObject) ; _OK ;
aStringObject = StringObjectNew_StringObject_withString(ev , "dog") ; _OK ;
_push(stack1 , ev, aStringObject) ; _OK ;

somPrintf ("Content of Stack1 : \n") ;

_allElementsDo(stack1, ev, printAppl) ; _OK ;

somPrintf ("\n") ;
somPrintf ("---------------------\n") ;
somPrintf ("\n") ;

while (! _isEmpty (stack1, ev))
{
 _popWithElement(stack1, ev , &aStringObject) ; _OK ;
 _push(stack2, ev , aStringObject) ; _OK ;
}

somPrintf ("Content of Stack2 : \n") ;

_allElementsDo(stack2, ev, printAppl) ; _OK ;

somPrintf ("\n") ;
somPrintf ("---------------------\n") ;
somPrintf ("\n") ;

while (! _isEmpty (stack2, ev))
{
_popWithElement(stack2, ev , &aStringObject) ; _OK ;
somPrintf("Popped from stack2 :") ;
_print_stringValue(aStringObject, ev) ; _OK ;
somPrintf("\n") ;
}

return (0) ;

}

This program produces the following output:

PushPop Sample running ...
Content of Stack1 :

 Appendix A. Coding Samples: Source Code and Header Files 191

The
quick
brown
fox
jumps
over
a
lazy
dog

Content of Stack2 :
dog
lazy
a
over
jumps
fox
brown
quick
The

Popped from stack2 :The
Popped from stack2 :quick
Popped from stack2 :brown
Popped from stack2 :fox
Popped from stack2 :jumps
Popped from stack2 :over
Popped from stack2 :a
Popped from stack2 :lazy
Popped from stack2 :dog

192 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Index

A
abstract Collection Classes

equality collection 131
equality sorted collection 145
key collection

restriction on replacing elements 29
sorted collection 137

accessing elements 22, 31
addAsFirst() function 28
addAsLast() function 28
addAsNext() function 28
addAsPrevious() function 28
adding elements to collections

effect on cursors 30
overview 28

addOrReplaceElementWithKey() function 23
allElementsDo() function 32
IApplicatorOverrideException 40
applyTo() function

applicator classes 119
assign 54
Assign() function

operations class 125
auxiliary class 17, 24

B
Bag 73—74

Deque 13
description 13
properties of 19

IBoolean 45
bounded collections 33

C
C++ SOM and Cross-language SOM Class Libraries
class

general types of Collection Classes 17
hierarchy

abstract collections 25
Collection Class Library 26

CLASS_BASE_NAME 45
CLASS_NAME 45
collection

conditions for equality 58
copying 28
creating 28
cursor association 30
iterating over 31
modifying 28—30
using polymorphism with 37

collection abstract class 129
Collection Class Library

abstract classes
collection 129
equality collection 131
equality key collection 141
equality key sorted collection 147
equality sorted collection 145
key collection 133
key sorted collection 143
ordered collection 135
sequential collection 139
sorted collection 137

applicator class 119, 121
concrete classes

Bag collection 73
Deque collection 75
Equality Sequence c ollection 77
Heap collection 79
Key Bag collection 81
Key Set collection 83
Key Sorted Bag collection 85
Key Sorted Set collection 87
Map collection 89
Priority Queue collection 91
Queue collection 93
Relation collection 95
Sequence collection 97
Set collection 99
Sorted Bag collection 101
Sorted Map collection 103
Sorted relation collection 105
Sorted Set collection 107
Stack collection 109

cursor classes 115
Global 113
operations class 125
predicate class 123
reasons for using 17
steps for using 27
types of collections 17

IComparatorOverrideException 40
compare() function

Collection Class Library 54
using separate functions 35

comparator classes 121
operations class 125

concrete implementations 25
constant iterator class 32
constructors

cursor classes 115

 Copyright IBM Corp. 1995, 1997 193

containment function 23
copy() function

flat collections 55
creating a collection 28
ICursorInvalidException 40
cursors

accessing elements with 31
association with a collection 30
description 30—31
effect of removing elements 29
effect of replacing elements 29
iteration 32
locating elements with 31
properties that may cause an exception 40
reasons for using 30
removing elements with 29
validity 30

D
Deque 24, 75
destructor, flat collections 47
destructors

flat collections 47
difference

definition for Bags 73
definition for flat collections 56

E
element equality 18, 20—22
element() function

cursor classes 116
elementAt() function

accessing elements with 31
flat collection classes 56
replacing elements using 31
role in Collection Class Library 29

elements in Collection Class Library
accessing 22, 31
adding 23, 28

effect on cursors 30
functions

introduction 35
methods for providing 35
using element operation classes 36

iterating 31
locating 23, 31

See also locate... functions
occurrence 29
operation classes 36
polymorphism 37
removing 29

effect on cursors 30
replacing 29—30

using elementAt() function 31

elements in Collection Class Library (continued)
value 29

elementWithKey() function 31
IEmptyException 41
equal 58
equal element 45
Equal() function

operations class 125
equality collection abstract class 131
equality key collection abstract class 141
equality key sorted collection abstract class 147
equality relation 20
Equality Sequence 13, 19, 77—78
equality sorted collection abstract class 145
equality test

in Collection Class Library
using separate functions 35

evaluateFor() function
predicate classes 123

examples
machine-readable xx
naming of xx
softcopy xx

exception
IApplicatorOverrideException 40
IComparatorOverrideException 40
ICursorInvalidException 40
IEmptyException 41
Exception 42
IFullException 33, 41
IIdenticalCollectionException 41
in Collection Class Library 39
INoSOMObjectException
IInvalidObjectException 41
IInvalidReplacementException 41
IKeyAlreadyExistsException 41
INotBoundedException 33, 41
INotContainsKeyException 41
IOpsInUseException
OpsInvalidException 41
IPositionInvalidException 42
IPredicateOverrideException 42
IRemoteCollectionException 42
SOMObjectException 42
IUserApplicatorException 42
IUserComparatorException
IUserOpsException 42
IUserPredicateException 42
violated precondition in Collection Class Library 39

F
firstElement() function 31
flat collection classes

overview 17—23
with restricted access 24

194 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

IFullException 41

H
Hash() function

operations class 126
hashing

restriction on replacing elements 29
header files

See chapters on individual classes
Heap 79—80

description 14
properties of 19
replacing elements 29

hierarchy
See class — hierarchy

I
IOutOfCollectionMemoryException
IIdenticalCollectionException 41
IDL xiii
implementation in Collection Class Library

concrete 25
initializer methods

Collection Class Library
flat collections 47

initializer methods, flat collections 47
INoSOMObjectException
Interface Definition Language xiii
intersection

Bags 73
flat collections 58

invalidate() function
cursor classes 116

IInvalidObjectException 41
IInvalidReplacementException 41
isEmpty() function

flat collections 58
isValid() function

cursor classes 116
limitation 30
role of 40

iteration
over collections 31
restrictions 31

iteration order 45
iterator class 32

K
key access

basic properties of flat collections 18
description 19
overview 19—23

Key Bag 14, 19, 23, 81—82
key collection 29

restriction on replacing elements 29
key collection abstract class 133
key equality 20—22
Key Set 83—84

adding elements 23
description 14
properties of 19

Key Sorted Bag 14, 19, 85—86
key sorted collection abstract class 143
Key Sorted Set 14, 19, 87—88
key-type functions

introduction 35
methods for providing 35
using element operation classes 36

Key() function
operations class 126

IKeyAlreadyExistsException 41
KeyCompare() function

operations class 126
KeyEqual() function

operations class 126
KeyHash() function

operations class 126

L
last-in, first-out behavior (LIFO) 109
LIFO (last-in, first-out) behavior 109
linked implementation 30
locateOrAddElementWithKey() function 23
locating elements 31

M
Map 15, 89—90
memory management

using separate functions 35
modifying a collection 28—30
multiple collections 18, 22—23

N
newCursor() function

flat collections 63
newElementCursor() function

flat collections 63
newOrderedCursor() function

flat collections 64
INotBoundedException 41
INotContainsKeyException 41
notEqual() 64
INumber Collection Class type 45
numberOfElements() function

flat collections 64

 Index 195

O
operations classes

using 36
operator !=

cursor classes 116
flat collections 64

operator =
flat collections 54

operator ==
cursor classes 116
flat collections 58

operator!= Collection Class Function 64
operator= Collection Class Function 54
operator== Collection Class Function 58
IOpsInUseException
OpsInvalidException 41
ordered collection

multiple inheritance 38
removing an element 29

ordered collection abstract class 135
ordering relation

as a collection property 18
possible orderings of collections 19
restriction on replacing elements 29
sorted collections 19

OutOfMemory exception 41

P
polymorphism

introduction 37
IPosition Collection Class type 45
position function 65
positioning property 45
IPositionInvalidException 42
IPostorder Collection Class type 45
precondition

violated 39—40
predicate objects in Collection Class Library 29
IPredicateOverrideException 42
IPreorder Collection Class type 45
Priority Queue 15, 91—92

Deque() 56
enqueue() 57

Q
Queue 15
queue collection 93—94

Deque() 56
enqueue() 57

R
Relation 15, 95—96

IRemoteCollectionException 42
remove() function 65

Collection Class Library 65
behavior of 29
role of 28

removeAll() function
flat collections 66
notes on using 29

removeAllElementsWithKey() function 66
removeAllOccurrences() function 66
removeAt() function 66
removeAtPosition() function 67
removeElementWithKey() function 67
removeFirst() function 29, 67
removeLast() function 29, 67
removing elements

See also remove... functions for collections
effect on cursors 30
overview 29

replace() function 28
replaceAt() function

flat collections 68
role of 29

replaceElementWithKey() function 68
replacing elements 29—30

See also replace... functions for collections
using elementAt() function 31

S
same key 45
Sequence 15, 97—98
sequential collection abstract class 139
sequential collections

add() behavior with 48
conditions for equality 58
replacing elements 29

Set collection 99—100
setToFirst() function

cursor classes 116
flat collections 68

setToLast() function
cursor classes 117
flat collections 69

setToNext() function
cursor classes 117
flat collections 69

setToNextDifferentElement() function 69
setToNextWithDifferentKey() function 70
setToPosition() function 70
setToPrevious() function

cursor classes 117
flat collections 70

SOM-enabled and Not SOM-enabled Versions
C++ SOM and Cross-language SOM Collection

Classes

196 OS/390 V2R4.0 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

SOM-enabled and Not SOM-enabled Versions
(continued)

Compiling and Binding with the C++ SOM Libraries
Using the Cross-language SOM Collection Classes

SOMObjectException 42
sort() function 71
Sorted Bag 16, 19, 101—102
sorted collection abstract class 137
sorted collections

add() behavior with 48
multiple inheritance 38
ordering relation 19

Sorted Map 16, 103—104
description 16
properties of 19
restrictions for adding elements 23
Sorted Relation 16

Sorted Relation 105—106
properties of 19

Sorted Set 16, 19, 107—108
Stack 17, 24, 109—110
system failures 40
system restrictions 40

T
tabular implementation 30
templates
this collection 46
top() function 71
ITreeIterationOrder Collection Class type 45

U
unbounded collections 33
undefined cursor 45
union

Bags 73
flat collections 71

unionWith() function 71
unique collections

add() behavior with 48
adding elements 28
compared to multiple collections 18
conditions for equality 58
description 22—23

unordered collections
characteristics 19
cursor iteration drawbacks 32
locateNext() 61
locateNextElementWithKey() 61

IUserApplicatorException 42
IUserComparatorException 42
IUserOpsException 42
IUserPredicateException 42

 Index 197

Communicating Your Comments to IBM

OS/390
C/C++
SOM-Enabled Class Library User's Guide and Reference

Publication No. SC09-2366-02

If there is something you like—or dislike—about this book, please let us know. You can use
one of the methods listed below to send your comments to IBM. If you want a reply, include
your name, address, and telephone number. If you are communicating electronically, include
the book title, publication number, page number, or topic you are commenting on.

The comments you send should only pertain to the information in this book and its
presentation. To request additional publications or to ask questions or make comments
about the functions of IBM products or systems, you should talk to your IBM representative
or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute
your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a readers’ comment form (RCF) from a country other than the United
States, you can give it to the local IBM branch office or IBM representative for postage-paid
mailing.

¹ If you prefer to send comments by mail, use the RCF at the back of this book.

¹ If you prefer to send comments by FAX, use this number:

– United States and Canada: 416-448-6161

– Other countries: (+1)-416-448-6161

¹ If you prefer to send comments electronically, use the network ID listed below. Be sure
to include your entire network address if you wish a reply.

 – Internet: torrcf@ca.ibm.com
 – IBMLink: toribm(torrcf)
 – IBM/PROFS: torolab4(torrcf)
 – IBMMAIL: ibmmail(caibmwt9)

Readers' Comments — We'd Like to Hear from You

OS/390
C/C++
SOM-Enabled Class Library User's Guide and Reference

Publication No. SC09-2366-02

Overall, how satisfied are you with the information in this book?

How satisfied are you that the information in this book is:

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? Ø Yes Ø No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Overall satisfaction Ø Ø Ø Ø Ø

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Accurate Ø Ø Ø Ø Ø
Complete Ø Ø Ø Ø Ø
Easy to find Ø Ø Ø Ø Ø
Easy to understand Ø Ø Ø Ø Ø
Well organized Ø Ø Ø Ø Ø
Applicable to your tasks Ø Ø Ø Ø Ø

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments — We'd Like to Hear from You
SC09-2366-02 ÉÂÔÙ

Fold and Tape Please do not staple Fold and Tape

PLACE
POSTAGE
STAMP
HERE

IBM Canada Ltd. Laboratory
Information Development
2G/345/1150/TOR
1150 EGLINTON AVENUE EAST
NORTH YORK ONTARIO CANADA M3C 1H7

Fold and Tape Please do not staple Fold and Tape

SC09-2366-02

ÉÂÔÙ

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC09-2366-02

	Contents
	Figures
	Notices
	Programming Interface Information
	Standards
	Trademarks

	About this Book
	IBM OS/390 C/C++ and Related Publications
	Hardcopy Books
	Softcopy Books
	Softcopy Examples
	For Late Breaking C/C<< News...
	OS/390 C/C++ on the World Wide Web

	About IBM OS/390 C/C<<
	The C/C++ Compilers
	The C Language
	The C++ Language
	Common Features of the OS/390 C and C++ Compilers
	Features Specific to the OS/390 C Compiler
	Features Specific to the OS/390 C<< Compiler

	Utilities
	Class Libraries
	Class Library Source

	The Debug Tool
	OS/390 Language Environment
	OS/390 OpenEdition
	OS/390 OpenEdition Services
	OS/390 C/C<< Applications with OpenEdition C/C<< Functions

	Input and Output
	I/O Interfaces
	File Types
	Additional I/O Features

	The System Programming C Facility
	Interaction with Other IBM Products
	Additional Features of OS/390 C/C<<

	C++SOM and Cross-language SOM Class Libraries
	Chapter 1. C++ SOM and Cross-language SOM Class Libraries
	SOM-enabled and Not SOM-enabled Versions
	Why Multiple Library Versions?

	C++ SOM and Cross-language SOM Collection Classes
	Coding with Class Libraries under OS/390 OpenEdition Services
	Compiling and Binding with the C++ SOM Libraries
	Migration Notes

	Using the Cross-language SOM Collection Class Library

	User's Guide: SOM Cross-language Collection Classes
	Chapter 2. Overview of the SOM Cross-language Collection Classes
	Classes Provided by the Library
	Bag
	Deque
	Equality Sequence
	Heap
	Key Bag
	Key Set
	Key Sorted Bag
	Key Sorted Set
	Map
	Priority Queue
	Queue
	Relation
	Sequence
	Set
	Sorted Bag
	Sorted Map
	Sorted Relation
	Sorted Set
	Stack

	Benefits of the SOM Cross-language Collection Classes
	Types of Classes in the SOM Cross-language Collection Classes
	Flat Collections
	Ordering of Collection Elements
	Access by Key
	Equality for Keys and Elements
	Uniqueness of Entries

	Restricted Access
	Auxiliary Classes
	The Overall Implementation Structure
	Abstract Classes

	Chapter 3. Using the Collection Classes
	Creating an Operations Class Object
	Creating Collections
	Adding, Removing, and Replacing Elements
	Adding Elements
	Removing Elements
	Replacing Elements

	Cursors
	Using Cursors for Locating and Accessing Elements

	Iterating over Collections
	Iteration Using Cursors
	Iteration Using Applicators

	Bounded and Unbounded Collections

	Chapter 4. Element Functions and Key-Type Functions
	Introduction to Element Functions and Key-Type Functions

	Chapter 5. Polymorphic Use of Collections
	Introduction to Polymorphism

	Chapter 6. Exception Handling
	Introduction to Exception Handling
	Exceptions Caused by Violated Preconditions
	Exceptions Caused by System Failures and Restrictions

	Levels of Exception Checking
	List of Exceptions
	IApplicatorOverrideException
	IComparatorOverrideException
	ICursorInvalidException
	IEmptyException
	IFullException
	IIdenticalCollectionException
	IInvalidObjectException
	IInvalidReplacementException
	IKeyAlreadyExistsException
	INotBoundedException
	INotContainsKeyException
	IOpsInUseException
	IOutOfCollectionMemoryException
	IPositionInvalidException
	IPredicateOverrideException
	IRemoteCollectionException
	INoSOMObjectException
	IUserApplicatorException
	IUserComparatorException
	IUserOpsException
	IUserPredicateException

	Reference: SOM Cross-language Collection Classes - Flat Collections
	Chapter 7. Introduction to Flat Collections
	Terms Used

	Chapter 8. Flat Collection Member Functions
	Initializer Methods
	Destructor
	add
	addAllFrom
	addAsFirst
	addAsLast
	addAsNext
	addAsPrevious
	addAtPosition
	addDifference
	addIntersection
	addOrReplaceElementWithKey
	addUnion
	allElementsDo
	anyElement
	assign
	compare
	contains
	containsAllFrom
	containsAllKeysFrom
	containsElementWithKey
	copy
	deque
	differenceWith
	elementAt
	elementAtPosition
	elementWithKey
	enqueue
	equal
	firstElement
	intersectionWith
	isBounded
	isEmpty
	isFirst
	isFull
	isLast
	key
	lastElement
	locate
	locateElementWithKey
	locateFirst
	locateLast
	locateNext
	locateNextElementWithKey
	locateOrAdd
	locateOrAddElementWithKey
	locatePrevious
	maxNumberOfElements
	newCursor
	newElementCursor
	newOrderedCursor
	notEqual
	numberOfDifferentElements
	numberOfDifferentKeys
	numberOfElements
	numberOfElementsWithKey
	numberOfOccurrences
	pop
	position
	push
	remove
	removeAll
	removeAllWithPredicate
	removeAllElementsWithKey
	removeAllOccurrences
	removeAt
	removeAtPosition
	removeElementWithKey
	removeFirst
	removeLast
	replaceAt
	replaceElementWithKey
	setToFirst
	setToLast
	setToNext
	setToNextDifferentElement
	setToNextWithDifferentKey
	setToPosition
	setToPrevious
	sort
	top
	unionWith

	Chapter 9. Bag
	Derivation
	Members
	Required Operations

	Chapter 10. Deque
	Derivation
	Members
	Required Operations

	Chapter 11. Equality Sequence
	Derivation
	Members
	Required Operations

	Chapter 12. Heap
	Derivation
	Members
	Required Operations

	Chapter 13. Key Bag
	Derivation
	Members
	Required Operations

	Chapter 14. Key Set
	Derivation
	Members
	Required Operations

	Chapter 15. Key Sorted Bag
	Derivation
	Members
	Required Operations

	Chapter 16. Key Sorted Set
	Derivation
	Members
	Required Operations

	Chapter 17. Map
	Derivation
	Members
	Required Operations

	Chapter 18. Priority Queue
	Derivation
	Members
	Required Operations

	Chapter 19. Queue
	Derivation
	Members
	Required Operations

	Chapter 20. Relation
	Derivation
	Members
	Required Operations

	Chapter 21. Sequence
	Derivation
	Members
	Required Operations

	Chapter 22. Set
	Derivation
	Members
	Required Operations

	Chapter 23. Sorted Bag
	Derivation
	Members
	Required Operations

	Chapter 24. Sorted Map
	Derivation
	Members
	Required Operations

	Chapter 25. Sorted Relation
	Derivation
	Members
	Required Operations

	Chapter 26. Sorted Set
	Derivation
	Members
	Required Operations

	Chapter 27. Stack
	Derivation
	Members
	Required Operations

	Reference : SOM Cross-language Collection Classes - Auxiliary Classes
	Chapter 28. Global
	IDL filestem

	Chapter 29. Cursor
	IDL filestem
	Members
	Public Member Functions
	Constructor
	copy
	isValid
	invalidate
	element
	notEqual
	equal
	setToFirst
	setToLast
	setToNext
	setToPrevious

	Chapter 30. Applicator
	IDL filestem
	Members
	applyTo
	Example

	Chapter 31. Comparator
	IDL filestem
	Members
	compare
	Example

	Chapter 32. Predicate
	IDL filestem
	Members
	evaluateFor
	Example

	Chapter 33. Operations
	IDL filestem
	Members
	Assign
	Compare
	Equal
	Hash
	Key
	KeyCompare
	KeyEqual
	KeyHash

	Reference : SOM Cross-language Collection Classes - Abstract Classes
	Chapter 34. Collection
	Derivation
	Members

	Chapter 35. Equality Collection
	Derivation
	Members

	Chapter 36. Key Collection
	Derivation
	Members

	Chapter 37. Ordered Collection
	Derivation
	Members

	Chapter 38. Sorted Collection
	Derivation
	Members

	Chapter 39. Sequential Collection
	Derivation
	Members

	Chapter 40. Equality Key Collection
	Derivation
	Members

	Chapter 41. Key Sorted Collection
	Derivation
	Members

	Chapter 42. Equality Sorted Collection
	Derivation
	Members

	Chapter 43. Equality Key Sorted Collection
	Derivation
	Members

	Appendix A. Coding Samples: Source Code and Header Files
	Coding Example for Deque
	Coding Example for Key Bag
	Coding Example for Set
	Coding Example for Sorted Set
	Coding Example for Stack

	Index

