0S/390 ====°=

C Curses

SC28-1907-01

0S/390 ====°=

C Curses

SC28-1907-01

Note!

Before using this information and the product it supports, be sure to read the general information under Appendix A, “Notices”
on page

Second Edition September 1999

This edition applies to OS/390 Version 2 Release 4 (5647-A01) and to all subsequent releases and modifications until otherwise
indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address given below.

IBM welcomes your comments. A form for your comments appears at the back of this publication. If the form has been removed,
address your comments to:

International Business Machines Corporation
Department 55JA, Mail Station P384

522 South Road

Poughkeepsie, N.Y. 12601-5400

United States of America

FAX (United States & Canada): 1+914+432-9405
FAX (Other Countries):
Your International Access Code +1+914+432-9405

IBMLink (United States customers only): IBMUSM10(MHVRCFS)
IBM Mail Exchange: USIB6TC9 at IBMMAIL

Internet e-mail: mhvrcfs@us.ibm.com

World Wide Web: http://www.ibm.com/s390/0s390/

If you would like a reply, be sure to include your name, address, telephone number, or fax number. Make sure to include the
following in your comment or note:

¢ Title and order number of this book

¢ Page number or topic related to your comment.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

The information contained in the glossary section and tagged by the word [POSIX] is copyrighted information of the Institute of
Electrical and Electronics Engineers, Inc., extracted from IEEE Std 1003.1-1990, IEEE P1003.0, and IEEE P1003.2. This information
was written within the context of these documents in their entirety. The IEEE takes no responsibility or liability for and will assume
no liability for any damages resulting from the reader's misinterpretation of said information resulting from the placement and context
in this publication. Information is reproduced with the permission of the IEEE.

© Copyright International Business Machines Corporation 1996, 1999. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Contents

About This Book,
Typographical Conventions
Other Documents Xii
A Task-Oriented Guide to OS/390 OpenEdition Information Xiii
Getting a Basic Understanding L Xiil
ADMINIStration o xiv]
Using the Shell and Utilities or Hierarchical File System
Application Programming: Standards [xiV]
Designing and Coding Programs [xiv]
Compiling and Running Programs
Debugging Programs
Diagnosing Problems
Non-IBM Books
Standards Supported
Application Programming Environments Not Supported
Summary of Changes
Chapter 1. The Curses Library [
Terminology
Naming Conventions,
Structure of a Curses Program
Initializing CUrses o
Windows in the Curses Environment
The Default Window Structure
The Current Window Structure
Subwindows]
Pads [6]
Manipulating Window Data with Curses
Creating WindOwS
Subwindows [7]
Pads [7]
Removing Windows, Pads, and Subwindows
Changing the Screen or Window Images
Refreshing Windows,
Functions Used for Refreshing Pads
Refreshing Areas that Have Not Changed
Garbled Displays
Manipulating Window Content, 9
Support for Filters [9
Controlling the Cursor [9
Manipulating Characters with Curses 10]
Adding Characters to the ScreenImage 10]
waddch Functions [0
waddstr Functions 12
winsch Functions 12]
winsertln FUNctions 12]
wprintw Functions 12]
unctrl Function 13]
Enabling Text Scrolling
Deleting Characters,

© Copyright IBM Corp. 1996, 1999 ili

werase Functions
wclear Functions
weclrtoeol Functions
weclrtobot Functions
wdelch Functions
wdeleteln Functions
Getting Characters
wgetch Functions

Understanding Terminals
Manipulating Multiple Terminals
Determining Terminal Capabilites
Setting Terminal Input and Output Modes
Using the terminfo and termcap Files
Writing Programs That Use the terminfo Functions
Low-Level Screen Functions
Manipulating TTYs
Working with Color
Manipulating Video Attributes
Video Attributes, Bit Masks, and the Default Colors
Setting Video Attributes
Setting Curses Options
Manipulating Soft Labels
Obsolete Curses Functions
List of Curses Functions
Starting and Stopping Curses
Manipulating Windows
Controlling the Cursor
Manipulating Characters
Manipulating Terminals
Manipulating Color
Setting Video Attributes and Curses Options
Manipulating Soft Labels
Miscellaneous Utilities

Chapter 2. Curses Interfaces
addch()
addchstr()
addnstr()
addnwstr()
add wch()
add_wechnstr()
attroff()
attr_get()
baudrate()
beep()
bkgd()
bkgd()
bkgrnd()
border()
border_set()
box()
box set()
can_change_color()
cbreak()

iV 0S/390 V2R4.0 C Curses

............ 63]
) =
I E
CRark) E
CRODON 58
080 @
e =
COLOR_PAIRS S
Comaing
COPYWIND o E
S =
CUIS SEID 5
OO0 &
COLPIOgIMOtE) v 7
CORVOUPUI) E
o ey 50
COLOUEMMO @
) 5
Qoaresn
delwin() i
O &
QOUPABION. =
QUPWINO &
O T 00
eenochall) 1
SEPOWENAID z
SN0 =
e o4
BrASSCNA))
e R E
pasi0
IUSIINPO | 5
ot 100]
potenen R [1o7
getbkgrnd() 102
gEIOONAID 5
T [105]
GEMBIXD 106)
QoINS @
getn_wstr() i =
GOIDANXD
T 112
GELWEND) T
GOWIND =
GELWSID S
oy T
PAABIEN0 | e
NaSLO0OIS0 B
1as 0 0]
A [121
NINC0 55
NINE-SE0 =
PIne SEI0 =
o) 125
idlok()

Contents V

0S/390 V2R4.0 C Curses

immedok() 126]
inch() 127]
inchnstr() 128]
init_color() [129]
INIESCI) . . o o o o [130]
initscr() @
INNSER() . . o 132
innwstr() . . . L 134
insch() 136
insdelin() [137]
insertin() [138]
insnstr() 139

iNns_nwstr()

INSSEr() . . . [142]
INSt) . . . [143]
ins_Weh() 144]
iNS_Wstr() 145)
intrflush() [146]
in_wch() 147

in_wchnstr() 148

INWSEH() [150]
isendwin() ... [151
is_linetouched() 152
keyname()o 154]
keypad() |156]
killchar() [157]
leaveok() 158]
LINES . . . [159]
longname() [160]
meta()

move() 162

MV 163}
MVCUN) .« o o o o 165]
mvderwin() |166]
MVPHNIW() .« o o o [167]
MVSCanW() 168
MVYWINO . o o e [169]
NAPMS() . . [170

NeWPAd() . . e 171

NeWterm() 173
Newwin() 174]
MO 175

NO L o 176
nodelay() 177]
noqgiflush() 178
NOtIMEOUt() 179]
overlay() [180

Pair_CONtENt() o oot [181

pechochar() 182]
pnoutrefresh() [183]
printw() . . . 184
PULDO) v e e 185]
putwin() . .. 187

giflush() 188

FAW() . . 189]
redrawwin() 190
refresh() [191]
reset_prog_ mode() [192]
reSetty() 193]
restartterm() 194
ripoffline() [195]
savetty() 196
SCANW() . . 197
scr_dump() . [198]
SCrl() L, [200]
scrollok()
setcchar() 202
set_curterm() 1203]
SEISCITEY() .« « o o o e [204]
set term() . .. [205]
setupterm() 206
slk_attroff() 207]
standend() 210
start_color()
stdscr .. [212]
subpad() [213]
subwin() ..., 214]
syncok() ..., 215|
termattrs() 1216]
termname() [217]
tgetent() 218]
tigetflag() 220|
tMeoUt() 222]
touchline() 223|
tparm() .. 224
tputs() ... [225]
typeahead() [226]
unctrl() . . 227
ungetch() . . . o [228]
untouchwin() [229]
USE ENV() o o o o e e e [230]
vidattr() .. [231]
viine() . . [233]
viine set() . .. 234]
vwprintw() .. 235
YWoprintw() .. 236
VWSCANW() o [237]
VW_SCANW() o oo e e [238]
W [239]
wunctrl() . [241
Chapter 3. Headers 243
<curses.h> |244]
<term.h> L [256]
<unctrlh> . . 257
Chapter 4. Terminfo Source Format (ENHANCED CURSES) 259
Source File Syntax 260

Contents Vi

Minimum Guaranteed Limits 261
Formal Grammar [261
Defined Capabilites 263
Sample Entry, 276
Types of Capabilities in the Sample Entry 276
Device Capabilities [278]
Basic Capabilities [278]
Parameterized Strings 279
Cursor Motions
Area Clears 1282
Insert/Delete Line [282]
Insert/Delete Character 282
Highlighting, Underlining, and Visible Bells 283
Keypad 286
Tabs and Initialization [286]
Delays 287
Status Lines 287)
Line Graphics 288]
Color Manipulation 289
Miscellaneous 290
Special Cases [292]
Similar Terminals [292]
Printer Capabilities 292]
Rounding Values 293|
Printer Resolution [293]
Specifying Printer Resolution [293
Capabilities that Cause Movement 295}
Alternate Character Sets [299
Dot-Matrix Graphics [300]
Effect of Changing Printing Resolution :302
Print Quality 303
Printing Rate and Buffer Size 303
Selecting a Terminal [304
Application Usage 304
Conventions for Device Aliases
Variations of Terminal Definitions 305
Appendix A. Notices 1307]
Trademarks [309]
Glossary
Index . . . 313

Viii 0S/390 V2R4.0 C Curses

Figures

© Copyright IBM Corp. 1996, 1999

X 0S/390 V2R4.0 C Curses

About This Book

This manual describes the curses interface for application programs using the
0S/390 C language. Readers are expected to be experienced C language
programmers and to be familiar with open systems standards or a UNIX operating
system. This book also assumes that readers are somewhat familiar with MVS
systems and with the information for MVS and its accompanying products.
Readers also should have read &bpxal00t., which describes the services and the
concepts of OpenEdition. This manual is organized as follows:

Chapter 1 gives an overview of Curses. It discusses the use of some of the
key data types and gives general rules for important common concepts such as
characters, renditions and window properties. It contains general rules for the
common Curses operations and operating modes. This information is
implicitly referenced by the interface definitions in Chapter 2. The chapter
explains the system of naming the Curses functions and presents a table of
function families. Finally, the chapter contains notes regarding use of macros
and restrictions on block-mode terminals.

Chapter 2 defines the Curses functional interfaces.

Chapter 3 defines the contents of headers, which declare constants, macros
and data structures that are needed by programs using the services provided
by Chapter 4.

Chapter 4 on discusses the terminfo database, which Curses uses to describe
terminals. The chapter specifies the source format of a terminfo entry, using a
formal grammar, an informal discussion, and an example. Boolean, numeric
and string capabilities are presented in tabular form. The remainder of the
chapter discusses the use of these capabilities by the writer of a terminfo entry
to describe the characteristics of the terminal in use.

The glossary contains definitions of terms used in this manual.

Typographical Conventions

The following typographical conventions are used throughout this document:

Bold font is used in text for options to commands, filenames, keywords, type
names, data structures and their members.

Italic strings are used for emphasis or to identify the first instance of a word
requiring definition. Italics in text also denote:

— Command operands, command option-arguments or variable names, for
example, substitutable argument prototypes

— Environment variables, which are also shown in capitals
— Utility names
— External variables, such as errno

— Functions; these are shown as follows: name(); names without
parentheses are C external variables, C function family names, utility
names, command operands or command option-arguments.

Normal font is used for the names of constants and literals.

© Copyright IBM Corp. 1996, 1999 Xi

The notation <file.h> indicates a header file.

Names surrounded by braces, for example, {ARG_MAX}, represent symbolic
limits or configuration values which may be declared in appropriate headers by
means of the C #define construct.

The notation [EABCD] is used to identify an error value EABCD.

Syntax, code examples and user input in interactive examples are shown in
fixed width font. Brackets shown in this font, [], are part of the syntax and do
not indicate optional items. In syntax the | symbol is

used to separate alternatives, and ellipses (...) are

used to show that additional arguments are optional.

Bold fixed width font is used to identify brackets that surround optional items in
syntax, [], and to identify system output in interactive examples.

Variables within syntax statements are shown in italic fixed width font.

Ranges of values are indicated with parentheses or brackets as follows:

(a,b) means the range of all values from a to b, including neither a nor b

[a,b] means the range of all values from a to b, including a and b

[a,b) means the range of all values from a to b, including a, but not b

(a,b] means the range of all values from a to b, including b, but not a.

Notes:

Symbolic limits are used in this document instead of fixed values for portability.
The values of most of these constants are defined in <limits.h> or <unistd.h>.

The values of errors are defined in <errno.h>.

Other Documents

The following documents are referenced in this specification:

Xii

0S/390 V2R4.0 C Curses

ANSI standard X3.159-1989, Programming Language C.

ISO 8859-1:1987, Information Processing - 8-bit Single- byte Coded Graphic
Character Sets - Part 1: Latin Alphabet No. 1.

ISO/IEC 646:1991, Information Processing - ISO 7-bit Coded Character Set for
Information Interchange.

ISO/IEC 9899:1990, Programming Languages - C (technically identical to ANSI
standard X3.159-1989).

System V Interface Definition (Spring 1986 - Issue 2).
System Interface Definitions (1989 - 3rd Edition).
System V Release 2.0

— UNIX System V Release 2.0 Programmer's Reference Manual (April 1984 -
Issue 2).

— UNIX System V Release 2.0 Programming Guide (April 1984 - Issue 2).

Operating System API Reference, UNIXO SVR4.2 (1992) (ISBN:
0-13-017658-3).

A Task-Oriented Guide to OS/390 OpenkEdition Information

Books that apply to more than one task occur more than once in this guide. Most
of the book titles listed in this guide are included in the CD-ROM collection kit
0OS/390 Collection. You can order this using SK2T-6700. You can also see these
books by selecting “The Library” on the OS/390 Web home page
(http://mvww.s390.ibm.com/0s390/).

BookManager READ/MVS provides access to online information on a CD-ROM.
Also available are BookManager READ/DOS and BookManager READ/2, which
allow you to download online books to your workstation and read these books on
DOS or OS/2, respectively.

With BookManager READ installed on your system, you can enter the command
BOOKMGR to start BookManager and display a list of books available to you. If
you know the name of the book that you want to view, you can use the OPEN
command to open the book directly. You can read, search, make notes, and select
sections of text to print.

The 0OS/390 OpenEdition OHELP TSO/E command lets you go directly to specific
pages of information from your TSO/E session. OHELP requires the BookManager
READ product.

— And See Our Home Page on the Web!

To keep current with new OS/390 OpenEdition announcements, events, and
other information, see the OS/390 OpenEdition home page on the World Wide
Web at:

http://www.s390.ibm.com/products/oe/

Getting a Basic Understanding

e (0S5/390 Introduction and Release Guide, GC28-1725

e 0S/390 Planning for Installation, GC28-1726

e 0S/390 Information Roadmap, GC28-1727

e (0S5/390 Language Environment Concepts Guide, GC28-1945
e DFSMS/MVS General Information, GC26-4900

e DFSMS/MVS Library Guide, GC26-4902

e 0S/390 UNIX System Services Planning, SC28-1890

e 0S/390 Language Environment Customization, SC28-1941

e 0S/390 Language Environment Run-Time Migration Guide, SC28-1944

e TCP/IP for MVS: Planning and Migration Guide, SC31-7189

e TCP/IP for MVS: Customization and Administration Guide, SC31-7134

e 0S/390 Distributed File Service Configuring and Getting Started, SC28-1722

About This Book Xili

Administration

0S/390 UNIX System Services Planning, SC28-1890

0S/390 DCE Administration Guide, SC28-1584

TCP/IP for MVS: Customization and Administration Guide, SC31-7134
0S/390 Distributed File Service Administration Guide and Reference,
SC28-1720

Using the Shell and Utilities or Hierarchical File System

0S/390 UNIX System Services User's Guide, SC28-1891

0S/390 UNIX System Services Command Reference, SC28-1892
0S/390 UNIX System Services Messages and Codes, SC28-1908
0S/390 TSO/E User's Guide, SC28-1968

0S/390 UNIX System Services Programming Tools, SC28-1904

Application Programming: Standards

» See the list of X/Open standards on the World Wide Web at

http://www.xopen.org.

e &bpxb900t., &bpxb900n.

Designing and Coding Programs

0S/390 Language Environment Programming Guide, SC28-1939

0S/390 Language Environment Programming Reference, SC28-1940

0S/390 C/C++ Language Reference, SC09-2360

0S/390 C/C++ Run-Time Library Reference, SC28-1663

0S/390 C Curses, SC28-1907

0S/390 C/C++ User's Guide, SC09-2361

0S/390 C/C++ Programming Guide, SC09-2362

0S/390 UNIX System Services Messages and Codes, SC28-1908

0S/390 Using REXX and 0OS/390 UNIX System Services, SC28-1905

0S/390 UNIX System Services Programming Tools, SC28-1904

0S/390 UNIX System Services Communications Server Guide, SC28-1906
0S/390 UNIX System Services Programming: Assembler Callable Services
Reference, SC28-1899

0S/390 UNIX System Services File System Interface Reference, SC28-1909
0S/390 DCE Application Development Guide: Introduction and Style,
SC28-1587

0S/390 DCE Application Development Guide: Core Components, SC28-1588
0S/390 DCE Application Development Guide: Directory Services, SC28-1589
0S/390 DCE Application Development Reference, SC28-1590

Compiling and Running Programs

XIV 0S/390 V2R4.0 C Curses

e (0S5/390 C/C++ User's Guide, SC09-2361

e 0S/390 UNIX System Services Command Reference, SC28-1892
e 0S/390 UNIX System Services Programming Tools, SC28-1904
e 0S/390 OpenkEdition DCE User's Guide, SC28-1586

Debugging Programs
e 0S/390 UNIX System Services Programming Tools, SC28-1904
e 0S/390 UNIX System Services Command Reference, SC28-1892
e 0S/390 UNIX System Services Messages and Codes, SC28-1908
e 0S/390 Language Environment Debugging Guide and Run-Time Messages,
SC28-1942
e 0S/390 OpenkEdition DCE User's Guide, SC28-1586

Diagnosing Problems

e 0S/390 UNIX System Services Messages and Codes, SC28-1908
e 0S/390 JES2 Messages, GC28-1796

e 0S5/390 JES3 Messages, GC28-1804

e 0S/390 Summary of Message Changes, GC28-1499

e Debug Tool User's Guide and Reference, SC09-2137

e 0S/390 DCE Messages and Codes, SC28-1591

Non-IBM Books

e Information technology—~Portable Operating System Interface (POSIX)—Part 1:
System Application Program Interface (API) [C Language], International
Standard ISO/IEC 9945-1 (IEEE Std 1003.1)

e The POSIX.1 Standard: A Programmer's Guide, by Fred Zlotnick (Redwood
City, CA: The Benjamin/Cummings Publishing Company, Inc., 1991)

Standards Supported

OpenEdition is an implementation of the following open system standards:

» Information technology—~Portable Operating System Interface (POSIX)—Part 1:
System Application Program Interface (API) [C Language], ISO/IEC 9945-1.:
1990 (IEEE Std 1003.1-1990)

» Information technology—~Portable Operating System Interface (POSIX)—Part 1:
System Application Program Interface (API) [C Language], ISO/IEC 9945-1a:
1990 (IEEE Std 1003.1a-1990) [Draft 5]

e Information technology—~Portable Operating System Interface (POSIX)—Part 2:
Shell and Utilities, 1ISO/IEC 9945-1992 (IEEE Std 1003.2-1992) [Draft 12]

e Federal Information Processing Standards Publication (FIPS PUB) 151-2, which
supersedes FIPS PUB 151-1.

For information on how OpenEdition adheres to the POSIX standards, see
&bpxa200t., GC23-3011, and &bpxa300t., GC23-3012.

Application Programming Environments Not Supported

OpenEdition does not support the following traditional MVS programming
environments for the C/C++ programming language:

e CICS
e |MS file system

About This Book XV

Summary of Changes

Summary of Changes
for SC28-1907-01
0S/390 V2R4.0

This book applies to OS/390 Version 2 Release 4. There are no technical changes
from the previous edition.

Summary of Changes
for SC28-1907-00
0S/390 V1R2.0

This book contains information previously presented in C/MVS Library Reference:
OpenEdition Curses, SC23-3876-00. This book includes minor technical and
editorial changes.

XVi 0S/390 V2R4.0 C Curses

Chapter 1. The Curses Library

The Curses library provides a set of functions that enable you to manipulate a
terminal's display regardless of the terminal type. Throughout this documentation,
the Curses library is referred to as curses. The basis of curses programming is the
window data structure. Using this structure, you can manipulate data on a
terminal's display. You can instruct curses to treat the entire terminal display as one
large window or you can create multiple windows on the display. The windows can
be different sizes and can overlap one another. The following figure shows a typical
curses application with a single large window and one subwindow

TTY

Move cursor to desired item and press Enter.

List All Defined TTYs

AddaTTY

Moving a TTY to Another Port
Change / Show characteristics of a
TTY

Remove a TTY

Configure a Defined TTY
Generate Error Report

Tracea TTY

TTY Type
Move cursor to desired item and press Enter.

tty rs232 Asynchronous Terminal
tty rs422 Asynchronous Terminal

F1=Help F2=Refresh F3=Cancel
F8=Image F10=EXxit Enter=Do
Eé /=Find N=Find Next

Each window on a terminal's display has its own window data structure. This
structure keeps state information about the window such as its size and where it is
located on the display. Curses uses the window data structure to obtain relevant
information it needs to carry out your instructions.

© Copyright IBM Corp. 1996, 1999 1

Terminology

When programming with curses, you should be familiar with the following terms:
Term Definition

current character The character that the logical cursor is currently on.

current line The line that the logical cursor is currently on.

curscr A virtual default window provided by curses. The curscr (current
screen) is an internal representation of what currently appears
on the terminal's external display. You should not modify the

curscr.
display A physical display connected to a workstation.
logical cursor The cursor location within each window. The window data

structure keeps track of the location of its logical cursor.

pad A type of window that is larger than the dimensions of the
terminal's display. Unlike other windows, a pad is not
associated with any particular portion of the display.

physical cursor The cursor that appears on a display. The workstation uses this
cursor to write to the display. There is only one physical cursor
per display. To change the position of the physical cursor, you
must do a refresh.

screen The window that fills the entire display. The screen is
synonymous with the stdscr (standard screen).

stdscr A virtual default window provided by curses that represents the
entire display.

window A pointer to a C data structure and the graphic representation
of that data structure on the display. A window can be thought
of as a two-dimensional array representing how all or part of
the display looks at any point in time. Windows range in size
from the entire display to a single character.

Naming Conventions

A single curses function can have two or more versions. Curses functions with
multiple versions follow distinct naming conventions that identify the separate
versions. These conventions add a prefix to a standard curses function and identify
what arguments the function requires or what actions take place when the function
is called. The different versions of curses function names use three prefixes:

Prefix Description

w Identifies a function that requires a window argument.
p Identifies a function that requires a pad argument.
mv Identifies a function that first performs a move to the

program-supplied coordinates.

Some curses functions with multiple versions do not include one of the preceding
prefixes. These functions use the curses default window stdscr (standard screen).
The majority of functions that use the stdscr are functions created in the

Jusrf/include/curses.h file using #define statements. The preprocessor replaces

2 0S/390 V2R4.0 C Curses

these statements at compilation time. As a result, these functions do not appear in
the compiled assembly code, a trace, a debugger, or the curses source code.

If a curses function has only a single version, it does not necessarily use stdscr.
For example, the printw() function prints a string to the stdscr. The wprintw()
function prints a string to a specific window by supplying the Window argument.
The mvprintw() function moves the specified coordinates to the stdscr and then
performs the same function as the printw() function. Likewise, the mvwprintw()
function moves the specified coordinates to the specified window and then performs
the same function as the wprintw() function.

A function with the basic name is often provided for historical compatibility and
operates only on single-byte characters. A function with the same name plus the w
infix operates on wide (multi-byte) characters. A function with the same name plus
the _w infix operates on complex characters and their renditions.

When a function with the same basic name operates on a single character, there is
sometimes a function with the same name plus the n infix that operates on multiple
characters. An n argument specifies the number of characters to process. The
respective manual page specifies the outcome if the value of n is inappropriate.

Structure of a Curses Program

In general, a curses program has the following progression:

e Start curses.

* Check for color support (optional).

e Start color (optional).

e Create one or more windows.

e Manipulate windows.

e Destroy one or more windows window.
e Stop curses.

Your program does not have to follow this progression exactly.

Return Values

With a few exceptions, all curses functions return either the integer value ERR or
the integer value OK. Subroutines that do not follow this convention are noted
appropriately. Subroutines that return pointers always return a null pointer on an
error.

Initializing Curses

You must include the curses.h file at the beginning of any program that calls
curses functions. To do this, use the following statement:

#include <curses.h>

Before you can call functions that manipulate windows or screens, you must call
the initscr() or newterm() function. These functions first save the terminal's
settings. These functions then call the setupterm() function to establish a curses
terminal.

Before exiting a curses program, you must call the endwin() function. The
endwin() function restores tty modes, moves the cursor to the lower left corner of

Chapter 1. The Curses Library 3

the screen, and resets the terminal into the proper nonvisual mode. You can also
temporarily suspend curses. If you need to suspend curses, use a shell escape or
system call for example. To resume after a temporary escape, you should call the
wrefresh() or doupdate() function. The isendwin() function is helpful if, for
optimization reasons, you don't want to call the wrefresh() function needlessly. You
can determine if the endwin() function was called without any subsequent calls to
the wrefresh() function by using the isendwin() function.

Most interactive, screen-oriented programs require character-at-a-time input without
echoing the result to the screen. To establish your program with character-at-a-time
input, call the cbreak() and noecho() functions after calling the initscr function.

When accepting this type of input, programs should also call the following functions:

e nonl() function.

e intrflush() function with the Window parameter set to the stdscr and the Flag
parameter set to FALSE. The Window parameter is required but ignored You
can use stdscr as the value of the Window parameter, because stdscr is
already created for you.

e keypad() function with the Window parameter set to the stdscr and the Flag
parameter set to TRUE.

Windows in the Curses Environment

A curses program manipulates windows that appear on a terminal's display. A
window is a rectangular portion of the display. A window can be as large as the
entire display or as small as a single character in length and height.

Note: Pads are the exception. A pad is a window that is not restricted by the size
of the screen. For more information, see “Pads” on page

The following figure shows the different types of windows that exist in the curses
environment:

screen (stdscr)

] subpad
subwindow

pad

Within a curses program, windows are variables declared as type WINDOW. The
WINDOW data type is defined in the /usr/include/curses.h file as a C data
structure. You create a window by allocating a portion of a machine's memory for
a window structure. This structure describes the characteristics of the window.
When a program changes the window data internally in memory, it must use the

4 0S/390 V2R4.0 C Curses

wrefresh() function (or equivalent function) to update the external, physical screen
to reflect the internal change in the appropriate window structure.

Curses supplies a default window when the Curses library is initialized. You can
create your own windows known as user-defined windows. Except for the amount
of memory available to a program, there is no limit to the number of windows you
can create. A curses program can manipulate the default window, user-defined
windows, or both.

The Default Window Structure

Curses provides a virtual default window called stdscr. The stdscr represents, in
memory, the entire terminal display. The stdscr window structure is created
automatically when the Curses library is initialized and it describes the display.
When the library is initialized, the length and width variables are set to the length
and width of the physical display.

In addition to the stdscr, you can define your own windows. These windows are
known as user-defined windows to distinguish them from the stdscr. Like the stdscr,
user-defined windows exist in machine memory as structures.

Programs that use the stdscr first manipulate the stdscr and then call the refresh()
function to refresh the external display so that it matches the stdscr window.

The Current Window Structure

Subwindows

Curses also supports another virtual window called curscr (current screen). The
curscr window is an internal representation of what currently appears on the
terminal's external display.

When a program requires the external representation to match the internal
representation, it must call a function, such as the wrefresh() function, to update
the physical display (or the refresh() function if the program is working with the
stdscr). When a refresh is called on an internal window, curses copies the
changed portions of the window into the curscr and updates the physical display.

The curscr is reserved for internal use by curses. You should not manipulate the
curscr.

Curses also allows you to construct subwindows. Subwindows are rectangular
portions within other windows. A subwindow is also of type WINDOW. The window
that contains a subwindow is known as the subwindow's parent and the subwindow
is known as the containing window's child. The following figure demonstrates the
parent child relationship.

Chapter 1. The Curses Library 5

Pads

parent (window)

child
(subwindow)

Changes to either the parent window or the child window within the area
overlapped by the subwindow are made to both windows. After modifying a
subwindow, you should call the touchline() or touchwin() function on the parent
window before refreshing it. The touchline() and touchwin() functions instruct
curses to discard its optimization information for the parent window and to consider
the window as having changed. A refresh called on the parent refreshes the
children as well.

A subwindow can also be a parent window. The process of layering windows inside
of windows is called nesting. The number of nested subwindows is limited to the
amount of memory available up to the value of SHRT_MAX as defined in the
Jusrfinclude/limits.h file. Before you can delete a parent window, you must first
delete all of its children using the delwin() function. Curses returns an error if you
try to delete a window before removing all of its children.

A pad is a type of window that is not restricted by the terminal's display size or
associated with a particular part of the display. You can use pads whenever your
program requires a large window. Because a pad is usually larger than the physical
display, only a portion of a pad is visible to the user at a given time.

Use pads when you have a large amount of related data that you want to keep all
together in one window but you do not need to display all of the data at once.

Windows within pads are known as subpads. Subpads are positioned within a pad
at coordinates relative to the parent pad. This placement differs from subwindows
which are positioned using screen coordinates.

You should use the prefresh() function to show a portion of a pad on the display.
Unlike other windows, scrolling or echoing of input does not automatically refresh a
pad. Like subwindows, when changing the image of a subpad, you must call either
the touchline() or touchwin() function on the parent pad before refreshing the
parent. You can use all the curses function with pads except for the newwin() ,
subwin() , wrefresh() , and wnoutrefresh() functions. These functions are replaced
with the newpad() , subpad() , prefresh() , and pnoutrefresh() functions.

6 0S/390 V2R4.0 C Curses

Manipulating Window Data with Curses

When curses is initialized, the stdscr is provided automatically. You can manipulate
the stdscr using the curses function library or you can create your own,
user-defined windows.

Creating Windows

Subwindows

Pads

A stdscr is provided by the Curses library when it is initialized. The size of the
stdscr is determined by the dimensions of the terminal's display. You can also
create your own window using the newwin() function.

Each time you call the newwin() function, curses allocates a new window structure
in memory. This structure contains all the information associated with the new
window. Curses does not put a limit on the number of windows you can create.
The memory available to your program does restrict the number of windows you
can create.

You can change windows without regard to the order in which they were created.
For example, you can change a subwindow before changing its parent. Updates to
the terminal’'s display occur through calls to the wrefresh() function.

The subwin() function creates a subwindow within an existing window. You must
supply coordinates for the subwindow relative to the terminal's display. The
subwindow must fit within the bounds of the parent window; otherwise, a null value
is returned.

The newpad() function creates a pad data structure. A pad is not restricted by the
size of a terminal's display. You can use the subpad function to create another
window within a pad. The new subpad() is positioned relative to its parent.

Removing Windows, Pads, and Subwindows

To remove a window, pad, or subwindow, use the delwin() function. Before you
can delete a window or pad, you must have already deleted its children; otherwise,
the delwin() function returns an error.

Changing the Screen or Window Images

When curses functions change the appearance of a window, they are actually
manipulating a window structure belonging to either the stdscr or a user-defined
window. Changes are not sent immediately to the terminal's display. Instead, the
internal representation of the window is updated while the display remains
unchanged until the next call to the wrefresh() function.

The wrefresh() function uses the information in the window structure to update the

display. During a refresh, the internal current screen structure is updated to match
what is actually on the terminal's display.

Chapter 1. The Curses Library 7

Refreshing Windows

Any time you write output to a window or pad structure, you must refresh the
terminal's display to match the internal representation. A refresh does the following:

e Compares the contents of the curscr to the contents of the user-defined or
stdscr.

* Updates the curscr structure to match the user-defined or stdscr.

¢ Redraws the portion of the physical display that changed.

The wrefresh() function updates a user-defined window. You use the refresh()
function to update the stdscr. Both of these functions first call the wnoutrefresh()
function to copy the window being refreshed to the current screen. They then call
the doupdate() function to update the display.

If you need to refresh multiple windows at the same time, use one of the two
available methods. You can use a series of calls to the wrefresh() function that
result in alternating calls to the wnoutrefresh() and doupdate() functions. You can
also call the wnoutrefresh() function once for each window and then call the
doupdate() function once. With the second method, only one burst of save output
is sent to the display.

Functions Used for Refreshing Pads

The prefresh() and pnoutrefresh() functions are similar to the wrefresh() and
wnoutrefresh() functions. The prefresh() function updates both the current screen
and the physical display to reflect changes made to a user-defined pad. The
pnoutrefresh() function updates curscr to reflect changes made to a user-defined
pad. Because pads instead of windows are involved, these functions require
additional parameters to indicate which part of the pad and screen are involved.

Refreshing Areas that Have Not Changed

During a refresh, only those areas that have changed are redrawn on the display.
It is possible to refresh areas of the display that have not changed using the
touchwin() and touchline() functions.

The touchwin() function forces every character in the specified window to be
refreshed during the next call to the refresh() or wrefresh() function. The
touchline() function forces all the characters in a given range of lines to be
refreshed at the next call to the refresh() or wrefresh() function.

Combining the touchwin() and wrefresh() functions is helpful when dealing with
subwindows or overlapping windows. To bring a window forward from behind
another window, call the touchwin() function followed by the wrefresh() function.

Garbled Displays

If text is sent to the terminal's display with a honcurses function, such as the echo()
or printf() function, the external window can become garbled. In this case, the
display changes, but the current screen is not updated to reflect these changes.
Problems can arise when a refresh is called on the garbled screen because, after a
screen is garbled, there is no difference between the window being refreshed and
the current screen structure. As a result, spaces on the display caused by garbled
text are not changed.

8 0S/390 V2R4.0 C Curses

A similar problem can also occur when a window is moved. The characters sent to
the display with the noncurses functions do not move with the window internally. If
the screen does become garbled, call the wrefresh() function on the curscr to
update the display to reflect the current physical display.

Manipulating Window Content

After a window or subwindow is created, programs often must manipulate them in
some way. The mvwin() function moves a window or subwindow. The box()
function draws a box around the edge of a window or subwindow.

The overlay() and overwrite() functions copy text from one window or subwindow
on top of another. To use these functions, the two windows must overlap. Also, be
aware that the overwrite() function is destructive whereas the overlay() function is
not. When text is copied from one window to another using the overwrite function,
blank portions from the copied window overwrite any portions of the window copied
to. The overlay() function is nondestructive because it does not copy blank portions
from the copied window.

Similar to the overlay() and overwrite() functions, the copywin() function allows
you to copy a portion of one window to another. Unlike overlay() and overwrite()
functions, the windows do not have to overlap for you to use the copywin()
function.

You can use the ripoffline() function to remove a line from the stdscr. If you pass
this function a positive line argument, the specified number of lines is removed from
the top of the stdscr. Otherwise, if you pass the function a negative line argument,
the lines are removed from the bottom of the stdscr.

Support for Filters

The filter() function is provided for curses applications that are filters. This function
causes curses to operate as if the stdscr was only a single line on the screen.
When running with the filter() function, curses does not use any terminal
capabilities that require knowledge of the line that curses is on.

Controlling the Cursor
In the Curses library, there are two types of cursors:

logical cursor The cursor location within each window. A window's data
structure keeps track of the location of its logical cursor. Each
window has a logical cursor.

physical cursor The display cursor. The workstation uses this cursor to write to
the display. There is only one physical cursor per display.

You can only add to or erase characters at the current cursor location in a window.
The following functions are provided for controlling the cursor:

move Moves the logical cursor associated with the stdscr.
wmove Moves the logical cursor associated with a user-defined window.
getbegyx Places the beginning coordinates of the window in integer

variables y and x.

Chapter 1. The Curses Library 9

getmaxyx Places the size of the window in integer variables y and x.

getyx Returns the position of the logical cursor associated with a
specified window.

leaveok Controls physical cursor placement after a call to the wrefresh()
function.

mvcur Moves the physical cursor.

After a call to the refresh() or wrefresh() function, curses places the physical
cursor at the last updated character position in the window. To leave the physical
cursor where it is and not move it after a refresh, call the leaveok() function with
the Window parameter set to the desired window and the Flag parameter set to
TRUE.

Manipulating Characters with Curses

You can add characters to a curses window by way of a keyboard or a curses
application. This section provides an overview of the ways you can add, remove, or
change characters that appear in a curses window.

Adding Characters to the Screen Image

The Curses library provides a number of functions that write text changes to a
window and mark the area to be updated at the next call to the wrefresh() function.
The following function families add text to windows:

e waddch()
e waddstr()
e winsch()
e winsertin()
e wprintw()

waddch Functions

The waddch() functions overwrite the character at the current logical cursor
location with a specified character. After overwriting, the logical cursor is moved
one space to the right. If the waddch() functions are called at the right margin,
these functions also add an automatic newline character. Additionally, if you call
one of these functions at the bottom of a scrolling region and scrollok is enabled,
the region is scrolled up one line. For example, if you added a new line at the
bottom line of a window, the window would scroll up one line.

If the character to add is a tab, newline, or backspace character, curses moves the
cursor appropriately in the window to reflect the addition. Tabs are set at every
eighth column. If the character is a newline, curses first uses the wclrtoeol()
function to erase the current line from the logical cursor position to the end of the
line before moving the cursor. The waddch() function family is made up of the
following:

waddch() function Adds a character to the user-defined window.
addch() function Adds a character to the stdscr.

mvaddch() function Moves a character to the specified location before adding it
to the stdscr.

10 0S/390 V2R4.0 C Curses

mvwaddch() function Moves a character to the specified location before adding it
to the user-defined window.

By using the winch() and waddch() function families together, you can copy text

and video attributes from one place to another. Using the winch() function family,
you can retrieve a character and its video attributes. You can then use one of the
waddch() functions to add the character and its attributes to another location.

You can also use the waddch() functions to add control characters to a window.
Control characters are drawn in the ~X notation.

Note: Calling the winch() function on a position in the window containing a control
character does not return the character. Instead, it returns one character of the
control character representation.

Outputting Single, Noncontrol Characters

When outputting single, noncontrol characters, there is significant performance gain
to using the wechochar() functions. These functions are functionally equivalent to a
call to the corresponding waddch() function followed by the corresponding
wrefresh() function. The wechochar() functions include the wechochar() function,
the echochar() function, and the pechochar() function.

Line Graphics

You can use the following variables to add line-drawing characters to the screen

with the waddch() function. When defined for the terminal, the variable will have
the A_ ALTCHARSET bit turned on. Otherwise, the default character listed in the
following table will be stored in the variable.

Variable Name Default Character Glyph Description
ACS_ULCORNER + upper left corner
ACS_LLCORNER + lower left corner
ACS_URCORNER + upper right corner
ACS_LRCORNER + lower right corner
ACS_RTEE + right tee (-)
ACS_LTEE + left tee (-)
ACS_BTEE + bottom tee ()
ACS_TTEE + top tee ({)
ACS_HLINE # horizontal line
ACS_VLINE | vertical line
ACS_PLUS plus

ACS_S1 # scan line 1
ACS_S9 _ scan line 9
ACS_DIAMOND + diamond
ACS_CKBOARD checker board (stipple)
ACS_DEGREE , degree symbol
ACS_PLMINUS # plus/minus
ACS_BULLET o] bullet
ACS_LARROW < arrow pointing left

Chapter 1. The Curses Library

11

Variable Name Default Character Glyph Description
ACS_RARROW > arrow pointing right
ACS_DARROW ! arrow pointing down
ACS_UARROW - arrow pointing up
ACS_BOARD # board of squares
ACS_LANTERN # lantern symbol
ACS_BLOCK # solid square block

waddstr Functions

The waddstr() functions add a null-terminated character string to a window, starting
with the current character. Calling an waddstr() function is equivalent to calling the
corresponding waddch() function once for each character in the string. If you are
adding a single character, use the waddch() function. Otherwise, use the

waddstr() function. The following are part of the waddstr() function family:

waddstr() function Adds a character string to a user-defined window.
addstr() function Adds a character string to the stdscr.

mvaddstr() function Moves the logical cursor to a specified location before adding
a character string to the stdscr.

mvwaddstr() function Moves the logical cursor to a specified location before adding
a character string to a user-defined window.

winsch Functions

The winsch() functions insert a specified character before the current character in
a window. All characters to the right of the inserted character are moved one space
to the right. As a result, the rightmost character on the line may be lost. The
positions of the logical and physical cursors do not change after the move. The
winsch() functions include the following:

winsch() function Inserts a character in a user-defined window.
insch() function Inserts a character in the stdscr.

mvinsch() function Moves the logical cursor to a specified location in the stdscr
before inserting a character.

mvwinsch() function Moves the logical cursor to a specified location in a
user-defined window before inserting a character.

winsertin Functions

The winsertin() functions insert a blank line above the current line in a window.
The insertin() function inserts a line in the stdscr. The bottom line of the window is
lost. The winsertin() function performs the same action in a user-defined window.

wprintw Functions

The wprintw() functions replace a series of characters (starting with the current
character) with formatted output. The format is the same as for the printf()
command. The wprintw() performs the same action as the printw() function but in
a user-defined window. The following functions belong to the printw() family:

12 0S/390 V2R4.0 C Curses

unctrl Function

wprintw() function Replaces a series of characters in a user-defined window.
printw() function Replaces a series of characters in the stdscr.

mvprintw() function Moves the logical cursor to a specified location in the stdscr
before replacing any characters.

mvwprintw() function Moves the logical cursor to a specified location in a
user-defined window before replacing any characters.

The wprintw() functions make calls to the waddch() function to replace characters.

The unctrl() function returns a printable representation of the specified character.
Control characters are displayed in the ~X notation. The unctrl() function returns
print characters as is.

Enabling Text Scrolling

Scrolling occurs when a program or user moves a cursor off a window's bottom
edge. For scrolling to occur, you must first use the scrollok() function to enable
scrolling for a window. A window is scrolled if scrolling is enabled and if any of the
following occur:

e The cursor is moved off the edge of a window.
* A new-line character is encountered on the last line.
e After a character is inserted in the last position of the last line.

When a window is scrolled, curses will update both the window and the display.
However, to get the physical scrolling effect on the terminal, you must call the
idlok() function with the Flag parameter set to TRUE. If scrolling is disabled, the
cursor is left on the bottom line at the location where the character was entered.

When scrolling is enabled for a window, you can use the setscrreg() function to
create a software scrolling region inside the window. You pass the setscrreg()
function values for the top line and bottom line of the region. If setscrreg is enabled
for the region and scrolling is enabled for the window, any attempt to move off the
specified bottom line causes all the lines in the region to scroll up one line. You can
use the setscrreg() function to define a scrolling region in the stdscr. Otherwise,
you use the wsetscrreg() function to define scrolling regions in user-defined
windows.

Note: Unlike the idlok() function, the setscrreg() function has nothing to do with
the use of the physical scrolling region capability that the terminal may or may not
have.

Deleting Characters

You can delete text by replacing it with blank spaces or by removing characters
from a character array and sliding the rest of the characters on the line one space
to the left. Use the following function families to delete text:

e werase()
e wclear()
e wdelch()
* wdeleteln()

Chapter 1. The Curses Library 13

werase Functions

The erase() function copies blank space to every position in the stdscr. The
werase() function puts a blank space at every position in a user-defined window.
To delete a single character in a window, use the wdelch() function.

wclear Functions

The wclear() functions are similar to the werase() functions. However, in addition
to putting a blank space at every position of a window, the wclear() functions also
call the wclearok() function. As a result, the screen is cleared on the next call to
the wrefresh() function.

The wclear() function family contains the wclear() function, the clear function, and
the clearok() function. The clear() function puts a blank at every position in the
stdscr. The clearok() function causes the next call to the refresh() function to
clear and redraw the entire window.

wclrtoeol Functions

The clrtoeol() function erases from the right of the cursor to the end of the current
line in the stdscr. The wclrtoeol() function performs the same action within a
user-defined window.

wclrtobot Functions

The clrtobot() function erases from the right of the cursor to the end of the stdscr.
The wclrtobot() performs the same action in a user-defined window.

wdelch Functions

The wdelch() functions delete the current character and move all the characters to
the right of the current character on the current line one position to the left. The last
character in the line is filled with a blank. The delch() function family consists of
the following functions:

wdelch() function Deletes the current character in a user-defined window.
delch() function Deletes the current character from the stdscr.

mvdelch() function Moves the logical cursor before deleting a character from
the stdscr.

mvwdelch() function Moves the logical cursor before deleting a character from a
user-defined window.

wdeleteln Functions

The wdeleteln() functions delete the current line and move all lines below the
current line up one line. This clears the window's bottom line. The deleteln()
function deletes lines within the stdscr. The wdeleteln() function deletes lines in a
user-defined window.

14 0S/390 V2R4.0 C Curses

Getting Characters
Your program can retrieve characters from the keyboard or from the display. The
wgetch() functions retrieve characters from the keyboard. The winch() functions
retrieve characters from the display.

wgetch Functions
The wgetch() functions read characters from the keyboard attached to the terminal
associated with the window. Before getting a character, these functions call the
wrefresh() functions if anything in the window has changed: for example, if the
cursor has moved or text has changed. If the wgetch() function encounters a Ctrl-D
key sequence during processing, it returns.

The following belong to the wgetch() function family:
wgetch() function Gets a character from a user-defined window.

getch() function Gets a character from the stdscr.

mvgetch() function Moves the cursor before getting a character from the default
window.

mvwgetch() function Moves the cursor before getting a character from a
user-defined window.

To place a character previously obtained by a call to the wgetch() function back in
the input queue, use the ungetch() function. The character is retrieved by the next
call to the wgetch() function.

The Importance of Terminal Modes

The output of the wgetch() functions is, in part, determined by the mode of the
terminal. The following list describes the action of the wgetch() functions in each
type of terminal mode:

Mode Action of wgetch() Functions
NODELAY Returns a value of ERR if there is no input waiting.
DELAY Stops reading until the system passes text through the program.

If CBREAK mode is also set, the program stops after one
character. If CBREAK mode is not set (NOCBREAK mode), the
wgetch() function stops reading after the first new-line character.
If ECHO is set, the character is also echoed to the window.

HALF-DELAY Stops reading until a character is typed or a specified timeout is
reached. If ECHO mode is set, the character is also echoed to
the window.

Note: When you use the wgetch() functions do not set both the NOCBREAK
mode and the ECHO mode at the same time. Setting both modes can cause
undesirable results depending on the state of the tty driver when each character is
typed.

Function Keys

Function keys are defined in the curses.h file. Function keys can be returned by
the wgetch() function if the keypad is enabled. A terminal may not support all of
the function keys. To see if a terminal supports a particular key, check its terminfo
database definition. The following table lists the function keys defined in the
curses.h file:

Chapter 1. The Curses Library 15

Name Key Name

KEY_BREAK Break key (unreliable).
KEY_DOWN Down arrow key.

KEY_UP Up arrow key.

KEY_LEFT Left arrow key.

KEY_RIGHT Right arrow key.

KEY_HOME Home key (upward + left arrow).
KEY_BACKSPACE Backspace (unreliable).

KEY FO Function keys. Space for 64 keys is reserved.
KEYF(n) Formula for fn.

KEY_DL Delete line.

KEY_IL Insert line.

KEY_DC Delete character.

KEY_IC Insert character or enter insert mode.
KEY_EIC Exit insert character mode.
KEY_CLEAR Clear screen.

KEY_EOS Clear to end of screen.
KEY_EOL Clear to end of line.

KEY_SF Scroll 1 line forward.

KEY_SR Scroll 1 line backwards (reverse).
KEY_NPAGE Next page.

KEY_PPAGE Previous page.

KEY_STAB Set tab.

KEY_CTAB Clear tab.

KEY_CATAB Clear all tabs.

KEY_ENTER Enter or send.

KEY_SRESET Soft (partial) reset.

KEY_RESET Reset or hard reset.

KEY_PRINT Print or copy.

KEY_IL Home down or bottom (lower left) keypad.
KEY_A1 Upper left of keypad.

KEY_A3 Upper right of keypad.

KEY_B2 Center of keypad.

KEY_C1 Lower left of keypad.

KEY_C3 Lower right of keypad.
KEY_BTAB Back tab key.

KEY_BEG Beginning key.

KEY_CANCEL Cancel key.

KEY-CLOSE Close key.

KEY_COMMAND Command key.

16 0S/390 V2R4.0 C Curses

Name Key Name
KEY_COPY Copy key.
KEY_CREATE Create key.
KEY_END End key.
KEY_EXIT Exit key.
KEY_FIND Find key.
KEY_HELP Help key.
KEY_MARK Mark key.
KEY_MESSAGE Message key.
KEY_MOVE Move key.
KEY_NEXT Next object key.
KEY_OPEN Open key.
KEY_OPTIONS Options key.
KEY_PREVIOUS Previous object key.
KEY_REDO Redo key.

KEY_REFERENCE

Reference key.

KEY_REFRESH

Refresh key.

KEY_REPLACE

Replace key.

KEY_RESTART

Restart key.

KEY_RESUME Resume key.
KEY_SAVE Save key.
KEY_SBEG Shifted beginning key.

KEY_SCANCEL

Shifted cancel key.

KEY_SCOMMAND

Shifted command key.

KEY_SCOPY Shifted copy key.
KEY_SCREATE Shifted create key.
KEY_SDC Shifted delete-character key.
KEY_SDL Shifted delete-line key.
KEY_SELECT Select key.
KEY_SEND Shifted end key.
KEY_SEOL Shifted clear-line key.
KEY_SEXIT Shifted exit key.
KEY_SFIND Shifted find key.
KEY_SHELP Shifted help key.
KEY_SHOME Shifted home key.
KEY_SIC Shifted input key.
KEY_SLEFT Shifted left arrow key.
KEY_SMESSAGE Shifted message key.
KEY_SMOVE Shifted move key.
KEY_SNEXT Shifted next key.

Chapter 1. The Curses Library

17

Name

Key Name

KEY_SOPTIONS

Shifted options key.

KEY_SPREVIOUS

Shifted previous key.

KEY_SPRINT

Shifted print key.

KEY_SREDO

Shifted redo key.

KEY_SREPLACE

Shifted replace key.

KEY_SRIGHT

Shifted right arrow key.

KEY_SRSUME

Shifted resume key.

KEY_SSAVE

Shifted save key.

KEY_SSUSPEND

Shifted suspend key.

KEY_SUNDO

Shifted undo key.

KEY_SUSPEND

Suspend key.

KEY_UNDO

Undo key.

Getting Function Keys

If your program enables the keyboard with the keypad() function, and the user
presses a function key, the token for that function key is returned instead of raw
characters. The possible function keys are defined in the /usr/include/curses.h file.
Each define statement begins with a KEY _ prefix and the keys are defined as
integers beginning with the value 03510.

If a character is received that could be the beginning of a function key (such as an
Escape character), curses sets a timer. If the remainder of the sequence is not
received before the timer expires, the character is passed through. Otherwise, the
function key's value is returned. For this reason, after a user presses the escape
key there is a delay before the escape is returned to the program. You should
avoid using the escape key where possible when you call a single-character
function such as the wgetch() function.

To prevent the wgetch() function from setting a timer, call the notimeout() function.
If notimeout is set to TRUE, curses does not distinguish between function keys and
characters when retrieving data.

keyname Subroutine

The keyname() function returns a pointer to a character string containing a
symbolic name for the Key argument. The Key argument can be any key returned
from the wgetch() , getch() , mvgetch() , or mvwgetch() function.

winch Functions

The winch() functions retrieve the character at the current position. If any attributes
are set for the position, the attribute values are ORed into the value returned. You
can use the winch() functions to extract only the character or its attributes. To do
this, use the predefined constants A_CHARTEXT and A_ATTRIBUTES with the
logical & (ampersand) operator. These constants are defined in the curses.h file.

The following are the inch() functions:
winch() function Gets the current character from a user-defined window.

inch() function Gets the current character from the stdscr.

18 0S/390 V2R4.0 C Curses

mvinch() function Moves the logical cursor before calling the inch() function on
the stdscr.

mvwinch() function Moves the logical cursor before calling the winch() function
in the user-defined window.

wscanw Functions

The wscanw() functions read character data, interpret it according to a conversion
specification, and store the converted results into memory. The wscanw()
functions use the wgetstr() functions to read the character data. The following are
the wscanw() functions:

wscanw() function Scans a user-defined window.

scanw() function Scans the stdscr.

mvscanw() function Moves the logical cursor before scanning the stdscr.
mvwscanw() function Moves the logical cursor in the user-defined window before

scanning.

The vwscanw() function scans a window using a variable argument list. For
information about manipulating variable argument lists, see the varargs functions.

Understanding Terminals

The capabilities of your program are limited, in part, by the capabilities of the
terminal on which it runs. This section provides information about initializing
terminals and identifying their capabilities.

Manipulating Multiple Terminals

With curses, you can use one or more terminals for input and output. The terminal
functions enable you to establish new terminals, to switch input and output
processing, and to retrieve terminal capabilities.

You can start curses on a single default screen using the initscr() function. This
should be sufficient for most applications. However, if your application sends output
to more than one terminal, you should use the newterm() function. Call this
function for each terminal. If your application wants an indication of error conditions
so that it can continue to run in a line-oriented mode if the terminal cannot support
a screen-oriented program, you should also use the newterm() function.

When it completes, a program must call the endwin() function for each terminal it
used. If you call the newterm() function more than once for the same terminal, the
first terminal referred to must be the last one for which you call the endwin()
function.

The set_term() function switches input and output processing between different
terminals.

Chapter 1. The Curses Library 19

Determining Terminal Capabilities

Curses supplies the following functions to help you determine the capabilities of a
terminal:

e longname()
* has_il()

The longname() function returns a pointer to a static area containing a verbose
description of the current terminal. This area is defined only after a call to the
initscr() or newterm() function. If you intend to use the longname() function with
multiple terminals, you should know that each call to the newterm() function
overwrites this area. Calls to the set_term() function do not restore the value.
Instead, save this area between calls to the newterm() function.

The has_ic() function returns TRUE if the terminal has insert and delete character
capabilities.

The has_il() function returns TRUE if the terminal has insert and delete line
capabilities or can simulate the capabilities using scrolling regions. Use the
has_il() function to check whether it is appropriate to turn on physical scrolling
using the scrollok() or idlok() functions.

Setting Terminal Input and Output Modes

The functions that control input and output determine how your application retrieves
and displays data to users.

The raw() function puts the terminal into RAW mode. In RAW mode, characters
typed by the user are immediately available to the program. Additionally, the
interrupt, quit, suspend, and flow-control characters are passed uninterpreted
instead of generating a signal as they do in CBREAK mode. The noraw() function
takes the terminal out of RAW mode.

The cbreak() function performs a subset of the functions performed by the raw()
function. The cbreak() function puts the terminal into CBREAK mode. In CBREAK
mode, characters typed by the user are immediately available to the program and
erase or kill character processing is not done. Unlike RAW mode, interrupt and flow
characters are acted upon. Otherwise, the tty driver buffers the characters typed
until a newline or carriage return is typed.

Note: CBREAK mode disables translation by the tty driver.
The nocbreak() function takes the terminal out of CBREAK mode.

The echo() function puts the terminal into ECHO mode. In ECHO mode, curses
writes characters typed by the user to the terminal at the physical cursor position.
The noecho() function takes the terminal out of ECHO mode.

The delay_output() function sets the output delay to the specified humber of
milliseconds. You should not use this function extensively because it uses padding
characters instead of a processor pause.

The nl() and nonl() functions, respectively, control whether curses translates new

lines into carriage returns and line feeds on output, and whether curses translates
carriage returns into new lines on input. Initially, these translations do occur. By

20 0S/390 V2R4.0 C Curses

disabling these translations, the curses function library has more control over the
line-feed capability, resulting in faster cursor motion.

Using the terminfo and termcap Files

When curses is initialized, it checks the TERM environment variable to identify the
terminal type. Then, curses looks for a definition explaining the capabilities of the
terminal. Usually this information is kept in a local directory specified by the
TERMINFO environment variable or in the /usr/share/lib/terminfo directory. All
curses programs first check to see if the TERMINFO environment variable is
defined. If this variable is not defined, the /usr/share/lib/terminfo directory is
checked.

For example, if the TERM variable is set to vt100 and the TERMINFO variable is
set to the /usr/mark/myterms file, curses checks for the
/usr/mark/myterms/v/ivt100 file. If this file does not exist, curses checks the
/usr/share/lib/terminfo/v/ivt100 file. For an explanation of the terminfo database,
see the terminfo file format.

Additionally, the LINES and COLUMNS environment variables can be set to
override the terminal description.

Writing Programs That Use the terminfo Functions

Use the terminfo functions when your program needs to deal directly with the
terminfo database. For example, use these functions to program function keys. In
all other cases, curses functions are more suitable and their use is recommended.

Initializing Terminals

Your program should begin by calling the setupterm() function. Normally, this
function is called indirectly by a call to the initscr() or newterm() function. The
setupterm() function reads the terminal-dependent variables defined in the
terminfo database. The terminfo database includes boolean, numeric, and string
variables. After reading the database, the setupterm() function initializes the
cur_term variable with the terminal definition. When working with multiple
terminals, you can use the set_curterm() function to set the cur_term() variable to
a specific terminal. All of terminfo boolean, numeric, and string variables use the
values defined for the specified terminal.

Another function, restartterm() , is similar to the setupterm() function. However, it
is called after memory is restored to a previous state. For example, you would call
the restartterm() function after a call to the scr_restore() function. The
restartterm() function assumes that the input and output options are the same as
when memory was saved, but that the terminal type and baud rate may differ.

The del_curterm() function frees the space containing the capability information for
a specified terminal.

These files contain the definitions for the strings, numbers, and flags in the
terminfo database.

Handling Terminal Capabilities

Pass all parameterized strings through the tparm() function to instantiate them.
You should print all terminfo strings and the output of the tparm() function with the
tputs() or putp() function.

Chapter 1. The Curses Library 21

Use the following functions to obtain and pass terminal capabilities:

tigetflag Returns the value of a specified boolean capability. If the capability
is not boolean, a -1 is returned.

tigetnum Returns the value of a specified numeric capability. If the capability
is not numeric, a -2 is returned.

tigetstr Returns the value of a specified string capability. If the capability
specified is not a string, the tigetstr function returns the value of
(char *) -1.

Exiting the Program

When your program exits you should restore the tty modes to their original state.
To do this, call the reset_shell_mode() function. If your program uses cursor
addressing, it should output the enter_ca_mode string at startup and the
exit_ca_mode string when it exits.

Programs that use shell escapes should call the reset_shell_mode() function and
output the exit_ca_mode string before calling the shell. After returning from the
shell, the program should output the enter_ca_mode string and call the
reset_prog_mode() function. This process differs from standard curses operations
which call the endwin() function on exit.

Low-Level Screen Functions
Use the following functions for low-level screen manipulations:

scr_restore Restores the virtual screen to the contents of a previously dumped

file.
scr_dump Dumps the contents of the virtual screen to the specified file.
scr_init Initializes the curses data structures from a specified file.
ripoffline Strips a single line from the stdscr.

termcap Functions

If your program uses the termcap file for terminal information, the termcap functions
are included as a conversion aid. The parameters are the same for the termcap
functions. Curses emulates the functions using the terminfo database. The following
termcap functions are supplied:

tgetent Emulates the setupterm() function.

tgetflag Returns the boolean entry for a termcap identifier.

tgetnum Returns the numeric entry for a termcap identifier.

tgetstr Returns the string entry for a termcap identifier.

tgoto Duplicates the tparm() function. The output from the tgoto()

function should be passed to the tputs() function.

Converting termcap Descriptions to terminfo Descriptions
The captoinfo command converts termcap descriptions to terminfo descriptions.
The following example illustrates how the captoinfo command works:

captoinfo /usr/lib/libtermcap/termcap.src

This command converts the /usr/lib/libtermcap/termcap.src file to terminfo source.
The captoinfo command writes the output to standard output and preserves

22 0S/390 V2R4.0 C Curses

comments and other information in the file. For more information, see the
captoinfo command.

Manipulating TTYs

The following functions save and restore the state of terminal modes:
savetty Saves the state of the tty modes.

resetty Restores the state of the tty modes to what they were the last time
the savetty() function was called.

Working with Color

If a terminal supports color, you can use the color manipulation functions to include
color in your curses program. Before manipulating colors, you should test whether a
terminal supports color. To do this, you can use either the has_colors() function or
the can_change_color() function. The can_change color() function also checks
to see if a program can change the terminal's color definitions. Neither of these
functions require an argument.

Once you have determined that the terminal supports color, you must call the
start_color() function before calling other color functions. It is a good practice to
call this function right after the initscr function and after a successful color test. The
start_color() function initializes the eight basic colors and two global variables,
COLORS and COLOR_PAIRS. The COLORS global variable defines the
maximum number of colors the terminal supports. The COLOR_PAIRS global
variable defines the maximum number of color pairs the terminal supports.

Manipulating Video Attributes

Your program can manipulate a number of video attributes. The following sections
provide information on video attributes and the functions that affect them.

Video Attributes, Bit Masks, and the Default Colors

Curses enables you to control the following attributes:

A_STANDOUT Terminal's best highlighting mode.
A _UNDERLINE Underline.

A_REVERSE Reverse video.

A BLINK Blinking.

A _DIM Half-bright.

A_BOLD Extra bright or bold.
A_ALTCHARSET Alternate character set.

A NORMAL Normal attributes.

COLOR_PAIR (Number)
Displays the color pair represented by Number. You must
have already initialized the color pair using the init_pair
function.

Chapter 1. The Curses Library 23

These attributes are defined in the curses.h file. You can pass attributes to the
wattron() , wattroff() , and wattrset() functions or you can OR them with the
characters passed to the waddch function. The C logical OR operator is a | (pipe
symbol). The following bit masks are also provided:

A NORMAL Turns all video attributes off.

A _CHARTEXT Extracts a character.

A _ATTRIBUTES Extracts attributes.

A_COLOR Extracts color-pair field information.

Two functions are provided for working with color pairs: COLOR_PAIR (Number)
and PAIR_NUMBER (Attribute). The COLOR_PAIR (Number) function and the
A_COLOR mask are used by the PAIR_NUMBER (Attribute) function to extract the
color-pair number found in the attributes specified by the Attribute parameter.

If your program uses color, the curses.h file defines a number of functions that
identify default colors. These colors are the following:

Color Integer Value
COLOR_BLACK 0
COLOR_BLUE
COLOR_GREEN
COLOR_CYAN
COLOR_RED
COLOR_MAGENTA
COLOR_YELLOW
COLOR_WHITE

~No oah~h WDNPRE

Curses assumes that the default background color for all terminals is 0
(COLOR_BLACK) .

Setting Video Attributes

The current window attributes are applied to all characters written into the window
with the addch() functions. These attributes remain as a property of the characters.
The characters retain these attributes during terminal operations.

The attrset() function sets the current attributes of the default screen. The
wattrset() function sets the current attributes of the user-defined window.

Use the attron() and attroff() functions to turn on and off the specified attributes in
the stdscr without affecting any others. The wattron() and wattroff() functions
perform the same actions in user-defined windows.

The standout() function is the same as a call to the atttron() function with the

A _STANDOUT attribute. It puts the stdscr into the terminal's best highlight mode.
The wstandout() function is the same as a call to the wattron (Window,
A_STANDOUT) function. It puts the user-defined window into the terminal's best
highlight mode. The standend() function is the same as a call to the attrset(0)
function. It turns off all attributes for stdscr. The wstandend() function is the same
as a call to the wattrset (Window,0) function. It turns off all attributes for the
specified window.

The vidputs() function outputs a string that puts the terminal in the specified
attribute mode. Characters are output through the putc() function. The vidattr()

24 0S/390 V2R4.0 C Curses

function is the same as the vidputs() function except that characters are output
through the putchar() function.

Working with Color Pairs

The COLOR_PAIR (Number) function is defined in the curses.h file so you can
manipulate color attributes as you would any other attributes. You must initialize a
color pair with the init_pair() function before you use it. The init_pair() function has
three parameters Pair, Foreground, and Background. The Pair parameter must be
between 1 and COLOR_PAIRS-1. The Foreground and Background parameters
must be between 0 and COLORS-1. For example, to initialize color pair 1 to a
foreground of black with a background of cyan, you would use the following:

init_pair(1, COLOR BLACK, COLOR_CYAN);

You could then set the attributes for the window as:
wattrset(win, COLOR_PAIR(1));

If you then write the string "Let's add Color to the terminal," the string appears as
black characters on a cyan background.

Extracting Attributes
You can use the results from the call to the winch() function to extract attribute
information, including the color-pair number. The following example uses the value
returned by a call to the winch() function with the C logical AND operator (&) and
the A_ATTRIBUTES bit mask to extract the attributes assigned to the current
position in the window. The results from this operation are used with the
PAIR_NUMBER() function to extract the color-pair number, and the number 1 is
printed on the screen.

win = newwin(10, 10, 0, 0);

init_pair(1l, COLOR RED, COLOR YELLOW);

wattrset(win, COLOR_PAIR(1));

waddstr(win, "apple");

number = PAIR_NUMBER((mvwinch(win, 0, 0) & A ATTRIBUTES));
wprintw(win, "%d\n", number);
wrefresh(win);

Lights and Whistles
The beep() function sounds an audible alarm on the terminal to signal the user.
The flash() function displays a visible alarm on the terminal to signal the user.

Setting Curses Options

All curses options are initially turned off. It is not necessary to turn these options off
before calling the endwin() function. The following functions allow you to set
various options with curses:

curs_set Sets the cursor visibility to invisible, normal, or very visible.

idlok Specifies whether curses can use the hardware insert and delete
line features of terminals so equipped.

intrflush Specifies whether an interrupt key (interrupt, quit, or suspend)
flushes all output in the tty driver. This option's default is inherited
from the tty driver.

Chapter 1. The Curses Library 25

keypad Specifies whether curses retrieves the information from the
terminal's keypad. If enabled, the user can press a function key
(such as an arrow key) and the wgetch() function returns a single
value representing that function key. If disabled, curses will not
treat the function keys specially and your program must interpret the
escape sequences. For a list of these function keys, see the
wgetch() function.

typeahead Instructs curses to check for type ahead in an alternative file
descriptor.

See the wgetch() function and “Setting Terminal Input and Output Modes” on
page [20]for descriptions of additional curses options.

Manipulating Soft Labels

Curses provides functions for manipulating soft function-key labels. These labels
appear at the bottom of the screen and give applications, such as editors, a more
user-friendly look. To use soft labels, you must call the slk_init() function before
calling the initscr() or newterm() functions.

To manage soft labels, curses reduces the size of the default screen (stdscr) by
one line. It reserves this line for use by the soft-label functions. This reservation
means that the environment variable LINES is also reduced. Many terminals
support built-in soft labels. If built-in soft labels are supported, curses uses them.
Otherwise, curses simulates the soft-labels with software.

Because many terminals that support soft labels have 8 labels, curses follows the
same standard. A label string is restricted to 8 characters. Curses arranges labels
in one of two patterns: 3-2-3 (3 left, 2 center, 3 right) or 4-4 (4 left, 4 right).

To specify a string for a particular label, call the slk_set() function. This function
also instructs curses as to left-justify, right-justify, or center the string on the label. If
you wish to obtain a label name before it was justified by the slk_set() function,
use the slk_label() function. The slk_clear() and slk_restore() functions clear and
restore soft labels respectively. Normally, to update soft labels, your program
should call the slk_noutrefresh() function for each label and then use a single call
to the slk_refresh() function to perform the actual output. To output all the soft
labels on the next call to the slk_noutrefresh() function, use the slk_touch()
function.

Obsolete Curses Functions

Several functions are obsolete in the AIX Version 4.1 of curses. These obsolete
functions are emulated as indicated in the following list:

Obsolete Replaced by
crmode cbreak()

fixterm reset_prog_mode()
getcap tgetstr()

nocrmode nocbreak()
resetterm reset_shell_mode()
saveterm def _prog_mode()
setterm setupterm()

26 0S/390 V2R4.0 C Curses

The touchoverlap() , flushok() , and _showstring() functions are obsolete and
there are no direct replacements. The gettmode() function is available as a no-op.

List of Curses Functions

Starting and Stopping Curses

endwin

initscr

Manipulating Windows
box

copywin

delwin

getbegyx

getmaxyx

isendwin

mvwin
newpad

newwin

Terminates the curses function libraries and their data structures.

Initializes the curses function library and its data structures.

Draws a box in or around a window.

Provides more precise control over the overlay() and overwrite()
function.

Removes a window data structure.

Places the beginning coordinates of the window in integer variables
y and X.

Places the size of the window in integer variables y and x.

Returns TRUE if the endwin() function has been called without any
subsequent calls to the wrefresh() function.

Moves a window or subwindow to a new location.
Creates a new pad data structure.

Creates a new window data structure.

overlay or overwrite

Copies one window on top of another.

prefresh or pnoutrefresh

Updates the terminal and curscr to reflect changes made to a pad.

refresh, or wrefresh

scr_dump

scr_init

scr_restore
subpad
subwin

touchline

touchwin

Updates the terminal and curscr to reflect changes made to a
window.

Writes the current contents of the virtual screen to the specified file.

Uses the contents of a specified file to initialize the curses data
structures.

Sets the virtual screen to the contents of the specified file.
Creates and returns a pointer to a subpad within a pad.
Creates a subwindow of an existing window.

Forces a range of lines to be refreshed at the next call to the
wrefresh() function.

Forces every character in a window's character array to be
refreshed at the next call of the wrefresh() function. The
touchwin() function does not save optimization information. This
function is useful with overlapping windows.

Chapter 1. The Curses Library 27

wnoutrefresh or doupdate
Updates the designated windows and outputs them all at once to
the terminal. These functions are useful for faster response when
there are multiple updates.

Controlling the Cursor
getyx Returns the coordinates of the cursor in the specified window.

leaveok Controls cursor placement after a call to the wrefresh() function.

move or wmove
Moves the logical cursor.

mvcur Moves the physical cursor.

Manipulating Characters
addch, mvaddch, mvwaddch, or waddch
Adds a character to a window.

addstr, waddstr, mvaddstr, or mvwaddstr
Adds a string of characters to a window.

clear, or wclear
Clears the screen and sets a clear flag for the next refresh.

clearok Determines whether curses clears a window on the next call to the
refresh() or wrefresh() function.

clrtobot or wclrtobot
Erases the lines below and to the right of the logical cursor.

clrtoeol or wclrtoeol
Erases the current line to the right of the logical cursor.

delch, mvdelch, mvwdelch, or wdelch
Deletes the character at the logical cursor location.

deleteln or wdeleteln
Deletes the current line.

echochar, wechochar, or pechochar
Functionally equivalent to a call to the addch() (or waddch() function)
followed by a call to the refresh() (or wrefresh()) function.

erase or werase
Copies blank spaces to every position in a window.

flushinp Flushes any type-ahead characters typed by the user but not yet read
by the program.

getch, wgetch, mvgetch, or mvwgetch
Gets a character from standard input.

getstr, wgetstr, mvgetstr, or mvwgetstr
Gets a string from standard input.

inch, winch, mvinch, or mvwinch
Returns the character at the current cursor location.

insch, winsch, mvinsch, or mvwinsch
Inserts a character in a window.

28 0S/390 V2R4.0 C Curses

insertln or winsertin
Inserts a blank line in a window.

keyname Returns a pointer to a character string containing a symbolic name for
the Key parameter.

meta Determines whether 8-bit character return for the wgetch function is
allowed.

nodelay Causes a call to the wgetch function to be a nonblocking call. If no input
is ready, the wgetch function returns ERR.

printw, wprintw, mvprintw, or mvwprintw
Performs a formatted print on a window.

scanw, wscanw, mvscanw, or mvwscanw
Calls the scanf function on a window and uses the resulting line as input
for that scan.

scroll Scrolls a window up one line.

scrollok Enables a window to scroll when the cursor is moved off the right edge
of the last line of a window.

setscrreg or wsetscrreg
Sets a software scrolling region within a window.

unctrl Returns the printable representation of a character. Control characters
are punctuated with a ~ (caret).

ungetch Places a character back in the input queue.

vwprintw Performs the same operation as the wprintw function but takes a
variable list of arguments.

vwscanw Performs the same operation as the wscanw function but takes a
variable list of arguments.

Manipulating Terminals

cbreak or nocbreak
Puts the terminal into or takes it out of CBREAK mode.

def_prog_mode
Identifies the current terminal mode as the in-curses mode.

def_shell_mode
Saves the current terminal mode as the not-in-curses mode.

del_curterm Frees the space pointed to by the oterm variable.

delay_output
Sets the output delay in milliseconds.

echo or noecho
Controls echoing of typed characters to the screen.

halfdelay Returns ERR if no input was typed after blocking for a specified
amount of time.

has_ic Determines whether a terminal has the insert-character capability.
has_il Determines whether a terminal has the insert-line capability.

longname Returns the verbose name of the terminal.

Chapter 1. The Curses Library 29

newterm

nl or nonl

notimeout

pechochar

putp
raw or noraw

Sets up a new terminal.

Determines whether curses translates a new line into a carriage
return and line feed on output, and translates a return into a new line
on input.

Prevents the wgetch() function from setting a timer when interpreting
an input escape sequence.

Equivalent to a call to the waddch() function followed by a call to the
prefresh() function.

Provides a shortcut to the tputs() function.

Places the terminal into or out of RAW mode.

reset_prog_mode

Restores the terminal into the in-curses program mode.

reset_shell_mode

resetty

restartterm

ripoffline
setupterm
tgetent
tgetflag
tgetnum
tgetstr
tgoto

tigetflag
tigetnum
tigetstr
tparm

tputs

Manipulating Color

Restores the terminal to shell mode (out-of-curses mode). The
endwin() function does this automatically.

Restores the state of the tty modes.

Sets up a TERMINAL structure for use by curses. This function is
similar to the setupterm() function. Call the restartterm() function
after restoring memory to a previous state. For example, call this
function after a call to the scr_restore() function.

Removes a line from the default screen.

Sets up the TERMINAL structure for use by curses.
Looks up the termcap entry for a terminal.

Returns the boolean entry for a termcap identifier.
Returns the numeric entry for a termcap identifier.
Returns the string entry for a termcap identifier.

Instantiates the parameters into the given capability. This function is
provided for compatibility with applications that use the termcap file.

Returns the value of the specified boolean capability.
Returns the value of the specified numeric capability.
Returns the value of the string capability.
Instantiates a string with parameters.

Applies padding information to the given string and outputs it.

can_change_color

color_content

has_colors

30 0S/390 V2R4.0 C Curses

Checks to see if the terminal supports colors and changing of the
color definition.

Returns the composition of a color.

Checks that the terminal supports colors.

init_color Changes a color to the desired composition.

init_pair Initializes a color pair to the specified foreground and background
colors.

pair_content Returns the foreground and background colors for a specified
color-pair number.

Setting Video Attributes and Curses Options
attroff or wattroff
Turns off attributes.

attron or wattron
Turns on attributes.

attrset or wattrset
Sets the current attributes of a window.

beep Sounds the audible alarm on the terminal.

curs_set Sets the cursor state.

flash Causes the terminal's display to flash.

idlok Allows curses to use the hardware insert/delete line feature.
intrflush Allows an interrupt to flush all output in the tty driver queue.
keypad Enables function keys to be interpreted by the wgetch() function.

standout, wstandout, standend, or wstandend
Puts a window into and out of the terminal's best highlight mode.

typeahead Sets the file descriptor for a type-ahead check.

vidputs or vidattr
Outputs a string that puts the terminal in a video-attribute mode.

Manipulating Soft Labels

slk_clear Clears soft labels from the screen.
slk_init Initializes soft function key labels.
slk_label Returns the current label.

slk_noutrefresh
Refreshs soft labels. This function is functionally equivalent to the
wnoutrefresh() function.

slk_refresh Refreshs soft labels. This function is functionally equivalent to the
refresh() function.

slk_restore Restores the soft labels to the screen after a call to the slk_clear()
function.

slk_set Sets a soft label.

slk_touch Updates soft labels on the next call to the slk_noutrefresh() function.

Chapter 1. The Curses Library 31

Miscellaneous Utilities
baudrate Queries the current terminal and returns its output speed.
erasechar Returns the erase character chosen by the user.
killchar Returns the line-kill character chosen by the user.

filter Sets the size of the terminal screen to 1-line.

32 0S/390 V2R4.0 C Curses

Chapter 2. Curses Interfaces

This chapter describes the Curses functions, macros and external variables to
support application portability at the C-language source level. The interface
definitions are collated as though any underscore characters were not present.

© Copyright IBM Corp. 1996, 1999

33

Curses

addch()

Name
addch, mvaddch, mvwaddch, waddch - add a single-byte character and rendition to
a window and advance the cursor

Synopsis

#include <curses.h>
int addch(const chtype ch);

int mvaddch(int y, int x, const chtype
ch);

int mvwaddch(WINDOW *win, int y, int x, const chtype ch);

int waddch(WINDOW *win, const chtype ch);

Description

The addch(), mvaddch(), mvwaddch() and waddch() functions place ch into the
current or specified window at the current or specified position, and then advance
the window's cursor position. These functions perform wrapping. These functions
perform special-character processing.

Return Value
Upon successful completion, these functions return OK. Otherwise they return
ERR.

Errors
No errors are defined.

Application Usage

These functions are only guaranteed to operate reliably on character sets in which
each character fits into a single byte, whose attributes can be expressed using only
constants with the A_ prefix.

See Also
add_wch(), attroff(), doupdate(), <curses.h> .

34 0S/390 V2R4.0 C Curses

addchstr()

Curses

Name

addchstr, addchnstr, mvaddchstr, mvaddchnstr, mvwaddchstr, mvwaddchnstr
waddchstr, waddchnstr - add string of single-byte characters and renditions to a
window

Synopsis

#include <curses.h>

int addchstr(const chtype *chstr);

int addchnstr(const chtype *chstr, int n);

int mvaddchstr(int y, int x, const chtype *chstr);

int mvaddchnstr(int y, int x, const chtype *chstr, int n);

int mvwaddchstr(WINDOW *win, int y, int x, const chtype *chstr);

int mvwaddchnstr(WINDOW *win, int y, int x, const chtype *chstr,
int n);

int waddchstr(WINDOW *win, const chtype xchstr);

int waddchnstr(WINDOW *win, const chtype *chstr, int n);

Description

These functions overlay the contents of the current or specified window, starting at
the current or specified position, with the contents of the array pointed to by chstr
until a null chtype is encountered in the array pointed to by chstr.

These functions do not change the cursor position. These functions do not perform
special-character processing. These functions do not perform wrapping.

The addchnstr(), mvaddchnstr(), mvwaddchnstr() and waddchnstr() functions copy
at most n items, but no more than will fit on the line. If nis -1 then the whole string
is copied, to the maximum number that fit on the line.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

Application Usage

These functions are only guaranteed to operate reliably on character sets in which
each character fits into a single byte, whose attributes can be expressed using only
constants with the A_ prefix.

Chapter 2. Curses Interfaces 35

Curses

See Also
addch(), add_wch(), add_wchstr(), <curses.h> .

36 0S/390 V2R4.0 C Curses

addnstr()

Enhanced Curses

Name

addnstr, addstr, mvaddnstr, mvaddstr, mvwaddnstr, mvwaddstr waddnstr, waddstr -
add a string of multi-byte characters without rendition to a window and advance
cursor

Synopsis

#include <curses.h>

int addnstr(const char *str, int n);

int addstr(const char =*str);

int mvaddnstr(int y, int x, const char *str, int n);

int mvaddstr(int y, int x, const char *str);

int mvwaddnstr(WINDOW *win, int y, int x, char *const str, int n);
int mvwaddstr(WINDOW *win, int y, int x, char *const str);

int waddnstr(WINDOW *win, const char *str, int n);

int waddstr(WINDOW *win, const char #*str);

Description
These functions write the characters of the string str on the current or specified
window starting at the current or specified position using the background rendition.

These functions advance the cursor position. These functions perform special
character processing. These functions perform wrapping.

The addstr(), mvaddstr(), mvwaddstr() and waddstr() functions are similar to calling
mbstowcs() on str, and then calling addwstr(), mvaddwstr(), mvwaddwstr() and
waddwstr(), respectively.

The addnstr(), mvaddnstr(), mvwaddnstr() and waddnstr() functions use at most n
bytes from str. These functions add the entire string when nis -1. These functions
are similar to calling mbstowces() on the first n bytes of str, and then calling
addwstr(), mvaddwstr(), mvwaddwstr() and waddwstr(), respectively.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

Chapter 2. Curses Interfaces 37

Enhanced Curses

See Also
addnwstr(), mbstowcs(), <curses.h> .

38 0S/390 V2R4.0 C Curses

Enhanced Curses

addnwstr()

Name

addnwstr, addwstr, mvaddnwstr, mvaddwstr, mvwaddnwstr, mvwaddwstr,
waddnwstr, waddwstr - add a wide-character string to a window and advance the
cursor

Synopsis

#include <curses.h>

int addnwstr(const wchar_ t *wstr, int n);

int addwstr(const wchar t *wstr);

int mvaddnwstr(int y, int x, const wchar_t *wstr, int n);

int mvaddwstr(int y, int x, const wchar_t *wstr);

int mvwaddnwstr(WINDOW *win, int y, int x, const wchar_t *wstr, int n);
int mvwaddwstr(WINDOW *win, int y, int x, const wchar_t *wstr);

int waddnwstr(WINDOW *win, const wchar_t *wstr, int n);

int waddwstr(WINDOW *win, const wchar_t *wstr);

Description
These functions write the characters of the wide character string wstr on the current
or specified window at that window's current or specified cursor position.

These functions advance the cursor position. These functions perform special
character processing. These functions perform wrapping.

The effect is similar to building a cchar_t from the wchar_t and the background
rendition and calling wadd_wch(), once for each wchar_t character in the string.
The cursor movement specified by the mv functions occurs only once at the start of
the operation.

The addnwstr(), mvaddnwstr(), mvwaddnwstr() and waddnwstr() functions write at
most n wide characters. If nis -1, then the entire string will be added.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

Chapter 2. Curses Interfaces 39

Enhanced Curses

See Also
add_wch(), <curses.h>

40 0S/390 V2R4.0 C Curses

add_wch()

Enhanced Curses

Name
add_wch, mvadd_wch, mvwadd_wch, wadd_wch - add a complex character and
rendition to a window

Synopsis

#include <curses.h>

int add_wch(cchar_t *const wch);

int wadd_wch(WINDOW *win, cchar_t *const wch);
int mvadd wch(int y, int x, cchar_t *const wch);

int mvwadd wch(WINDOW *win, int y, int x, cchar_t *const wch);

Description

These functions add information to the current or specified window at the current or
specified position, and then advance the cursor. These functions perform
wrapping. These functions perform special-character processing.

e If wch refers to a spacing character, then any previous character at that
location is removed, a new character specified by wch is placed at that location
with rendition specified by wch; then the cursor advances to the next spacing
character on the screen.

 If wch refers to a non-spacing character, all previous characters at that location
are preserved, the non-spacing characters of wch are added to the spacing
complex character, and the rendition specified by wch is ignored.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

See Also
addch(), <curses.h> .

Chapter 2. Curses Interfaces 41

Enhanced Curses

add_wchnstr()

Name

add_wchnstr, add_wchstr, mvadd_wchnstr, mvadd_wchstr, mvwadd_wchnstr,
mvwadd_wchstr, wadd_wchnstr, wadd_wchstr - add an array of complex
characters and renditions to a window

Synopsis

#include <curses.h>

int add_wchnstr(const cchar_t *wchstr, int n);

int add_wchstr(const cchar_t *wchstr);

int wadd_wchnstr(WINDOW *win, const cchar_t *wchstr, int n);
int wadd_wchstr(WINDOW *win, const cchar_t *wchstr);

int mvadd _wchnstr(int y, int x, const cchar_t *wchstr, int n);
int mvadd wchstr(int y, int x, const cchar_t *wchstr);

int mvwadd _wchnstr(WINDOW *win, int y, int x, const cchar_t *wchstr,
int n);

int mvwadd_wchstr(WINDOW *win, int y, int x, const cchar_t *wchstr);

Description
These functions write the array of cchar_t specified by wchstr into the current or
specified window starting at the current or specified cursor position.

These functions do not advance the cursor. The results are unspecified if wchstr
contains any special characters.

The functions end successfully on encountering a null cchar_t. The functions also
end successfully when they fill the current line. If a character cannot completely fit
at the end of the current line, those columns are filled with the background
character and rendition.

The add_wchnstr(), mvadd_wchnstr(), mvwadd_wchnstr() and wadd_wchnstr()
functions end successfully after writing n cchar_ts (or the entire array of cchar_ts, if
nis -1).

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

42 0S/390 V2R4.0 C Curses

Enhanced Curses

See Also
<curses.h> .

Chapter 2. Curses Interfaces 43

Curses

attroff()

Name
attroff, attron, attrset, wattroff, wattron, wattrset - restricted window attribute control
functions

Synopsis

#include <curses.h>

int attroff(int attrs);

int attron(int attrs);

int attrset(int attrs);

int wattroff(WINDOW *win, int attrs);
int wattron(WINDOW *win, int attrs);

int wattrset (WINDOW *win, int attrs);

Description
These functions manipulate the window attributes of the current or specified
window.

The attroff() and wattroff() functions turn off attrs in the current or specified window
without affecting any others.

The attron() and wattron() functions turn on attrs in the current or specified window
without affecting any others.

The attrset() and wattrset() functions set the background attributes of the current or
specified window to attrs.

It is unspecified whether these functions can be used to manipulate attributes other

than A_BLINK, A_BOLD, A_DIM, A_REVERSE, A_STANDOUT and
A_UNDERLINE.

Return Value
These functions always return either OK or 1.

Errors
No errors are defined.

See Also
attr_get(), standend(), <curses.h> .

44 0S/390 V2R4.0 C Curses

attr_get()

Enhanced Curses

Name
attr_get, attr_off, attr_on, attr_set, color_set, wattr_get, wattr_off, wattr_on,
wattr_set, wcolor_set -- window attribute control functions

Synopsis

#include <curses.h>

int attr_get(attr_t *atttrs, short *color_pair_number, void *opts);
int attr_off(attr_t attrs, void *opts);

int attr_on(attr_t attrs, void *opts);

int attr_set(attr_t attrs, short color_pair number, void *opts);
int color_set(short color_pair_number, void *opts);

in wattr_get (WINDOW *win, attr_t *attrs, short *color_pair_number,
void xopts);

int wattr_off(WINDOW *win, attr_t attrs, void *opts);
int wattr_on(WINDOW *win, attr_t attrs, void *opts);

int wattr_set(WINDOW *win, attr_t attrs, short color_pair_number,
void xopts);

int wcolor_set(WINDOW *win, short color_pair_number, void *opts);

Description
These functions manipulate the attributes and color of the window rendition of the
current or specified window.

The attr_get() and wattr_get() functions obtain the current rendition of a window. If
attrs or color_pair_number is a null pointer, no information will be obtained on the
corresponding rendition information and this is not an error.

The attr_off() and wattr_off() functions turn off attrs in the current or specified
window without affecting any others.

The attr_on() and wattr_on() functions turn on attrs in the current or specified
window without affecting any others.

The attr_set() and wattr_set() functions set the window rendition of the current or
specified window to attrs and color_pair_number.

The color_set() and wcolor_set functions set the window color of the current or
specified window to color_pair_number.

Chapter 2. Curses Interfaces 45

Enhanced Curses

Return Value
The attr_get() and wattr_get() functions return the current window attributes for the
current or specified window.

The other functions always return OK.

Errors
No errors are defined.

See Also
attroff(), <curses.h> .

46 0S/390 V2R4.0 C Curses

Curses

baudrate()

Name
baudrate - get terminal baud rate

Synopsis

#include <curses.h>

int baudrate(void);

Description
The baudrate() function extracts the output speed of the terminal in bits per second.

Return Value
The baudrate() function returns the output speed of the terminal.

Errors
No errors are defined.

See Also
tcgetattr(), <curses.h> .

Chapter 2. Curses Interfaces 47

Curses

beep()

Name
beep - audible signal

Synopsis

#include <curses.h>
int beep(void);

Description

The beep() function alerts the user. It sounds the audible alarm on the terminal, or
if that is not possible, it flashes the screen (visible bell). If neither signal is
possible, nothing happens.

Return Value
The beep() function always returns OK.

Errors
No errors are defined.

Application Usage
Nearly all terminals have an audible alarm, but only some can flash the screen.

See Also
flash(), <curses.h> .

48 0S/390 V2R4.0 C Curses

bkgd()

Enhanced Curses

Name

bkgd, bkgdset, getbkgd, wbkgd, wbkgdset - turn off the previous background
attributes, OR the requested attributes into the window rendition, and set or get
background character and rendition using a single-byte character.

Synopsis

#include <curses.h>

int bkgd(chtype ch);

void bkgdset(chtype ch);

chtype getbkgd (WINDOW *win);

int wbkgd (WINDOW *win, chtype ch);

void wbkgdset (WINDOW *win, chtype ch);

Description

The bkgdset() and wbkgdset() functions turn off the previous background attributes,
OR the requested attributes into the window rendition, and set the background
attributes of the current or specified window based on the information in ch. If ch
refers to a multi-column character, the results are undefined.

The bkgd() and wbkgd() functions turn off the previous background attributes, OR
the requested attributes into the window rendition, and set the background property
of the current or specified window and then apply this setting to every character
position in that window:

e The rendition of every character on the screen is changed to the new
background rendition.

* Wherever the former background character appears, it is changed to the new
background character.

The getbkgd() function extracts the specified window's background character and
rendition.

Return Value

Upon successful completion, bkgd() and wbkgd() return OK. Otherwise, they return
ERR.

The bkgdset() and wbkgdset() functions do not return a value.

Upon successful completion, getbkgd() returns the specified window's background
character and rendition. Otherwise, it returns (chtype) ERR.

Chapter 2. Curses Interfaces 49

Enhanced Curses

bkgd()

Errors
No errors are defined.

Application Usage

These functions are only guaranteed to operate reliably on character sets in which
each character fits into a single byte, whose attributes can be expressed using only
constants with the A_ prefix.

See Also
<curses.h> .

50 0s/390 V2R4.0 C Curses

Enhanced Curses

bkgrnd()

Name

bkgrnd, bkgrndset, getbkgrnd, wbkgrnd, wbkgrndset, wgetbkgrnd — turn off the
previous background attributes, OR the requested attributes into the window
rendition, and set or get background character and rendition using a complex
complex character

Synopsis

#include <curses.h>

int bkgrnd(const cchar t *wch);

void bkgrndset(const cchar_t *wch);

int getbkgrnd(cchar_t *wch);

int wbkgrnd(WINDOW *win, const cchar_t *wch);
void wbkgrndset (WINDOW *win, const cchar_t xwch);

int wgetbkgrnd (WINDOW *win, cchar_t *wch);

Description

The bkgrndset() and wbkgrndset() functions turn off the previous background
attributes, OR the requested attributes into the window rendition, and set the
background property of the current or specified window based on the information in
wch.

The bkgrnd() and wbkgrnd() functions turn off the previous background attributes,
OR the requested attributes into the window rendition, and set the background
property of the current or specified window and then apply this setting to every
character position in that window:

¢ The rendition of every character on the screen is changed to the new
background rendition.

e Wherever the former background character appears, it is changed to the new
background character.

If weh refers to a non-spacing complex character for bkgrnd(), bkgrndset(),
wbkgrnd() and wbkgrndset(), then wch is added to the existing spacing complex
character that is the background character. If wch refers to a multi-column
character, the results are unspecified.

The getbkgrnd() and wgetbkgrnd() functions store, into the area pointed to by wch,
the value of the window's background character and rendition.

Return Value
The bkgrndset() and wbkgrndset() functions do not return a value.

Upon successful completion, the other functions return OK. Otherwise, they return
ERR.

Chapter 2. Curses Interfaces 51

Enhanced Curses

Errors
No errors are defined.

See Also
<curses.h> .

52 0S/390 V2R4.0 C Curses

border()

Enhanced Curses

Name
border, wborder - draw borders from single-byte characters and renditions

Synopsis

#include <curses.h>

int border(chtype 1s, chtype rs, chtype ts, chtype bs, chtype t1,
chtype tr, chtype bl, chtype br);

int wborder(WINDOW *win, chtype 1s, chtype rs, chtype ts, chtype bs,
chtype t1, chtype tr, chtype bl, chtype br);

Description

The border() and wborder() functions draw a border around the edges of the
current or specified window. These functions do not advance the cursor position.
These functions do not perform special character processing. These functions do
not perform wrapping.

The arguments in the left-hand column of the following table contain single-byte
characters with renditions, which have the following uses in drawing the border:

Argument Usage Default Value

Name

Is Starting-column side ACS_VLINE

rs Ending-column side ACS_VLINE

ts First-line side ACS_HLINE

bs Last-line side ACS_HLINE

t Corner of the first line and the starting ACS_ULCORNER
column

tr Corner of the first line and the ending ACS_URCORNER
column

bl Corner of the last line and the starting ACS_BLCORNER
column

br Corner of the last line and the ending ACS_BRCORNER
column

If the value of any argument in the left-hand column is 0, then the default value in
the right-hand column is used. If the value of any argument in the left-hand column
is a multi-column character, the results are undefined.

Return Value

Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Chapter 2. Curses Interfaces 53

Enhanced Curses

Errors
No errors are defined.

Application Usage

These functions are only guaranteed to operate reliably on character sets in which
each character fits into a single byte, whose attributes can be expressed using only
constants with the A_ prefix.

See Also
border_set(), box(), hline(), <curses.h> .

54 0s/390 V2R4.0 C Curses

border_set()

Enhanced Curses

Name
border_set, whorder_set, - draw borders from complex characters and renditions

Synopsis

#include <curses.h>

int border_set(const cchar_t *Is, const cchar_t *rs, const cchar_t =*ts,
const cchar_t *bs, const cchar_t *t1, const cchar_t =*tr,
const cchar_t *bl, const cchar_t *br);

int wborder_set(WINDOW *win, const cchar_t *1s, const cchar_t =*rs,
const cchar_t *ts, const cchar_t =*bs,
const cchar_t =t1, const cchar_t *tr,
const cchar_t *b1, const cchar_t *br);

Description

The border_set() and wborder_set() functions draw a border around the edges of
the current or specified window. These functions do not advance the cursor
position. These functions do not perform special character processing. These
functions do not perform wrapping.

The arguments in the left-hand column of the following table contain spacing
complex characters with renditions, which have the following uses in drawing the
border:

Argument Usage Default Value

Name

Is Starting-column side WACS_VLINE

rs Ending-column side WACS_VLINE

ts First-line side WACS_HLINE

bs Last-line side WACS_HLINE

t Corner of the first line and the starting WACS_ULCORNER
column

tr Corner of the first line and the ending WACS_URCORNER
column

bl Corner of the last line and the starting WACS_BLCORNER
column

br Corner of the last line and the ending WACS_BRCORNER
column

If the value of any argument in the left-hand column is a null pointer, then the
default value in the right-hand column is used. If the value of any argument in the
left-hand column is a multi-column character, the results are undefined.

Chapter 2. Curses Interfaces 55

Enhanced Curses

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

See Also
box_set(), hline_set(), <curses.h> .

56 0S/390 V2R4.0 C Curses

box()

Curses

Name
box - draw borders from single-byte characters and renditions

Synopsis

#include <curses.h>

int box (WINDOW *win, chtype verch, chtype horch);

Description

The box() function draws a border around the edges of the specified window. This
function does not advance the cursor position. This function does not perform
special character processing. This function does not perform wrapping.

The function box (win, verch, horch) has an effect equivalent to:

wborder(win, verch, verch, horch, horch, 0, 0, 0, 0);

Return Value
Upon successful completion, box() returns OK. Otherwise, it returns ERR.

Errors
No errors are defined.

Application Usage

These functions are only guaranteed to operate reliably on character sets in which
each character fits into a single byte, whose attributes can be expressed using only
constants with the A_ prefix.

See Also
border(), box_set(), hline(), <curses.h> .

Chapter 2. Curses Interfaces 57

Enhanced Curses

box_set()

Name
box_set - draw borders from complex characters and renditions

Synopsis

#include <curses.h>

int box_set(WINDOW *win, const cchar_t *verch, const cchar_t *horch);

Description

The box_set() function draws a border around the edges of the specified window.
This function does not advance the cursor position. This function does not perform
special character processing. This function does not perform wrapping.

The function box_set(win, verch, horch) has an effect equivalent to:

wborder_set(win, verch, verch, horch, horch,
NULL, NULL, NULL, NULL);

Return Value
Upon successful completion, this function returns OK. Otherwise, it returns ERR.

Errors
No errors are defined.

See Also
border_set(), hline_set(), <curses.h> .

58 057390 V2R4.0 C Curses

Enhanced Curses

can_change_color()

Name
can_change_color, color_content, has_colors, init_color, init_pair, start_color,
pair_content — color manipulation functions

Synopsis

#include <curses.h>

bool can_change color(void);

int color_content(short color, short *red, short *green, short xblue);
int COLOR_PAIR(int n);

bool has_colors(void);

int init_color(short color, short red, short green, short blue);
int init_pair(short pair, short f, short b);

int pair_content(short pair, short *f, short *b);

int PAIR_NUMBER(int value);

int start_color(void);

extern int COLOR_PAIRS;

extern int COLORS;

Description
These functions manipulate color on terminals that support color.

Querying Capabilities: ~ The has_colors() function indicates whether the terminal
is a color terminal. The can_change_color() function indicates whether the terminal
is a color terminal on which colors can be redefined.

Initialization: The start_color() function must be called in order to enable use of
colors and before any color manipulation function is called. The function initializes
eight basic colors (black, blue, green, cyan, red, magenta, yellow, and white) that
can be specified by the color macros (such as COLOR_BLACK) defined in
<curses.h> . The initial appearance of these eight colors is not specified.

The function also initializes two global external variables:

¢ COLORS defines the number of colors that the terminal supports. (See Color
Identification below.) If COLORS is 0, the terminal does not support
redefinition of colors (and can_change_color() will return FALSE).

e COLOR_PAIRS defines the maximum number of color-pairs that the terminal
supports. (See User-Defined Color Pairs below.)

The start_color() function also restores the colors on the terminal to
terminal-specific initial values. The initial background color is assumed to be black
for all terminals.

Chapter 2. Curses Interfaces 59

Enhanced Curses

Color Identification: ~ The init_color() function redefines color number color, on
terminals that support the redefinition of colors, to have the red, green, and blue
intensity components specified by red, green, and blue, respectively. Calling
init_color() also changes all occurrences of the specified color on the screen to the
new definition.

The color_content() function identifies the intensity components of color number
color. It stores the red, green, and blue intensity components of this color in the
addresses pointed to by red, green, and blue, respectively.

For both functions, the color argument must be in the range from 0 to and including
COLORS-1. Valid intensity values range from 0 (no intensity component) up to and
including 1000 (maximum intensity in that component).

User-Defined Color Pairs: Calling init_pair() defines or redefines color-pair
number pair to have foreground color f and background color b. Calling init_pair()
changes any characters that were displayed in the color pair's old definition to the
new definition and refreshes the screen.

After defining the color pair, the macro COLOR_PAIR(n) returns the value of color
pair n. This value is the color attribute as it would be extracted from a chtype.
Conversely, the macro PAIR_NUMBER(value) returns the color pair number
associated with the color attribute value.

The pair_content() function retrieves the component colors of a color-pair number
pair. It stores the foreground and background color numbers in the variables
pointed to by fand b, respectively.

With init_pair() and pair_content(), the value of pair must be in a range from 0 to
and including COLOR_PAIRS-1. (There may be an implementation-specific lower
limit on the valid value of pair, but any such limit is at least 63.) Valid values for f
and b are the range from 0 to and including COLORS-1.

Return Value
The has_colors() function returns TRUE if the terminal can manipulate colors;
otherwise, it returns FALSE.

The can_change_color() function returns TRUE if the terminal supports colors and
can change their definitions; otherwise, it returns FALSE.

Upon successful completion, the other functions return OK; otherwise, they return
ERR.

Errors
No errors are defined.

Application Usage
To use these functions, start_color() must be called, usually right after initscr().

The can_change_color() and has_colors() functions facilitate writing
terminal-independent programs. For example, a programmer can use them to
decide whether to use color or some other video attribute.

60 0S/390 V2R4.0 C Curses

Enhanced Curses

On color terminals, a typical value of COLORS is 8 and the macros such as
COLOR_BLACK return a value within the range from 0 to and including 7.
However, applications cannot rely on this to be true.

See Also
attroff(), delscreen(), <curses.h> .

Chapter 2. Curses Interfaces 61

Curses

cbreak()

Name
cbreak, nocbreak, noraw, raw - input mode control functions

Synopsis

#include <curses.h>
int cbreak(void);
int nocbreak(void);
int noraw(void);

int raw(void);

Description
The cbreak() function sets the input mode for the current terminal to cbreak mode
and overrides a call to raw().

The nocbreak() function sets the input mode for the current terminal to Cooked
Mode without changing the state of ISIG and IXON.

The noraw() function sets the input mode for the current terminal to Cooked Mode
and sets the ISIG and IXON flags.

The raw() function sets the input mode for the current terminal to Raw Mode.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

Application Usage
If the application is not certain what the input mode of the process was at the time
it called initscr(), it should use these functions to specify the desired input mode.

See Also
<curses.h> .

62 0S/390 V2R4.0 C Curses

chgat()

Enhanced Curses

Name
chgat, mvchgat, mvwchgat, wchgat - change renditions of characters in a window

Synopsis

#include <curses.h>
int chgat(int n, attr_t attr, short color, const void *opts);

int mvchgat(int y, int x, int n, attr_t attr, short color,
const void *opts);

int mvwchgat(WINDOW *win, int y, int x, int n, attr_t attr,
short color, const void *opts);

int wchgat (WINDOW *win, int n, attr_t attr, short color,
const void *opts);

Description

These functions change the renditions of the next n characters in the current or
specified window (or of the remaining characters on the line, if nis -1), starting at
the current or specified cursor position. The attributes and colors are specified by
attr and color as for setcchar().

These functions do not update the cursor. These functions do not perform
wrapping.

A value of n that is greater than the remaining characters on a line is not an error.

The opts argument is reserved for definition in a future edition of this document.
Currently, the application must provide a null pointer as opts.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

See Also
setcchar(), <curses.h>

Chapter 2. Curses Interfaces 63

Curses

clear()

Name
clear, erase, wclear, werase - clear a window

Synopsis

#include <curses.h>

int clear(void);

int erase(void);

int wclear(WINDOW *win);

int werase(WINDOW *win);

Description
The clear(), erase(), wclear() and werase() functions clear every position in the
current or specified window.

The clear() and wclear() functions also achieve the same effect as calling clearok(),
so that the window is cleared completely on the next call to wrefresh() for the
window and is redrawn in its entirety.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return

ERR.

Errors
No errors are defined.

See Also
clearok(), doupdate(), <curses.h> .

64 0S/390 V2R4.0 C Curses

clearok()

Curses

Name
clearok, idlok, leaveok, scrollok, setscrreg, wsetscrreg - terminal output control
functions

Synopsis

#include <curses.h>

int clearok(WINDOW *win, bool bf);
int idTok (WINDOW *win, bool bf);
int Teaveok (WINDOW *win, bool bf);
int scrollok(WINDOW *win, bool bf);
int setscrreg(int top, int bot);

int wsetscrreg(WINDOW *win, int top, int bot);

Description
These functions set options that deal with output within Curses.

The clearok() function assigns the value of bfto an internal flag in the specified
window that governs clearing of the screen during a refresh. If, during a refresh
operation on the specified window, the flag in curscr is TRUE or the flag in the
specified window is TRUE, then the implementation clears the screen, redraws it in
its entirety, and sets the flag to FALSE in curscr and in the specified window. The
initial state is unspecified.

The idlok() function specifies whether the implementation may use the hardware
insert-line, delete-line, and scroll features of terminals so equipped. If bfis TRUE,
use of these features is enabled. If bfis FALSE, use of these features is disabled
and lines are instead redrawn as required. The initial state is FALSE.

The leaveok() function controls the cursor position after a refresh operation. If bfis
TRUE, refresh operations on the specified window may leave the terminal's cursor
at an arbitrary position. If bfis FALSE, then at the end of any refresh operation,
the terminal's cursor is positioned at the cursor position contained in the specified
window. The initial state is FALSE.

The scrollok() function controls the use of scrolling. If bfis TRUE, then scrolling is
enabled for the specified window. If bfis FALSE, scrolling is disabled for the
specified window. The initial state is FALSE.

The setscrreg() and wsetscrreg() functions define a software scrolling region in the
current or specified window. The top and bot arguments are the line numbers of
the first and last line defining the scrolling region. (Line 0 is the top line of the
window.) If this option and scrollok() are enabled, an attempt to move off the last
line of the margin causes all lines in the scrolling region to scroll one line in the
direction of the first line. Only characters in the window are scrolled. If a software
scrolling region is set and scrollok() is not enabled, an attempt to move off the last
line of the margin does not reposition any lines in the scrolling region.

Chapter 2. Curses Interfaces 65

Curses

Return Value
Upon successful completion, setscrreg() and wsetscrreg() return OK. Otherwise,
they return ERR.

The other functions always return OK.

Errors
No errors are defined.

Application Usage

The only reason to enable the idlok() feature is to use scrolling to achieve the
visual effect of motion of a partial window, such as for a screen editor. In other
cases, the feature can be visually annoying.

The leaveok() option provides greater efficiency for applications that do not use the
cursor.

See Also
clear(), delscreen(), doupdate(), scrl(), <curses.h>

66 0S/390 V2R4.0 C Curses

clrtobot()

Curses

Name
clrtobot, weclrtobot - clear from cursor to end of window

Synopsis

#include <curses.h>
int clrtobot(void);

int wclrtobot (WINDOW *win);

Description

The clrtobot() and wclrtobot() functions erase all lines following the cursor in the
current or specified window, and erase the current line from the cursor to the end of
the line, inclusive.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

See Also
doupdate(), <curses.h> .

Chapter 2. Curses Interfaces 67

Curses

clrtoeol()

Name
clrtoeol, wclrtoeol - clear from cursor to end of line

Synopsis

#include <curses.h>
int clrtoeol(void);

int wclrtoeol (WINDOW *win);

Description
The clrtoeol() and wclrtoeol() functions erase the current line from the cursor to the
end of the line, inclusive, in the current or specified window.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

See Also
doupdate(), <curses.h> .

68 0S/390 V2R4.0 C Curses

Enhanced Curses

color_content()

Name
color_content - identify red/green/blue intensity of a color

Synopsis

#include <curses.h>

int color_content(short color, short *red, short *green, short *blue);

Description
Refer to can_change_color().

Chapter 2. Curses Interfaces 69

Enhanced Curses

COLOR_PAIRS

Name
COLOR_PAIRS, COLORS - external variables for color support

Synopsis

#include <curses.h>
extern int COLOR_PAIRS;

extern int COLORS;

Description
Refer to can_change_color().

70 0S/390 V2R4.0 C Curses

Enhanced Curses

COLS

Name
COLS - number of columns on terminal screen

Synopsis

#include <curses.h>

extern int COLS;
Description
The external variable COLS indicates the number of columns on the terminal

screen.

See Also
initscr(), <curses.h> .

Chapter 2. Curses Interfaces 71

Curses

copywin()

Name
copywin - copy a region of a window

Synopsis

#include <curses.h>

int copywin(const WINDOW *srcwin, WINDOW *dstwin, int sminrow,
int smincol, int dminrow, int dmincol, int dmaxrow,
int dmaxcol, int overlay);

Description

The copywin() function provides a finer granularity of control over the overlay() and
overwrite() functions. As in the prefresh() function, a rectangle is specified in the
destination window, (dminrow, dmincol) and (dmaxrow, dmaxcol), and the
upper-left-corner coordinates of the source window, (sminrow, smincol). If overlay
is TRUE, then copying is non-destructive, as in overlay(). If overlay is FALSE, then
copying is destructive, as in overwrite().

Return Value
Upon successful completion, copywin() returns OK. Otherwise, it returns ERR.

Errors
No errors are defined.

See Also
newpad(), overlay(), <curses.h> .

72 0S/390 V2R4.0 C Curses

Enhanced Curses

curscr

Name
curscr - current window

Synopsis

#include <curses.h>

extern WINDOW *curscr;

Description

The external variable curscr points to an internal data structure. It can be specified
as an argument to certain functions, such as clearok(), where permitted in this
specification.

See Also
clearok(), <curses.h> .

Chapter 2. Curses Interfaces 73

Enhanced Curses

curs_set()

Name
curs_set - set the cursor mode

Synopsis

#include <curses.h>

int curs_set(int visibility);

Description
The curs_set() function sets the appearance of the cursor based on the value of
visibility.
Value of visibility Appearance of Cursor
0 Invisible
1 Terminal-specific normal mode
2 Terminal-specific high visibility mode

The terminal does not necessarily support all the above values.
Return Value

If the terminal supports the cursor mode specified by visibility, then curs_set()
returns the previous cursor state. Otherwise, the function returns ERR.

Errors
No errors are defined.

See Also
<curses.h> .

74 0S/390 V2R4.0 C Curses

Enhanced Curses

cur_term()

Name
cur_term - current terminal information

Synopsis

#include <term.h>

extern TERMINAL =*cur_term;
Description
The external variable cur_term identifies the record in the terminfo database

associated with the terminal currently in use.

See Also
set_curterm(), tigetflag(), <term.h> .

Chapter 2. Curses Interfaces 75

Curses

def _prog_mode()

Name
def_prog_mode, def_shell_mode, reset_prog_mode, reset_shell_mode -
save/restore program or shell terminal modes

Synopsis

#include <curses.h>

int def_prog _mode(void);
int def_shell_mode(void);
int reset_prog mode(void);

int reset_shell mode(void);

Description
The def_prog_mode() function saves the current terminal modes as the “program”
(in Curses) state for use by reset_prog_mode().

The def_shell_mode() function saves the current terminal modes as the “shell” (not
in Curses) state for use by reset_shell_mode().

The reset_prog_mode() function restores the terminal to the “program” (in Curses)
state.

The reset_shell_mode() function restores the terminal to the “shell” (not in Curses)
state.

These functions affect the mode of the terminal associated with the current screen.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

Application Usage

The initscr() function achieves the effect of calling def_shell_mode() to save the
prior terminal settings so they can be restored during the call to endwin(), and of
calling def_prog_mode() to specify an initial definition of the program terminal
mode.

Applications normally do not need to refer to the shell terminal mode. Applications
may find it useful to save and restore the program terminal mode.

76 0S/390 V2R4.0 C Curses

Curses

See Also
doupdate(), endwin(), initscr(), <curses.h> .

Chapter 2. Curses Interfaces 71

Curses

delay output()

Name
delay_output - delay output

Synopsis

#include <curses.h>

int delay_output(int ms);

Description
On terminals that support pad characters, delay_output() pauses the output for at
least ms milliseconds. Otherwise, the length of the delay is unspecified.

Return Value
Upon successful completion, delay output() returns OK. Otherwise, it returns ERR.

Errors
No errors are defined.

Application Usage
Whether or not the terminal supports pad characters, the delay_output() function is

not a precise method of timekeeping.

See Also
napms(), <curses.h> .

78 0S/390 V2R4.0 C Curses

delch()

Curses

Name
delch, mvdelch, mvwdelch, wdelch - delete a character from a window.

Synopsis

#include <curses.h>

int delch(void);

int mvdelch(int y, int x);

int mvwdelch(WINDOW *win, int y, int x);

int wdelch(WINDOW *win);

Description
These functions delete the character at the current or specified position in the
current or specified window. This function does not change the cursor position.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

See Also
<curses.h> .

Chapter 2. Curses Interfaces 79

Enhanced Curses

del_curterm()

Name
del_curterm, restartterm, set_curterm, setupterm - interfaces to the terminfo
database

Synopsis

#include <term.h>

int del_curterm(TERMINAL *oterm);

int restartterm(char *term, int fildes, int *errret);
TERMINAL *set curterm(TERMINAL *nterm);

int setupterm(char *term, int fildes, int *errret);

extern TERMINAL =*cur_term;

Description
These functions retrieve information from the terminfo database.

To gain access to the terminfo database, setupterm() must be called first. It is
automatically called by initscr() and newterm(). The setupterm() function initializes
the other functions to use the terminfo record for a specified terminal (which
depends on whether use_env() was called). It sets the cur_term external variable
to a TERMINAL structure that contains the record from the terminfo database for
the specified terminal.

The terminal type is the character string term; if term is a null pointer, the
environment variable TERM is used. If TERM is not set or if its value is an empty
string, then "unknown" is used as the terminal type. The application must set fildes
to a file descriptor, open for output, to the terminal device, before calling
setupterm(). If errret is not null, the integer it points to is set to one of the following
values to report the function outcome:

-1 The terminfo database was not found (function fails).
0 The entry for the terminal was not found in terminfo (function fails).
1 Success.

If setupterm() detects an error and errret is a null pointer, setupterm() writes a
diagnostic message and exits.

A simple call to setupterm() that uses all the defaults and sends the output to
stdout is:

setupterm((char *)0, fileno(stdout), (int *)0);

The set_curterm() function sets the variable cur_term to nterm, and makes all of the
terminfo boolean, numeric, and string variables use the values from nterm.

The del_curterm() function frees the space pointed to by oterm and makes it
available for further use. If oterm is the same as cur_term, references to any of the
terminfo boolean, numeric, and string variables thereafter may refer to invalid
memory locations until setupterm() is called again.

80 0S/390 V2R4.0 C Curses

Enhanced Curses

The restartterm() function assumes a previous call to setupterm() (perhaps from
initscr() or newterm()). It lets the application specify a different terminal type in
term and updates the information returned by baudrate() based on fildes, but does
not destroy other information created by initscr(), newterm() or setupterm().

Return Value
Upon successful completion, set_curterm() returns the previous value of cur_term.
Otherwise, it returns a null pointer.

Upon successful completion, the other functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

Application Usage
An application would call setupterm() if it required access to the terminfo database
but did not otherwise need to use Curses.

See Also

baudrate(), erasechar(), has_ic(), longname(), putc(), termattrs(), termname(),
tgetent(), tigetflag(), use_env(), <term.h>.

Chapter 2. Curses Interfaces 81

Curses

deleteln()

Name
deleteln, wdeleteln - delete lines in a window

Synopsis

#include <curses.h>
int deleteln(void);

int wdeleteln(WINDOW *win);

Description

The deleteln() and wdeleteln() functions delete the line containing the cursor in the
current or specified window and move all lines following the current line one line
toward the cursor. The last line of the window is cleared. The cursor position does
not change.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

See Also
insdelln(), <curses.h> .

82 0S/390 V2R4.0 C Curses

Curses

delscreen()

Name
delscreen - free storage associated with a screen

Synopsis

#include <curses.h>

void delscreen(SCREEN *sp);

Description
The delscreen() function frees storage associated with the SCREEN pointed to by

sp.

Return Value
The delscreen() function does not return a value.

Errors
No errors are defined.

See Also
endwin(), initscr(), <curses.h> .

Chapter 2. Curses Interfaces 83

Curses

delwin()

Name
delwin - delete a window

Synopsis

#include <curses.h>

int delwin(WINDOW *win);
Description
The delwin() function deletes win, freeing all memory associated with it. The

application must delete subwindows before deleting the main window.

Return Value
Upon successful completion, delwin() returns OK. Otherwise, it returns ERR.

Errors
No errors are defined.

See Also
derwin(), dupwin(), <curses.h> .

84 0S/390 V2R4.0 C Curses

derwin()

Curses

Name
derwin, newwin, subwin - window creation functions

Synopsis

#include <curses.h>

WINDOW *derwin(WINDOW *orig, int nlines, int ncols, int begin_y,
int begin x);

WINDOW *newwin(int nlines, int ncols, int begin_y, int begin x);

WINDOW *subwin(WINDOW *orig, int nlines, int ncols, int begin_y,
int begin x);

Description
The derwin() function is the same as subwin(), except that begin_y and begin_x are
relative to the origin of the window orig rather than absolute screen positions.

The newwin() function creates a new window with nlines lines and ncols columns,
positioned so that the origin is (begin_y, begin_x). If nlines is zero, it defaults to
LINES - begin_y; if ncols is zero, it defaults to COLS - begin_x.

The subwin() function creates a new window with nlines lines and ncols columns,

positioned so that the origin is at (begin_y, begin_x). (This position is an absolute
screen position, not a position relative to the window orig.) If any part of the new

window is outside orig, the function fails and the window is not created.

Return Value
Upon successful completion, these functions return a pointer to the new window.
Otherwise, they return a null pointer.

Errors
No errors are defined.

Application Usage
Before performing the first refresh of a subwindow, portable applications should call
touchwin() or touchline() on the parent window.

Each window maintains internal descriptions of the screen image and status. The
screen image is shared among all windows in the window hierarchy. Refresh
operations rely on information on what has changed within a window, which is
private to each window.

Refreshing a window, when updates were made to a different window, may fail to
perform needed updates because the windows do not share this information.

A new full-screen window is created by calling:
newwin(0, 0, 0, 0);

Chapter 2. Curses Interfaces 85

Curses

See Also
delwin(), is_linetouched(), doupdate(), <curses.h>.

86 0S/390 V2R4.0 C Curses

doupdate()

Curses

Name
doupdate, refresh, wnoutrefresh, wrefresh - refresh windows and lines

Synopsis

#include <curses.h>

int doupdate(void);

int refresh(void);

int wnoutrefresh(WINDOW *win);

int wrefresh(WINDOW *win);

Description

The refresh() and wrefresh() functions refresh the current or specified window. The
functions position the terminal's cursor at the cursor position of the window, except
that if the leaveok() mode has been enabled, they may leave the cursor at an
arbitrary position.

The wnoutrefresh() function determines which parts of the terminal may need
updating. The doupdate() function sends to the terminal the commands to perform
any required changes.

Return Value
Upon successful completion, these functions return OK. Otherwise they return
ERR.

Errors
No errors are defined.

Application Usage

Refreshing an entire window is typically more efficient than refreshing several
subwindows separately. An efficient sequence is to call wnoutrefresh() on each
subwindow that has changed, followed by a call to doupdate(), which updates the
terminal.

The refresh() or wrefresh() function (or wnoutrefresh() followed by doupdate()) must

be called to send output to the terminal, as other Curses functions merely
manipulate data structures.

See Also
clearok(), redrawwin(), <curses.h> .

Chapter 2. Curses Interfaces 87

Enhanced Curses

dupwin()

Name
dupwin - duplicate a window

Synopsis

#include <curses.h>

WINDOW *dupwin(WINDOW *win);

Description
The dupwin() function creates a duplicate of the window win.

Return Value
Upon successful completion, dupwin() returns a pointer to the new window.
Otherwise, it returns a null pointer.

Errors
No errors are defined.

See Also
derwin(), doupdate(), <curses.h> .

88 05/390 V2R4.0 C Curses

echo()

Curses

Name
echo, noecho -- enable/disable terminal echo

Synopsis

#include <curses.h>
int echo(void);

int noecho(void);

Description

The echo() function enables Echo mode for the current screen. The noecho()
function disables Echo mode for the current screen. Initially, curses software Echo
mode for the current screen is enabled and hardware echo mode of the tty driver is
disabled. echo() and noecho() control software echo only. Hardware echo must
remain disabled for the duration of the application, else the behavior is undefined.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

See Also
getch(), <curses.h> .

Chapter 2. Curses Interfaces 89

Enhanced Curses

echochar()

Name
echochar, wechochar - echo single-byte character and rendition to a window and
refresh

Synopsis

#include <curses.h>
int echochar(const chtype ch);

int wechochar(WINDOW *win, const chtype ch);

Description
The echochar() function is equivalent to a call to addch() followed by a call to
refresh().

The wechochar() function is equivalent to a call to waddch() followed by a call to
wrefresh().

Return Value
Upon successful completion, these functions return OK. Otherwise they return
ERR.

Errors
No errors are defined.

Application Usage

These functions are only guaranteed to operate reliably on character sets in which
each character fits into a single byte, whose attributes can be expressed using only
constants with the A_ prefix.

See Also
addch(), doupdate(), echo_wchar(), <curses.h> .

90 0S/390 V2R4.0 C Curses

echo_wchar()

Enhanced Curses

Name

echo_wchar, wecho_wechar - write a complex character and immediately refresh the

window

Synopsis

#include <curses.h>
int echo_wchar(const cchar_t *wch);

int wecho_wchar(WINDOW *win, const cchar_t *wch);

Description
The echo_wchar() function is equivalent to calling add_wch() and then calling
refresh().

The wecho_wechar() function is equivalent to calling wadd_wch() and then calling
wrefresh().

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

See Also
addch(), add_wch(), doupdate(), <curses.h> .

Chapter 2. Curses Interfaces

91

Curses

endwin()

Name
endwin - suspend Curses session

Synopsis

#include <curses.h>

int endwin(void);

Description

The endwin() function restores the terminal after Curses activity by at least
restoring the saved shell terminal mode, flushing any output to the terminal and
moving the cursor to the first column of the last line of the screen. Refreshing a
window resumes program mode. The application must call endwin() for each
terminal being used before exiting. If newterm() is called more than once for the
same terminal, the first screen created must be the last one for which endwin() is
called.

Return Value
Upon successful completion, endwin() returns OK. Otherwise, it returns ERR.

Errors
No errors are defined.

Application Usage

The endwin() function does not free storage associated with a screen, so
delscreen() should be called after endwin() if a particular screen is no longer
needed.

To leave Curses mode temporarily, portable applications should call endwin().

Subsequently, to return to Curses mode, they should call doupdate(), refresh() or
wrefresh().

See Also
delscreen(), doupdate(), initscr(), isendwin(), <curses.h> .

92 0S/390 V2R4.0 C Curses

Curses

erase()

Name
erase, werase - clear a window

Synopsis

#include <curses.h>
int erase(void);

int werase(WINDOW *win);

Description
Refer to clear().

Chapter 2. Curses Interfaces 93

Curses

erasechar()

Name
erasechar, erasewchar, killchar, killwchar - terminal environment query functions

Synopsis

#include <curses.h>
char erasechar(void);
int erasewchar(wchar_t *ch);

char killchar(void);

int killwchar(wchar_t *ch);

Description

The erasechar() function returns the current erase character. The erasewchar()
function stores the current erase character in the object pointed to by ch. If no
erase character has been defined, the function will fail and the object pointed to by
ch will not be changed.

The killchar() function returns the current line kill character. The killwchar() function
stores the current line kill character in the object pointed to by ch. If no line Kill
character has been defined, the function will fail and the object pointed to by ch will
not be changed.

Return Value

The erasechar() function returns the erase character and killchar() returns the line
kill character. The return value is unspecified when these characters are multi-byte
characters.

Upon successful completion, erasewchar() and killwchar() return OK. Otherwise,
they return ERR.

Errors
No errors are defined.

Application Usage

The erasechar() and killchar() functions are only guaranteed to operate reliably on
character sets in which each character fits into a single byte, whose attributes can
be expressed using only constants with the A_ prefix. Moreover, they do not
reliably indicate cases in which when the erase or line kill character, respectively,
has not been defined. The erasewchar() and killwchar() functions overcome these
limitations.

See Also
clearok(), delscreen(), tcgetattr(), <curses.h> .

94 0s/390 V2R4.0 C Curses

filter()

Enhanced Curses

Name
filter - disable use of certain terminal capabilities

Synopsis

#include <curses.h>

void filter(void);

Description

The filter() function changes the algorithm for initializing terminal capabilities that
assume that the terminal has more than one line. A subsequent call to initscr() or
newterm() performs the following additional actions:

e Disable use of clear, cud, cudl, cup, cuul and vpa
e Set the value of the home string to the value of the cr string
e Set lines equal to 1.

Any call to filter() must precede the call to initscr() or newterm().

Return Value
The filter() function does not return a value.

Errors
No errors are defined.

See Also
initscr(), <curses.h> .

Chapter 2. Curses Interfaces 95

Curses

flash()

Name
flash - flash the screen

Synopsis

#include <curses.h>

int flash(void);

Description

The flash() function alerts the user. It flashes the screen, or if that is not possible,
it sounds the audible alarm on the terminal. If neither signal is possible, nothing
happens.

Return Value
The flash() function always returns OK.

Errors
No errors are defined.

Application Usage
Nearly all terminals have an audible alarm, but only some can flash the screen.

See Also
beep(), <curses.h>

96 0S/390 V2R4.0 C Curses

Curses

flushinp()

Name
flushinp - discard input

Synopsis

#include <curses.h>

int flushinp(void);
Description

The flushinp() function discards (flushes) any characters in the input buffer
associated with the current screen.

Return Value
The flushinp() function always returns OK.

Errors
No errors are defined.

See Also
<curses.h> .

Chapter 2. Curses Interfaces 97

Curses

getbegyx()

Name
getbegyx, getmaxyx, getparyx, getyx - get cursor and window coordinates

Synopsis

#include <curses.h>

void getbegyx (WINDOW *win, int y, int x);
void getmaxyx (WINDOW *win, int y, int x);
void getparyx(WINDOW #win, int y, int x);

void getyx (WINDOW *win, int y, int x);

Description
The getyx() macro stores the cursor position of the specified window in y and x.

The getparyx() macro, if the specified window is a subwindow, stores in y and x the
coordinates of the window's origin relative to its parent window. Otherwise, -1 is
stored in y and x.

The getbegyx() macro stores the absolute screen coordinates of the specified
window's origin in y and x.

The getmaxyx() macro stores the number of rows of the specified window in y and
stores the window's number of columns in x.

Return Value
No return values are defined.

Errors
No errors are defined.

Application Usage
These interfaces are macros and ‘&' cannot be used before the y and x arguments.
Traditional implementations have often defined the following macros:

void getbegx (WINDOW *win, int x);
void getbegy(WINDOW *win, int y);
void getmaxx (WINDOW *win, int x);
void getmaxy(WINDOW *win, int y);
void getparx(WINDOW *win, int x);
void getpary(WINDOW *win, int y);

Although getbegyx(), getmaxyx() and getparyx() provide the required functionality,
this does not preclude applications from defining these macros for their own use.

For example, to implement void getbegx (WINDOW *win, int x); the macro would
be

98 0S/390 V2R4.0 C Curses

#define getbegx(win, x);
{
int _y;

getbegyx(_win, y, x);
}

See Also
<curses.h>

N~ S SN

Curses

Chapter 2. Curses Interfaces

99

Enhanced Curses

getbkgd()

Name
getbkgd - get background character and rendition using a single-byte character

Synopsis

#include <curses.h>

chtype getbkgd (WINDOW *win);

Description
Refer to bkgd().

100 0S/390 V2R4.0 C Curses

Enhanced Curses

getbkgrnd()

Name
getbkgrnd - get background character and rendition

Synopsis

#include <curses.h>

int getbkgrnd(cchar_t *ch);

Description
Refer to bkgrnd().

Chapter 2. Curses Interfaces 101

Enhanced Curses

getcchar()

Name
getcchar - get a wide character string and rendition from a cchar_t

Synopsis

#include <curses.h>

int getcchar(const cchar_t *wcval, wchar_t *wch, attr_t =*attrs,
short *color pair, void *opts);

Description

When wech is not a null pointer, the getcchar() function extracts information from a
cchar_t defined by wcval, stores the character attributes in the object pointed to by
attrs, stores the color pair in the object pointed to by color_pair, and stores the wide
character string referenced by wcval into the array pointed to by wch.

When wch is a null pointer, getcchar() obtains the number of wide characters in the
object pointed to by wcval and does not change the objects pointed to by attrs or
color_pair.

The opts argument is reserved for definition in a future edition of this document.
Currently, the application must provide a null pointer as opts.

Return Value
When wch is a null pointer, getcchar() returns the number of wide characters
referenced by weval, including the null terminator.

When wch is not a null pointer, getcchar() returns OK upon successful completion,
and ERR otherwise.

Errors
No errors are defined.

Application Usage

The weval argument may be a value generated by a call to setcchar() or by a
function that has a cchar_t output argument. If wcval is constructed by any other
means, the effect is unspecified.

See Also
attroff(), can_change_color(), setcchar(), <curses.h> .

102 0S/390 V2R4.0 C Curses

getch()

Curses

Name
getch, wgetch, mvgetch, mvwgetch - get a single-byte character from the terminal

Synopsis

#include <curses.h>

int getch(void);

int mvgetch(int y, int x);

int mvwgetch(WINDOW *win, int y, int x);

int wgetch(WINDOW *win);

Description

These functions read a single-byte character from the terminal associated with the
current or specified window. The results are unspecified if the input is not a
single-byte character. If keypad() is enabled, these functions respond to the
pressing of a function key by returning the corresponding KEY__ value defined in
<curses.h> .

If echoing is enabled, then the character is echoed as though it were provided as
an input argument to addch(), except for the following characters:

<backspace>, The input is interpreted and then the character at the resulting
<left-arrow> cursor position is deleted as though delch() were called, except
and the that if the cursor was originally in the first column of the line,
current erase then the user is alerted as though beep() were called.
character:

Function keys The user is alerted as though beep() were called. Information
concerning the function keys is not returned to the caller.

If the current or specified window is not a pad, and it has been moved or modified
since the last refresh operation, then it will be refreshed before another character is
read.

Return Value

Upon successful completion, getch (), mvgetch , mvwgetch () and wgetch () return
the single-byte character, KEY_ value, or ERR. When in the nodelay mode and no
data is available, ERR is returned.

Errors
No errors are defined.

Application Usage
Applications should not define the escape key by itself as a single-character
function.

When using these functions, nocbreak mode (nocbreak()) and echo mode (echo())
should not be used at the same time. Depending on the state of the terminal when
each character is typed, the program may produce undesirable results.

Chapter 2. Curses Interfaces 103

Curses

See Also
cbreak(), doupdate(), insch(), <curses.h> .

104 0S/390 V2R4.0 C Curses

getmaxyx()

Name
getmaxyx - get size of a window

Synopsis

#include <curses.h>

void getmaxyx (WINDOW *win, int y, int x);

Description
Refer to getbegyx().

Enhanced Curses

Chapter 2. Curses Interfaces

105

Curses

getnstr()

Name
getnstr, getstr, mvgetnstr, mvgetstr, mvwgetnstr, mvwgetstr, wgetstr, wgetnstr - get
a multi-byte character string from the terminal

Synopsis

#include <curses.h>

int getnstr(char *str, int n);

int getstr(char *str);

int mvgetnstr(int y, int x, char =*str, int n);

int mvgetstr(int y, int x, char *str);

int mvwgetnstr(WINDOW *win, int y, int x, char *str, int n);
int mvwgetstr(WINDOW *win, int y, int x, char #*str);

int wgetnstr(WINDOW *win, char *str, int n);

int wgetstr(WINDOW *win, char =*str);

Description

The effect of getstr() is as though a series of calls to getch() were made, until a
newline or carriage return is received. The resulting value is placed in the area
pointed to by str. The string is then terminated with a null byte. The getnstr(),
mvgetnstr(), mvwgetnstr() and wgetnstr() functions read at most n bytes, thus
preventing a possible overflow of the input buffer. The user's erase and Kkill
characters are interpreted, as well as any special keys (such as function keys,
home key, clear key, and so on).

The mvgetstr() function is identical to getstr() except that it is as though it is a call
to move() and then a series of calls to getch(). The mvwgetstr() function is identical
to getstr() except it is as though a call to wmove() is made and then a series of
calls to wgetch(). The mvgetnstr() function is identical to getnstr() except that it is
as though it is a call to move() and then a series of calls to getch(). The
mvwagetnstr() function is identical to getnstr() except it is as though a call to
wmove() is made and then a series of calls to wgetch().

The getnstr(), wgetnstr(), mvgetnstr() and mvwgetnstr() functions will only return the
entire multi-byte sequence associated with a character. If the array is large enough
to contain at least one character, the functions fill the array with complete
characters. If the array is not large enough to contain any complete characters, the
function fails.

106 0S/390 V2R4.0 C Curses

Curses

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

Application Usage

Reading a line that overflows the array pointed to by str with getstr(), mvgetstr(),
mvwgetstr() or wgetstr() causes undefined results. The use of getnstr(),
mvgetnstr(), mvwgetnstr() or wgetnstr(), respectively, is recommended.

See Also
beep(), getch(), <curses.h> .

Chapter 2. Curses Interfaces 107

Enhanced Curses

getn_wstr()

Name

getn_wstr, get_wstr, mvgetn_wstr, mvget_wstr, mvwgetn_wstr, mvwget_wstr,
wgetn_wstr, wget_wstr - get an array of wide characters and function key codes
from a terminal

Synopsis

#include <curses.h>

int getn wstr(wint_t *wstr, int n);

int get wstr(wint_t *wstr);

int mvgetn wstr(int y, int x, wint_t *wstr, int n);

int mvget wstr(int y, int x, wint_t *wstr);

int mvwgetn wstr(WINDOW *win, int y, int x, wint_t *wstr, int n);
int mvwget wstr(WINDOW *win, int y, int x, wint_t *wstr);

int wgetn wstr(WINDOW *win, wint_t *wstr, int n);

int wget wstr(WINDOW *win, wint_t xwstr);

Description

The effect of get_wstr() is as though a series of calls to get_wch() were made, until
a newline character, end-of-line character, or end-of-file character is processed. An
end-of-file character is represented by WEOF, as defined in <wchar.h>. A newline
or end-of-line is represented as its wchar_t value. In all instances, the end of the
string is terminated by a null wchar_t. The resulting values are placed in the area
pointed to by wstr.

The user's erase and kill characters are interpreted and affect the sequence of
characters returned.

The effect of wget_wstr() is as though a series of calls to wget_wch() were made.

The effect of mvget wstr() is as though a call to move() and then a series of calls
to get_wch() were made. The effect of mvwget_wstr() is as though a call to
wmove() and then a series of calls to wget_wch() were made. The effect of
mvget_nwstr() is as though a call to move() and then a series of calls to get_wch()
were made. The effect of mvwget _nwstr() is as though a call to wmove() and then
a series of calls to wget_wch() were made.

The getn_wstr(), mvgetn_wstr(), mvwgetn_wstr() and wgetn_wstr() functions read at
most n characters, letting the application prevent overflow of the input buffer.

108 0S/390 V2R4.0 C Curses

Enhanced Curses

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

Application Usage

Reading a line that overflows the array pointed to by wstr with get_wstr(),
mvget_wstr(), mvwget_wstr() or wget_wstr() causes undefined results. The use of
getn_wstr(), mvgetn_wstr(), mvwgetn_wstr() or wgetn_wstr(), respectively, is
recommended.

These functions cannot return KEY_ values as there is no way to distinguish a
KEY_ value from a valid wchar_t value.

See Also
get_wch(), getstr(), <curses.h> , <wchar.h>.

Chapter 2. Curses Interfaces 109

Enhanced Curses

getparyx()

Name
getparyx - get subwindow origin coordinates

Synopsis

#include <curses.h>

void getparyx(WINDOW *win, int y, int x);

Description
Refer to getbegyx().

110 0S/390 V2R4.0 C Curses

Curses

getstr()

Name
getstr - get a multi-byte character string from the terminal

Synopsis

#include <curses.h>

int getstr(char *str);

Description
Refer to getnstr().

Chapter 2. Curses Interfaces 111

Enhanced Curses

get_wch()

Name
get_wch, mvget_wch, mvwget wch, wget wch - get a wide character from a
terminal

Synopsis

#include <curses.h>

int get_wch(wint_t =*ch);

int mvget wch(int y, int x, wint_t =*ch);

int mvwget wch(WINDOW *win, int y, int x, wint_t *ch);
int wget _wch(WINDOW *win, wint_t xch);

Description

These functions read a character from the terminal associated with the current or

specified window. If keypad() is enabled, these functions respond to the pressing
of a function key by setting the object pointed to by ch to the corresponding KEY_
value defined in <curses.h> and returning KEY_CODE_YES.

Processing of terminal input is subject to the general rules.

If echoing is enabled, then the character is echoed as though it were provided as
an input argument to add_wech(), except for the following characters:

<backspace>, The input is interpreted and then the character at the resulting
<left-arrow> cursor position is deleted as though delch() were called, except
and the that if the cursor was originally in the first column of the line,
current erase then the user is alerted as though beep() were called.
character:

Function keys The user is alerted as though beep() were called. Information
concerning the function keys is not returned to the caller.

If the current or specified window is not a pad, and it has been moved or modified
since the last refresh operation, then it will be refreshed before another character is
read.

Return Value

When these functions successfully report the pressing of a function key, they return
KEY_CODE_YES. When they successfully report a wide character, they return
OK. Otherwise, they return ERR.

Errors
No errors are defined.

112 0S/390 V2R4.0 C Curses

Enhanced Curses

Application Usage

Applications should not define the escape key by itself as a single-character
function.

When using these functions, nocbreak mode and echo mode should not be used at
the same time. Depending on the state of the terminal when each character is
typed, the application may produce undesirable results.

See Also
beep(), cbreak(), ins_wch(), keypad(), move(), <curses.h>, <wchar.h> .

Chapter 2. Curses Interfaces 113

Enhanced Curses

getwin()

Name
getwin, putwin - dump window to, and reload window from, a file

Synopsis

#include <curses.h>
WINDOW *getwin(FILE *filep);

int putwin(WINDOW *win, FILE =filep);

Description
The getwin() function reads window-related data stored in the file by putwin(). The
function then creates and initializes a new window using that data.

The putwin() function writes all data associated with win into the stdio stream to
which filep points, using an unspecified format. This information can be retrieved
later using getwin().

Return Value
Upon successful completion, getwin() returns a pointer to the window it created.
Otherwise, it returns a null pointer.

Upon successful completion, putwin() returns OK. Otherwise, it returns ERR.

Errors
No errors are defined.

See Also
scr_dump(), <curses.h> .

114 0S/390 V2R4.0 C Curses

Enhanced Curses

get_wstr()

Name
get_wstr - get an array of wide characters and function key codes from a terminal

Synopsis

#include <curses.h>
int get_wstr(wint_t *wstr);

Description
Refer to getn_wstr().

Chapter 2. Curses Interfaces 115

Curses

getyx()

Name
getyx - get cursor coordinates

Synopsis

#include <curses.h>

void getyx (WINDOW *win, int y, int x);

Description
Refer to getbegyx().

116 0S/390 V2R4.0 C Curses

halfdelay()

Enhanced Curses

Name
halfdelay - control input character delay mode

Synopsis

#include <curses.h>

int halfdelay(int tenths);

Description

The halfdelay() function sets the input mode for the current window to Half-Delay
Mode and specifies tenths of seconds as the half-delay interval. The tenths
argument must be in a range from 1 up to and including 255.

Return Value
Upon successful completion, halfdelay() returns OK. Otherwise, it returns ERR.

Errors
No errors are defined.

Application Usage
The application can call nochreak() to leave Half-Delay mode.

See Also
cbreak(), <curses.h> .

Chapter 2. Curses Interfaces 117

Enhanced Curses

has_colors()

Name
has_colors - indicate whether terminal supports colors

Synopsis

#include <curses.h>

bool has_colors(void);

Description
Refer to can_change_color().

118 0S/390 V2R4.0 C Curses

has_ic()

Curses

Name
has_ic, has_il - query functions for terminal insert and delete capability

Synopsis

#include <curses.h>
bool has_ic(void);
bool has_i1(void);

Description
The has_ic() function indicates whether the terminal has insert- and
delete-character capabilities.

The has_il() function indicates whether the terminal has insert- and delete-line
capabilities, or can simulate them using scrolling regions.

Return Value
The has_ic() function returns TRUE if the terminal has insert- and delete-character
capabilities. Otherwise, it returns FALSE.

The has_il() function returns TRUE if the terminal has insert- and delete-line
capabilities. Otherwise, it returns FALSE.

Errors
No errors are defined.

Application Usage
The has_il() function may be used to determine if it would be appropriate to turn on

physical scrolling using scrollok().

See Also
<curses.h> .

Chapter 2. Curses Interfaces 119

Enhanced Curses

hline()

Name
hline, mvhline, mvvline, mvwhline, mvwvline, vline, whline, wvline - draw lines from
single-byte characters and renditions

Synopsis

#include <curses.h>

int hline(chtype ch, int n);

int mvhline(int y, int x, chtype ch, int n);

int mvvline(int y, int x, chtype ch, int n);

int mvwhline(WINDOW *win, int y, int x, chtype ch, int n);
int mvwvline(WINDOW *win, int y, int x, chtype ch, int n);
int vline(chtype ch, int n);

int whline(WINDOW *win, chtype ch, int n);

int wvline(WINDOW *win, chtype ch, int n);

Description

These functions draw a line in the current or specified window starting at the
current or specified position, using ch. The line is at most n positions long, or as
many as fit into the window.

These functions do not advance the cursor position. These functions do not
perform special character processing. These functions do not perform wrapping.

The hline(), mvhline(), mvwhline() and whline() functions draw a line proceeding
toward the last column of the same line.

The vline(), mvvline(), mvwvline() and wvline() functions draw a line proceeding
toward the last line of the window.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

120 0S/390 V2R4.0 C Curses

Enhanced Curses

hline()

Application Usage

These functions are only guaranteed to operate reliably on character sets in which
each character fits into a single byte, whose attributes can be expressed using only
constants with the A_ prefix.

See Also
border(), box(), hline_set(), <curses.h> .

Chapter 2. Curses Interfaces 121

Enhanced Curses

hline_set()

Name
hline_set, mvhline_set, mvvline_set, mvwhline_set, mvwvline_set, vline_set,
whline_set, wvline_set - draw lines from complex characters and renditions

Synopsis

#include <curses.h>

int hline_set(const cchar_t *wch, int n);

int mvhline_set(int y, int x, const cchar_t *wch, int n);

int mvvline_set(int y, int x, const cchar_t *wch, int n);

int mvwhline _set(WINDOW *win, int y, int x, const cchar_t *wch, int n);
int mvwvline_set(WINDOW *win, int y, int x, const cchar_t *wch, int n);
int vline_set(const cchar_t *wch, int n);

int whline_set(WINDOW *win, const cchar_t *wch, int n);

int wvline_set (WINDOW *win, cchar_t *const wch, int n);

Description

These functions draw a line in the current or specified window starting at the
current or specified position, using ch. The line is at most n positions long, or as
many as fit into the window.

These functions do not advance the cursor position. These functions do not
perform special character processing. These functions do not perform wrapping.

The hline_set(), mvhline_set(), mvwhline_set() and whline_set() functions draw a
line proceeding toward the last column of the same line.

The vline_set(), mvvline_set(), mvwvline_set() and wvline_set() functions draw a
line proceeding toward the last line of the window.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

122 0S/390 V2R4.0 C Curses

Enhanced Curses

hline_set()

See Also
border_set(), <curses.h> .

Chapter 2. Curses Interfaces 123

Enhanced Curses

idcok()

Name
idcok - enable or disable use of hardware insert- and delete-character features

Synopsis

#include <curses.h>

void idcok (WINDOW *win, bool bf);

Description

The idcok() function specifies whether the implementation may use hardware insert-
and delete-character features in win if the terminal is so equipped. If bfis TRUE,
use of these features in win is enabled. If bfis FALSE, use of these features in win
is disabled. The initial state is TRUE.

Return Value
The idcok() function does not return a value.

Errors
No errors are defined.

See Also
clearok(), doupdate(), <curses.h> .

124 0S/390 V2R4.0 C Curses

Curses

idlok()

Name
idlok - enable or disable use of terminal insert- and delete-line features

Synopsis

#include <curses.h>

int idTok (WINDOW *win, bool bf);

Description
Refer to clearok().

Chapter 2. Curses Interfaces 125

Enhanced Curses

immedok()

Name
immedok - enable or disable immediate terminal refresh

Synopsis

#include <curses.h>

void immedok (WINDOW *win, bool bf);

Description

The immedok() function specifies whether the screen is refreshed whenever the
window pointed to by win is changed. If bfis TRUE, the window is implicitly
refreshed on each such change. If bfis FALSE, the window is not implicitly
refreshed. The initial state is FALSE.

Return Value
The immedok() function does not return a value.

Errors
No errors are defined.

Application Usage
The immedok() function is useful for windows that are used as terminal emulators.

See Also
clearok(), doupdate(), <curses.h> .

126 0S/390 V2R4.0 C Curses

inch()

Curses

Name
inch, mvinch, mvwinch, winch - input a single-byte character and rendition from a
window

Synopsis

#include <curses.h>

chtype inch(void);

chtype mvinch(int y, int x);

chtype mvwinch(WINDOW *win, int y, int x);

chtype winch(WINDOW *win);

Description
These functions return the character and rendition, of type chtype, at the current or
specified position in the current or specified window.

Return Value
Upon successful completion, the functions return the specified character and
rendition. Otherwise, they return (chtype)ERR.

Errors
No errors are defined.

Application Usage

These functions are only guaranteed to operate reliably on character sets in which
each character fits into a single byte, whose attributes can be expressed using only
constants with the A_ prefix.

See Also
<curses.h> .

Chapter 2. Curses Interfaces 127

Enhanced Curses

inchnstr()

Name
inchnstr, inchstr, mvinchnstr, mvinchstr, mvwinchnstr, mvwinchstr, winchnstr,
winchstr - input an array of single-byte characters and renditions from a window

Synopsis

#include <curses.h>

int inchnstr(chtype *chstr, int n);

int inchstr(chtype *chstr);

int mvinchnstr(int y, int x, chtype *chstr, int n);

int mvinchstr(int y, int x, chtype xchstr);

int mvwinchnstr(WINDOW *win, int y, int x, chtype *chstr, int n);
int mvwinchstr(WINDOW *win, int y, int x, chtype *chstr);

int winchnstr(WINDOW *win, chtype *chstr, int n);

int winchstr(WINDOW *win, chtype =*chstr);

Description

These functions place characters and renditions from the current or specified
window into the array pointed to by chstr, starting at the current or specified
position and ending at the end of the line.

The inchnstr(), mvinchnstr(), mvwinchnstr() and winchnstr() functions store at most
n elements from the current or specified window into the array pointed to by chstr.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

Application Usage

Reading a line that overflows the array pointed to by chstr with inchstr(),
mvinchstr(), mvwinchstr() or winchstr() causes undefined results. The use of
inchnstr(), mvinchnstr(), mvwinchnstr() or winchnstr(), respectively, is
recommended.

See Also
inch(), <curses.h> .

128 0S/390 V2R4.0 C Curses

Enhanced Curses

init_color()

Name
init_color, init_pair - redefine specified color or color pair

Synopsis

#include <curses.h>
int init_color(short color, short red, short green, short blue);

int init_pair(short pair, short f, short b);

Description
Refer to can_change_color().

Chapter 2. Curses Interfaces 129

Curses

initscr()

Name
initscr, newterm - screen initialization functions

Synopsis

#include <curses.h>
WINDOW *initscr(void);

SCREEN *newterm(char *type, FILE xoutfile, FILE xinfile);

Description

The initscr() function determines the terminal type and initializes all implementation
data structures. The TERM environment variable specifies the terminal type. The
initscr() function also causes the first refresh operation to clear the screen. If errors
occur, initscr() writes an appropriate error message to standard error and exits.

The only functions that can be called before initscr() or newterm() are filter(),
ripoffline(), slk_init(), use_env() and the functions whose prototypes are defined in
<term.h>. Portable applications must not call initscr() twice.

The newterm() function can be called as many times as desired to attach a terminal
device. The type argument points to a string specifying the terminal type, except
that if type is a null pointer, the TERM environment variable is used. The outfile
and infile arguments are file pointers for output to the terminal and input from the
terminal, respectively. It is unspecified whether Curses modifies the buffering mode
of these file pointers. The newterm() function should be called once for each
terminal.

The initscr() function is equivalent to:

newterm(getenv("TERM"), stdout, stdin);
return stdscr;

If the current disposition for the signals SIGINT, SIGQUIT or SIGTSTP is SIGDFL,
then initscr() may also install a handler for the signal, which may remain in effect
for the life of the process or until the process changes the disposition of the signal.

The initscr() and newterm() functions initialize the cur_term external variable.

130 0S/390 V2R4.0 C Curses

initscr()

Curses

Return Value
Upon successful completion, initscr() returns a pointer to stdscr. Otherwise, it does
not return.

Upon successful completion, newterm() returns a pointer to the specified terminal.
Otherwise, it returns a null pointer.

Errors
No errors are defined.

Application Usage

A program that outputs to more than one terminal should use newterm() for each
terminal instead of initscr(). A program that needs an indication of error conditions,
S0 it can continue to run in a line-oriented mode if the terminal cannot support a
screen-oriented program, would also use this function.

Applications should perform any required handling of the SIGINT, SIGQUIT or
SIGTSTP signals before calling initscr().

See Also
delscreen(), doupdate(), del_curterm(), filter(), slk_attroff(), use_env(), <curses.h> .

Chapter 2. Curses Interfaces 131

Enhanced Curses

innstr()

Name
innstr, instr, mvinnstr, mvinstr, mvwinnstr, mvwinstr, winnstr, winstr - input a
multi-byte character string from a window

Synopsis

#include <curses.h>

int innstr(char *str, int n);

int instr(char *str);

int mvinnstr(int y, int x, char *str, int n);

int mvinstr(int y, int x, char *str);

int mvwinnstr(WINDOW *win, int y, int x, char *str, int n);
int mvwinstr(WINDOW *win, int y, int x, char xstr);

int winnstr(WINDOW *win, char #*str, int n);

int winstr(WINDOW *win, char xstr);

Description

These functions place a string of characters from the current or specified window
into the array pointed to by str, starting at the current or specified position and
ending at the end of the line.

The innstr(), mvinnstr(), mvwinnstr() and winnstr() functions store at most n bytes in
the string pointed to by str.

The innstr(), mvinnstr(), mvwinnstr() and winnstr() functions will only store the entire
multi-byte sequence associated with a character. If the array is large enough to
contain at least one character the array is filled with complete characters. If the
array is not large enough to contain any complete characters, the function fails.

Return Value
Upon successful completion, instr(), mvinstr(), mvwinstr() and winstr() return OK.

Upon successful completion, innstr(), mvinnstr(), mvwinnstr() and winnstr() return
the number of characters actually read into the string. Otherwise, all these
functions return ERR.

Errors
No errors are defined.

132 0S/390 V2R4.0 C Curses

Enhanced Curses

Application Usage

Since multi-byte characters may be processed, there might not be a one-to-one
correspondence between the number of column positions on the screen and the
number of bytes returned.

These functions do not return rendition information.
Reading a line that overflows the array pointed to by str with instr(), mvinstr(),

mvwinstr() or winstr() causes undefined results. The use of innstr(), mvinnstr(),
mvwinnstr() or winnstr(), respectively, is recommended.

See Also
<curses.h> .

Chapter 2. Curses Interfaces 133

Enhanced Curses

innwstr()

Name
innwstr, inwstr, mvinnwstr, mvinwstr, mvwinnwstr, mvwinwstr, winnwstr, winwstr -
input a string of wide characters from a window

Synopsis

#include <curses.h>

int innwstr(wchar_t *wstr, int n);

int inwstr(wchar_t *wstr);

int mvinnwstr(int y, int x, wchar_t *wstr, int n);

int mvinwstr(int y, int x, wchar_t xwstr);

int mvwinnwstr(WINDOW *win, int y, int x, wchar_t *wstr, int n);
int mvwinwstr(WINDOW *win, int y, int x, wchar_t *wstr);

int winnwstr(WINDOW *win, wchar_t *wstr, int n);

int winwstr(WINDOW *win, wchar_ t xwstr);

Description

These functions place a string of wchar_t characters from the current or specified
window into the array pointed to by wstr starting at the current or specified cursor
position and ending at the end of the line.

These functions will only store the entire wide character sequence associated with
a spacing complex character. If the array is large enough to contain at least one
complete spacing complex character, the array is filled with complete characters. If
the array is not large enough to contain any complete characters this is an error.

The innwstr(), mvinnwstr(), mvwinnwstr() and winnwstr() functions store at most n
characters in the array pointed to by wstr.

Return Value
Upon successful completion, inwstr(), mvinwstr(), mvwinwstr() and winwstr() return
OK.

Upon successful completion, innwstr(), mvinnwstr(), mvwinnwstr() and winnwstr()

return the number of characters actually read into the string. Otherwise, all these
functions return ERR.

Errors
No errors are defined.

134 0S/390 V2R4.0 C Curses

Enhanced Curses

Application Usage

Reading a line that overflows the array pointed to by wstr with inwstr(), mvinwstr(),
mvwinwstr() or winwstr() causes undefined results. The use of innwstr(),
mvinnwstr(), mvwinnwstr() or winnwstr(), respectively, is recommended.

These functions do not return rendition information.

See Also
<curses.h> .

Chapter 2. Curses Interfaces 135

Curses

insch()

Name
insch, mvinsch, mvwinsch, winsch - insert a single-byte character and rendition
into a window

Synopsis

#include <curses.h>

int insch(chtype ch);

int mvinsch(int y, int x, chtype ch);

int mvwinsch(WINDOW *win, int y, int x, chtype ch);

int winsch(WINDOW *win, chtype ch);

Description
These functions insert the character and rendition from ch into the current or
specified window at the current or specified position.

These functions do not perform wrapping. These functions do not advance the
cursor position. These functions perform special-character processing, with the
exception that if a newline is inserted into the last line of a window and scrolling is
not enabled, the behavior is unspecified.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

Application Usage

These functions are only guaranteed to operate reliably on character sets in which
each character fits into a single byte, whose attributes can be expressed using only
constants with the A_ prefix.

See Also
ins_wch() <curses.h> .

136 0S/390 V2R4.0 C Curses

insdelln()

Enhanced Curses

Name
insdelln, winsdelln - delete or insert lines into a window

Synopsis

#include <curses.h>
int insdelln(int n);

int winsdel1n(WINDOW *win, int n);

Description
The insdelln() and winsdelln() functions perform the following actions:

e If nis positive, these functions insert n lines into the current or specified
window before the current line. The n last lines are no longer displayed.

e If nis negative, these functions delete n lines from the current or specified
window starting with the current line, and move the remaining lines toward the
cursor. The last n lines are cleared.

The current cursor position remains the same.

Return Value

Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

See Also
deletein(), insertin(), <curses.h> .

Chapter 2. Curses Interfaces 137

Curses

insertin()

Name
insertin, winsertln - insert lines into a window

Synopsis

#include <curses.h>
int insertln(void);

int winsertln(WINDOW *win);

Description

The insertin() and winsertin() functions insert a blank line before the current line in
the current or specified window. The bottom line is no longer displayed. The
cursor position does not change.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

See Also
insdelln(), <curses.h> .

138 0S/390 V2R4.0 C Curses

insnstr()

Enhanced Curses

Name
insnstr, insstr, mvinsnstr, mvinsstr, mvwinsnstr, mvwinsstr, winsnstr, winsstr - insert
a multi-byte character string into a window

Synopsis

#include <curses.h>

int insnstr(const char xstr, int n);

int insstr(const char =*str);

int mvinsnstr(int y, int x, const char *str, int n);

int mvinsstr(int y, int x, const char *str);

int mvwinsnstr(WINDOW *win, int y, int x, const char *str, int n);
int mvwinsstr(WINDOW *win, int y, int X, const char #*str);

int winsnstr(WINDOW *win, const char *str, int n);

int winsstr(WINDOW *win, const char =*str);

Description
These functions insert a character string (as many characters as will fit on the line)
before the current or specified position in the current or specified window.

These functions do not advance the cursor position. These functions perform
special-character processing. The innstr() and innwstr() functions perform
wrapping. The instr() and () inswstr functions do not perform wrapping.

The insnstr(), mvinsnstr(), mvwinsnstr() and winsnstr() functions insert at most n
bytes. If nis less than 1, the entire string is inserted.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

Application Usage

Since the string may contain multi-byte characters, there might not be a one-to-one
correspondence between the number of column positions occupied by the
characters and the number of bytes in the string.

Chapter 2. Curses Interfaces 139

Enhanced Curses

See Also
<curses.h>

140 0S/390 V2R4.0 C Curses

ins_nwstr()

Enhanced Curses

Name
ins_nwstr, ins_wstr, mvins_nwstr, mvins_wstr, mvwins_nwstr, mvwins_wstr,
wins_nwstr, wins_wstr - insert a wide-character string into a window

Synopsis

#include <curses.h>

int ins_nwstr(const wchar_t *wstr, int n);

int ins_wstr(const wchar_t *wstr);

int mvins_nwstr(int y, int x, const wchar_t *wstr, int n);

int mvins_wstr(int y, int x, const wchar_t *wstr);

int mvwins_nwstr(WINDOW *win, int y, int x, const wchar_t *wstr, int n);
int mvwins_wstr(WINDOW *win, int y, int x, const wchar_t *wstr);

int wins_nwstr(WINDOW *win, const wchar_t *wstr, int n);

int wins_wstr(WINDOW *win, const wchar_t *wstr);

Description

These functions insert a wchar_t character string (as many wchar_t characters as
will fit on the line) in the current or specified window immediately before the current
or specified position.

Any non-spacing characters in the string are associated with the first spacing
character in the string that precedes the non-spacing characters. If the first
character in the string is a non-spacing character, these functions will fail.

These functions do not perform wrapping. These functions do not advance the
cursor position. These functions perform special-character processing.

The ins_nwstr(), mvins_nwstr(), mvwins_nwstr() and wins_nwstr() functions insert at
most n wchar_t characters. If nis less than 1, then the entire string is inserted.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

See Also
<curses.h> .

Chapter 2. Curses Interfaces 141

Enhanced Curses

insstr()

Name
insstr - insert a multi-byte character string into the current window

Synopsis

#include <curses.h>

int insstr(const char *str);

Description
Refer to insnstr().

142 0S/390 V2R4.0 C Curses

Enhanced Curses

instr()

Name
instr - input a multi-byte character string from the current window

Synopsis

#include <curses.h>

int instr(char *str);

Description
Refer to innstr().

Chapter 2. Curses Interfaces 143

Enhanced Curses

ins_wech()

Name
ins_wch, mvins_wch, mvwins_wch, wins_wch - insert a complex character and
rendition into a window

Synopsis

#include <curses.h>

int ins_wch(const cchar_t *wch);

int wins_wch(WINDOW *win, const cchar_t *wch);
int mvins_wch(int y, int x, const cchar_t *wch);

int mvwins_wch (WINDOW *win, int y, int x, const cchar_ t *wch);

Description
These functions insert the complex character wch with its rendition in the current or
specified window at the current or specified cursor position.

These functions do not perform wrapping. These functions do not advance the
cursor position. These functions perform special-character processing.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

Application Usage
For non-spacing characters, add_wch() can be used to add the non-spacing
characters to a spacing complex character already in the window.

See Also
add_wch(), <curses.h> .

144 0S/390 V2R4.0 C Curses

Enhanced Curses

ins_wstr()

Name
ins_wstr - insert a wide-character string into the current window

Synopsis

#include <curses.h>

int ins_wstr(const wchar_t *wstr);

Description
Refer to ins_nwstr().

Chapter 2. Curses Interfaces 145

Curses

intrflush()

Name
intrflush - enable or disable flush on interrupt

Synopsis

#include <curses.h>

int intrflush(WINDOW *win, bool bf);

Description

The intrflush() function specifies whether pressing an interrupt key (interrupt,
suspend or quit) will flush the input buffer associated with the current screen. If bf is
a boolean that specifies whether pressing an interrupt key (interrupt, suspend or
quit) will flush the output buffer associated with the current screen. The default for
the option is inherited from the display driver settings. The win argument is ignored.

Return Value
Upon successful completion, intrflush() returns OK. Otherwise, it returns ERR.

Errors
No errors are defined.

Application Usage
The same effect is achieved outside Curses using the NOFLSH local mode flag
specified in the XBD specification (General Terminal Interface).

See Also
<curses.h> .

146 0S/390 V2R4.0 C Curses

in_wch()

Enhanced Curses

Name
in_wch, mvin_wch, mvwin_wch, win_wch - input a complex character and rendition
from a window

Synopsis

#include <curses.h>

int in_wch(cchar_t *wcval);

int mvin_wch(int y, int x, cchar_t =*wcval);

int mvwin_wch(WINDOW *win, int y, int x, cchar_t *wcval);

int win_wch(WINDOW *win, cchar_t *wcval);

Description

These functions extract the complex character and rendition from the current or
specified position in the current or specified window into the object pointed to by
weval.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

See Also
<curses.h> .

Chapter 2. Curses Interfaces 147

Enhanced Curses

in_wechnstr()

Name

in_wchnstr, in_wchstr, mvin_wchnstr, mvin_wchstr, mvwin_wchnstr, mvwin_wchstr,
win_wchnstr, win_wchstr - input an array of complex characters and renditions from
a window

Synopsis

#include <curses.h>

int in_wchnstr(cchar_t *wchstr, int n);

int in_wchstr(cchar_t *wchstr);

int mvin_wchnstr(int y, int x, cchar_t *wchstr, int n);
int mvin_wchstr(int y, int x, cchar_t *wchstr);

int mvwin_wchnstr(WINDOW *win, int y, int x, cchar_t *wchstr, int
n);

int mvwin_wchstr(WINDOW *win, int y, int x, cchar_t *wchstr);
int win_wchnstr(WINDOW *win, cchar_t *wchstr, int n);

int win_wchstr(WINDOW *win, cchar_t *wchstr);

Description

These functions extract characters from the current or specified window, starting at
the current or specified position and ending at the end of the line, and place them
in the array pointed to by wchstr.

The in_wchnstr(), mvin_wchnstr(), mvwin_wchnstr() and win_wchnstr() fill the array
with at most n cchar_t elements.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

Application Usage

Reading a line that overflows the array pointed to by wchstr with in_wchstr(),
mvin_wchstr(), mvwin_wchstr() or win_wchstr() causes undefined results. The use
of in_wchnstr(), mvin_wchnstr(), mvwin_wchnstr() or win_wchnstr(), respectively, is
recommended.

148 0S/390 V2R4.0 C Curses

Enhanced Curses

See Also
in_wch(), <curses.h> .

Chapter 2. Curses Interfaces 149

Enhanced Curses

inwstr()

Name
inwstr - input a string of wide characters from the current window

Synopsis

#include <curses.h>

int inwstr(wchar_t *wstr);

Description
Refer to innwstr().

150 0S/390 V2R4.0 C Curses

isendwin()

Enhanced Curses

Name
isendwin - determine whether a screen has been refreshed

Synopsis

#include <curses.h>

bool isendwin(void);

Description
The isendwin() function indicates whether the screen has been refreshed since the
last call to endwin().

Return Value
The isendwin() function returns TRUE if endwin() has been called without any
subsequent refresh. Otherwise, it returns FALSE.

Errors
No errors are defined.

See Also
endwin(), <curses.h> .

Chapter 2. Curses Interfaces 151

Curses

Is_linetouched()

Name
is_linetouched, is_wintouched, touchline, touchwin, untouchwin, wtouchin -
window refresh control functions

Synopsis

#include <curses.h>

bool is_linetouched (WINDOW *win, int Tine);

bool is_wintouched (WINDOW *win);

int touchline(WINDOW *win, int start, int count);

int touchwin(WINDOW *win);

int untouchwin(WINDOW *win);

int wtouchITn(WINDOW *win, int y, int n, int changed);

Description

The touchwin() function touches the specified window (that is, marks it as having
changed more recently than the last refresh operation). The touchline() function
only touches count lines, beginning with line start.

The untouchwin() function marks all lines in the window as unchanged since the
last refresh operation.

Calling wtouchin(), if changed is 1, touches n lines in the specified window, starting
at line y. If changed is 0, wtouchin() marks such lines as unchanged since the last
refresh operation.

The is_wintouched() function determines whether the specified window is touched.
The is_linetouched() function determines whether line line of the specified window
is touched.

Return Value

The is_linetouched() and is_wintouched() functions return TRUE if any of the
specified lines, or the specified window, respectively, has been touched since the
last refresh operation. Otherwise, they return FALSE.

Upon successful completion, the other functions return OK. Otherwise, they return
ERR. Exceptions to this are noted in the preceding function descriptions.

Errors
No errors are defined.

152 0S/390 V2R4.0 C Curses

Curses

Application Usage

Calling touchwin() or touchline() is sometimes necessary when using overlapping
windows, since a change to one window affects the other window, but the records
of which lines have been changed in the other window do not reflect the change.

See Also
doupdate(), <curses.h> .

Chapter 2. Curses Interfaces 153

Enhanced Curses

keyname()

Name
keyname, key name - get name of key

Synopsis

#include <curses.h>
char *keyname(int c);

char xkey name(wchar_t c);

Description

The keyname() and key _name() functions generate a character string whose value
describes the key c¢. The ¢ argument of keyname() can be an 8-bit character or a
key code. The ¢ argument of key _name() must be a wide character.

The string has a format according to the first applicable row in the following table:

Input Format of
Returned
String

Visible character The same
character

Control character X

Meta-character (keyname() only) M-X

Key value defined in <curses.h> (keyname() only) KEY_name

None of the above UNKNOWN
KEY

The meta-character notation shown above is used only if meta-characters are
enabled.

Return Value
Upon successful completion, keyname() returns a pointer to a string as
described above. Otherwise, it returns a null pointer.

Errors
No errors are defined.

Application Usage
The return value of keyname() and key_name() may point to a static area which is
overwritten by a subsequent call to either of these functions.

Applications normally process meta-characters without storing them into a window.
If an application stores meta-characters in a window and tries to retrieve them as
wide characters, keyname() cannot detect meta-characters, since wide characters
do not support meta-characters.

154 0S/390 V2R4.0 C Curses

Enhanced Curses

See Also
meta(), <curses.h> .

Chapter 2. Curses Interfaces 155

Curses

keypad()

Name
keypad - enable/disable abbreviation of function keys

Synopsis

#include <curses.h>

int keypad(WINDOW *win, bool bf);

Description

The keypad() function controls keypad translation. If bfis TRUE, keypad translation
is turned on. If bfis FALSE, keypad translation is turned off. The initial state is
FALSE.

This function affects the behavior of any function that provides keyboard input.

If the terminal in use requires a command to enable it to transmit distinctive codes
when a function key is pressed, then after keypad translation is first enabled, the
implementation transmits this command to the terminal before an affected input
function tries to read any characters from that terminal.

Return Value
Upon successful completion, keypad() returns OK. Otherwise, it returns ERR.

Errors
No errors are defined.

See Also
<curses.h> .

156 0S/390 V2R4.0 C Curses

Curses

killchar()

Name
killchar, killwchar - terminal environment query functions

Synopsis

#include <curses.h>
char killchar(void);

int killwchar(wchar_t *ch);

Description
Refer to erasechar().

Chapter 2. Curses Interfaces 157

Curses

leaveok()

Name
leaveok - control cursor position resulting from refresh operations

Synopsis

#include <curses.h>

int Teaveok (WINDOW *win, bool bf);

Description
Refer to clearok().

158 0S/390 V2R4.0 C Curses

Enhanced Curses

LINES

Name
LINES - number of lines on terminal screen

Synopsis

#include <curses.h>

extern int LINES;

Description
The external variable LINES indicates the number of lines on the terminal screen.

See Also
initscr(), <curses.h> .

Chapter 2. Curses Interfaces 159

Curses

longname()

Name
longname - get verbose description of current terminal

Synopsis

#include <curses.h>

char *longname(void);

Description

The longname() function generates a verbose description of the current terminal.
The maximum length of a verbose description is 128 bytes. It is defined only after
the call to initscr() or newterm().

Return Value
Upon successful completion, longname() returns a pointer to the description
specified above. Otherwise, it returns a null pointer on error.

Errors
No errors are defined.

Application Usage
The return value of longname() may point to a static area which is overwritten by a
subsequent call to newterm().

See Also
initscr(), <curses.h> .

160 0S/390 V2R4.0 C Curses

meta()

Enhanced Curses

Name
meta - enable/disable meta-keys

Synopsis

#include <curses.h>

int meta(WINDOW *win, bool bf);

Description

Initially, whether the terminal returns 7 or 8 significant bits on input depends on the
control mode of the display driver (see the XBD specification, General Terminal
Interface). To force 8 bits to be returned, invoke meta(win, TRUE). To force 7 bits
to be returned, invoke meta(win, FALSE). The win argument is always ignored. If
the terminfo capabilities smm (meta_on) and rmm (meta_off) are defined for the
terminal, smm is sent to the terminal when meta(win, TRUE) is called and rmm is
sent when meta(win, FALSE) is called.

Return Value
Upon successful completion, meta() returns OK. Otherwise, it returns ERR.

Errors
No errors are defined.

Application Usage
The same effect is achieved outside Curses using the CS7 or CS8 control mode
flag specified in the XBD specification (General Terminal Interface).

The meta() function was designed for use with terminals with 7-bit character sets
and a “meta” key that could be used to set the eighth bit.

See Also
getch(), <curses.h> .

Chapter 2. Curses Interfaces 161

Curses

move()

Name
move, wmove - window cursor location functions

Synopsis

#include <curses.h>
int move(int y, int x);

int wmove(WINDOW *win, int y, int x);

Description

The move() and wmove() functions move the cursor associated with the current or
specified window to (y, x) relative to the window's origin. This function does not
move the terminal's cursor until the next refresh operation.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

See Also
doupdate(), <curses.h> .

162 0S/390 V2R4.0 C Curses

mv

Name

mv - pointer page for functions with mv prefix

Description

Curses

Most cases in which a Curses function has the mv prefix! indicate that the function
takes y and x arguments and moves the cursor to that address as though move()
were first called. (The corresponding functions without the mv prefix operate at the

cursor position.)

The mv prefix is combined with a w prefix to produce Curses functions beginning

with mvw.

The mv and mvw functions are discussed together with the corresponding functions
that do not have these prefixes. They are found on the following entries:

Function
mvaddch()
mvaddchnstr()
mvaddchstr()
mvaddnstr()
mvaddstr()
mvaddnwstr()
mvaddwstr()
mvadd_wch()
mvadd_wchnstr()
mvadd_wchstr()
mvchgat()
mvdelch()
mvgetch()
mvgetnstr()
myvgetstr()
mvgetn_wstr()
mvget_wch()
mvget_wstr()
mvhline()
mvhline_set()
mvinch()
mvinchnstr()
mvinchstr()
mvinnstr()
mvinnwstr()
mvinsch()
mvinsnstr()
mvinsstr()
mvinstr()

mvwaddch()
mvwaddchnstr()
mvwaddchstr()
mvwaddnstr()
mvwaddstr()
mvwaddnwstr()
mvwaddwstr()
mvwadd_wch()
mvwadd_wchnstr()
mvwadd_wechstr()
mvwchgat()
mvwdelch()
mvwgetch()
mvwgetnstr()
mvwagetstr()
mvwgetn_wstr()
mvwget_wch()
mvwget_wstr()
mvwhline()
mvwhline_set()
mvwinch()
mvwinchnstr()
mvwinchstr()
mvwinnstr()
mvwinnwstr()
mvwinsch()
mvwinsnstr()
mvwinsstr()
mvwinstr()

Refer to
addch()
addchstr()
addchstr()
addnstr()
addnstr()
addnwstr()
addnwstr()
add_wch()
add_wchnstr()
add_wchnstr()
chgat()
delch()
getch()
getnstr()
getnstr()
getn_wstr()
get_wch()
getn_wstr()
hline()
hline_set()
inch()
inchnstr()
inchnstr()
innstr()
innwstr()
insch()
insnstr()
insnstr()
innstr()

1 The mvcur(), mvderwin() and mvwin() functions are exceptions to this rule, in that mv is not a prefix with the usual meaning and
there are no corresponding functions without the mv prefix. These functions have entries under their own names.

In the mvprintw() and mvscanw() functions, mv is a prefix with the usual meaning, but the functions have entries under their own
names because the mv function is the first function in the family of functions in alphabetical order.

Chapter 2. Curses Interfaces

163

Curses

Function
mvins_nwstr()
mvins_wch()
mvins_wstr()
mvinwstr()
mvin_wch()
mvin_wchnstr()
mvin_wchstr()
mvprintw()
mvscanw()
mwvline()
mwviine_set()

See Also
w.

164 0S/390 V2R4.0 C Curses

mvwins_nwstr()
mvwins_wch()
mvwins_wstr()
mvwinwstr()
mvwin_wch()
mvwin_wchnstr()
mvwin_wchstr()
mvwprintw()
mvwscanw()
mvwvline()
mvwvline_set()

Refer to
ins_nwstr()
ins_wch()
ins_nwstr()
innwstr()
in_wch()
in_wchnstr()
in_wchnstr()
amvprintw()
mvscanw()
hline()
hline_set()

mvcur()

Enhanced Curses

Name
mvcur - output cursor movement commands to the terminal

Synopsis

#include <curses.h>

int mvcur(int oldrow, int oldcol, int newrow, int newcol);

Description

The mvcur() function outputs one or more commands to the terminal that move the
terminal's cursor to (newrow, newcol), an absolute position on the terminal screen.
The (oldrow, oldcol) arguments specify the former cursor position. Specifying the
former position is necessary on terminals that do not provide coordinate-based
movement commands. On terminals that provide these commands, Curses may
select a more efficient way to move the cursor based on the former position. If
(newrow, newcol) is not a valid address for the terminal in use, mvcur() fails. If
(oldrow, oldcol) is the same as (newrow, newcol), then mvcur() succeeds without
taking any action. If mvcur() outputs a cursor movement command, it updates its
information concerning the location of the cursor on the terminal.

Return Value
Upon successful completion, mvcur() returns OK.

Otherwise, it returns ERR.

Errors
No errors are defined.

Application Usage

After use of mvcur(), the model Curses maintains of the state of the terminal might
not match the actual state of the terminal. The application should touch and refresh
the window before resuming conventional use of Curses.

See Also
doupdate(), is_linetouched(), <curses.h> .

Chapter 2. Curses Interfaces 165

Enhanced Curses

mvderwin()

Name
mvderwin - define window coordinate transformation

Synopsis

#include <curses.h>

int mvderwin(WINDOW *win, int par_y, int par_x);

Description

The mvderwin() function specifies a mapping of characters. The function identifies a
mapped area of the parent of the specified window, whose size is the same as the
size of the specified window and whose origin is at (par_y, par_x) of the parent
window.

e During any refresh of the specified window, the characters displayed in that
window's display area of the terminal are taken from the mapped area.

* Any references to characters in the specified window obtain or modify
characters in the mapped area.

That is, mvderwin() defines a coordinate transformation from each position in the
mapped area to a corresponding position (same Y, x offset from the origin) in the
specified window.

Return Value
Upon successful completion, mvderwin() returns OK. Otherwise, it returns ERR.

Errors
No errors are defined.

See Also
derwin(), doupdate(), dupwin(), <curses.h> .

166 0S/390 V2R4.0 C Curses

mvprintw()

Curses

Name
mvprintw, mvwprintw, printw, wprintw - print formatted output in window

Synopsis

#include <curses.h>

int mvprintw(int y, int x, char *fmt, ...);

int mvwprintw(WINDOW *win, int y, int x, char *=fmt, ...);
int printw(char *fmt, ...);

int wprintw(WINDOW *win, char *fmt, ...);

Description

The mvprintw(), mvwprintw(), printw() and wprintw() functions are analogous to
printf(). The effect of these functions is as though sprintf() were used to format the
string, and then waddstr() were used to add that multi-byte string to the current or
specified window at the current or specified cursor position.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

See Also
addnstr(), forintf(), <curses.h>

Chapter 2. Curses Interfaces 167

Curses

mvscanw()

Name
mvscanw, mvwscanw, scanw, wscanw - convert formatted input from a window

Synopsis

#include <curses.h>

int mvscanw(int y, int x, char *fmt, ...);

int mvwscanw(WINDOW *win, int y, int x, char *fmt, ...);
int scanw(char *fmt, ...);

int wscanw(WINDOW *win, char *fmt, ...);

Description

These functions are similar to scanf(). Their effect is as though mvwgetstr() were
called to get a multi-byte character string from the current or specified window at
the current or specified cursor position, and then sscanf() were used to interpret
and convert that string.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

See Also
getnstr(), printw(), fscanf(), wcstombs(), <curses.h> .

168 0S/390 V2R4.0 C Curses

mvwin()

Curses

Name
mvwin - move window

Synopsis

#include <curses.h>

int mvwin(WINDOW *win, int y, int x);

Description

The mvwin() function moves the specified window so that its origin is at position (y,
X). If the move would cause any portion of the window to extend past any edge of
the screen, the function fails and the window is not moved.

Return Value
Upon successful completion, mvwin() returns OK. Otherwise, it returns ERR.

Errors
No errors are defined.

Application Usage
The application should not move subwindows by calling mvwin().

See Also
derwin(), doupdate(), is_linetouched(), <curses.h> .

Chapter 2. Curses Interfaces 169

Enhanced Curses

napms()

Name
napms - suspend the calling process

Synopsis

#include <curses.h>
int napms(int ms);

Description
The napms() function takes at least ms milliseconds to return.

Return Value
The napms() function returns OK.

Errors
No errors are defined.

Application Usage
A more reliable method of achieving a timed delay is the usleep() function.

See Also
delay output(), usleep() <curses.h> .

170 0S/390 V2R4.0 C Curses

newpad()

Curses

Name
newpad, pnoutrefresh, prefresh, subpad - pad management functions

Synopsis

#include <curses.h>
WINDOW *newpad(int nlines, int ncols);

int pnoutrefresh(WINDOW *pad, int pminrow, int pmincol, int sminrow,
int smincol, int smaxrow, int smaxcol);

int prefresh(WINDOW *pad, int pminrow, int pmincol, int sminrow,
int smincol, int smaxrow, int smaxcol);

WINDOW *subpad (WINDOW *orig, int nlines, int ncols, int begin_y,
int begin_x);

Description

The newpad() function creates a specialized WINDOW data structure representing
a pad with nlines lines and ncols columns. A pad is like a window, except that it is
not necessarily associated with a viewable part of the screen. Automatic refreshes
of pads do not occur.

The subpad() function creates a subwindow within a pad with nlines lines and ncols
columns. Unlike subwin(), which uses screen coordinates, the window is at position
(begin_y, begin_x) on the pad. The window is made in the middle of the window
orig, so that changes made to one window affect both windows.

The prefresh() and pnoutrefresh() functions are analogous to wrefresh() and
wnoutrefresh() except that they relate to pads instead of windows. The additional
arguments indicate what part of the pad and screen are involved. The pminrow and
pmincol arguments specify the origin of the rectangle to be displayed in the pad.
The sminrow, smincol, smaxrow and smaxcol arguments specify the edges of the
rectangle to be displayed on the screen. The lower right-hand corner of the
rectangle to be displayed in the pad is calculated from the screen coordinates,
since the rectangles must be the same size. Both rectangles must be entirely
contained within their respective structures. Negative values of pminrow, pmincol,
sminrow or smincol are treated as if they were zero.

Return Value
Upon successful completion, the newpad() and subpad() functions return a pointer
to the pad data structure. Otherwise, they return a null pointer.

Upon successful completion, pnoutrefresh() and prefresh() return OK. Otherwise,
they return ERR.

Chapter 2. Curses Interfaces 171

Curses

Errors
No errors are defined.

Application Usage

To refresh a pad, call prefresh() or pnoutrefresh(), not wrefresh(). When porting
code to use pads from WINDOWS, remember that these functions require
additional arguments to specify the part of the pad to be displayed and the location
on the screen to be used for the display.

Although a subwindow and its parent pad may share memory representing
characters in the pad, they need not share status information about what has
changed in the pad. Therefore, after modifying a subwindow within a pad, it may be
necessary to call touchwin() or touchline() on the pad before calling prefresh().

See Also
derwin(), doupdate(), is_linetouched(), <curses.h> .

172 0S/390 V2R4.0 C Curses

Curses

newterm()

Name
newterm - screen initialization function

Synopsis

#include <curses.h>

SCREEN *newterm(char *type, FILE xoutfile, FILE xinfile);

Description
Refer to initscr().

Chapter 2. Curses Interfaces 173

Curses

newwin()

Name
newwin - create a new window

Synopsis

#include <curses.h>

WINDOW *newwin(int nlines, int ncols, int begin_y, int begin_x);

Description
Refer to derwin().

174 0S/390 V2R4.0 C Curses

Curses

nl()

Name
nl, nonl - enable/disable newline translation

Synopsis

#include <curses.h>
int nl(void);

int nonl(void);

Description

The nl() function enables a mode in which carriage return is translated to newline
on input. The nonl() function disables the above translation. Initially, the above
translation is enabled.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

Application Usage

The default translation adapts the terminal to environments in which newline is the
line termination character. However, by disabling the translation with nonl(), the
application can sense the pressing of the carriage return key.

See Also
<curses.h> .

Chapter 2. Curses Interfaces 175

Curses

no

Name
no - pointer page for functions with no prefix

Description
The no prefix indicates that a Curses function disables a mode. (The
corresponding functions without the no prefix enable the same mode.)

The no functions are discussed together with the corresponding functions that do
not have these prefixes.?2 They are found on the following entries:

Function Refer to
nocbreak() cbreak()
noecho() echo()
nonl() nl()
noraw() cbreak()

2 The nodelay() function has an entry under its own name because there is no corresponding delay() function.

The noqiflush() and notimeout() functions have an entry under their own names because they precede the corresponding function
without the no prefix in alphabetical order.

176 0S/390 V2R4.0 C Curses

nodelay()

Curses

Name
nodelay - enable or disable block during read

Synopsis

#include <curses.h>

int nodelay(WINDOW *win, bool bf);

Description

The nodelay() function specifies whether Delay Mode or No Delay Mode is in effect
for the screen associated with the specified window. If bfis TRUE, this screen is
set to No Delay Mode. If bfis FALSE, this screen is set to Delay Mode. The initial
state is FALSE.

Return Value
Upon successful completion, nodelay() returns OK. Otherwise, it returns ERR.

Errors
No errors are defined.

See Also
getch(), halfdelay(), <curses.h> .

Chapter 2. Curses Interfaces 177

Enhanced Curses

nogiflush()

Name
nogqiflush, qiflush - enable/disable queue flushing

Synopsis

#include <curses.h>
void nogiflush(void);

void qiflush(void);

Description

The qiflush() function causes all output in the display driver queue to be flushed
whenever an interrupt key (interrupt, suspend, or quit) is pressed. The noqiflush()
causes no such flushing to occur. The default for the option is inherited from the
display driver settings.

Return Value
These functions do not return a value.

Errors
No errors are defined.

Application Usage

Calling giflush() provides faster response to interrupts, but causes Curses to have
the wrong idea of what is on the screen. The same effect is achieved outside
Curses using the NOFLSH local mode flag specified in the XBD specification
(General Terminal Interface).

See Also
intrflush(), <curses.h> .

178 0S/390 V2R4.0 C Curses

Enhanced Curses

notimeout()

Name
notimeout, timeout, wtimeout - control blocking on input

Synopsis

#include <curses.h>
int notimeout (WINDOW *win, bool bf);
void timeout(int delay);

void wtimeout (WINDOW *win, int delay);

Description

The notimeout() function specifies whether Timeout Mode or No Timeout Mode is in
effect for the screen associated with the specified window. If bfis TRUE, this
screen is set to No Timeout Mode. If bfis FALSE, this screen is set to Timeout
Mode. The initial state is FALSE.

The timeout() and wtimeout() functions set blocking or non-blocking read for the
current or specified window based on the value of delay:

delay < 0 One or more blocking reads (indefinite waits for input) are used.

delay = 0 One or more non-blocking reads are used. Any Curses input
function will fail if every character of the requested string is not
immediately available.

delay > 0 Any Curses input function blocks for delay milliseconds and fails if
there is still no input.

Return Value
Upon successful completion, the notimeout() function returns OK. Otherwise, it
returns ERR.

The timeout() and wtimeout() functions do not return a value.

Errors
No errors are defined.

See Also
getch(), halfdelay(), nodelay(), <curses.h> .

Chapter 2. Curses Interfaces 179

Curses

overlay()

Name
overlay, overwrite - copy overlapped windows

Synopsis

#include <curses.h>
int overlay(const WINDOW *srcwin, WINDOW *dstwin);

int overwrite(const WINDOW *srcwin, WINDOW *dstwin);

Description

The overlay() and overwrite() functions overlay srcwin on top of dstwin. The scrwin
and dstwin arguments need not be the same size; only text where the two windows
overlap is copied.

The overwrite() function copies characters as though a sequence of win_wch() and
wadd_wch() were performed with the destination window's attributes and
background attributes cleared.

The overlay() function does the same thing, except that, whenever a character to
be copied is the background character of the source window, overlay() does not
copy the character but merely moves the destination cursor the width of the source
background character.

If any portion of the overlaying window border is not the first column of a
multi-column character then all the column positions will be replaced with the
background character and rendition before the overlay is done. If the default
background character is a multi-column character when this occurs, then these
functions fail.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

See Also
copywin(), <curses.h> .

180 0S/390 V2R4.0 C Curses

Enhanced Curses

pair_content()

Name
pair_content, PAIR_NUMBER - get information on a color pair

Synopsis

#include <curses.h>
int pair_content(short pair, short *f, short *b);

int PAIR_NUMBER(int value);

Description
Refer to can_change_color().

Chapter 2. Curses Interfaces 181

Enhanced Curses

pechochar()

Name
pechochar, pecho_wchar - write a character and rendition and immediately refresh
the pad

Synopsis

#include <curses.h>
int pechochar(WINDOW *win, chtype ch);

int pecho_wchar(WINDOW *pad, const cchar_t *wch);

Description

The pechochar() and pecho_wechar() functions output one character to a pad and
immediately refresh the pad. They are equivalent to a call to waddch() or
wadd_wch(), respectively, followed by a call to prefresh(). The last location of the
pad on the screen is reused for the arguments to prefresh().

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

Application Usage

The pechochar() function is only guaranteed to operate reliably on character sets in
which each character fits into a single byte, whose attributes can be expressed
using only constants with the A_ prefix.

See Also
echochar(), echo_char(), newpad(), <curses.h> .

182 0S/390 V2R4.0 C Curses

Curses

pnoutrefresh()

Name
pnoutrefresh, prefresh - refresh pads

Synopsis

#include <curses.h>

int pnoutrefresh(WINDOW *pad, int pminrow, int pmincol, int sminrow,
int smincol, int smaxrow, int smaxcol);

int prefresh(WINDOW *pad, int pminrow, int pmincol, int sminrow,
int smincol, int smaxrow, int smaxcol);

Description
Refer to newpad().

Chapter 2. Curses Interfaces 183

Curses

printw()

Name
printw - print formatted output in the current window

Synopsis

#include <curses.h>

int printw(char *fmt, ...);

Description
Refer to mvprintw().

184 0S/390 V2R4.0 C Curses

putp()

Enhanced Curses

Name
putp, tputs - output commands to the terminal

Synopsis

#include <term.h>
int putp(const char *str);

int tputs(const char *str, int affcnt, int (*putfunc)(int));

Description
These functions output commands contained in the terminfo database to the
terminal.

The putp() function is equivalent to tputs(str, 1, putchar). The output of putp()
always goes to stdout, not to the fildes specified in setupterm().

The tputs() function outputs str to the terminal. The str argument must be a
terminfo string variable or the return value from tgetstr(), tgoto(), tigetstr() or
tparm(). The affent argument is the number of lines affected, or 1 if not applicable.
If the terminfo database indicates that the terminal in use requires padding after
any command in the generated string, tputs() inserts pad characters into the string
that is sent to the terminal, at positions indicated by the terminfo database. The
tputs() function outputs each character of the generated string by calling the
user-supplied function putfunc (see below).

The user-supplied function putfunc (specified as an argument to tputs()) is either
putchar() or some other function with the same prototype. The tputs() function
ignores the return value of putfunc.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

Application Usage

After use of any of these functions, the model Curses maintains of the state of the
terminal might not match the actual state of the terminal. The application should
touch and refresh the window before resuming conventional use of Curses.

Use of these functions requires that the application contain so much information
about a particular class of terminal that it defeats the purpose of using Curses.

On some terminals, a command to change rendition conceptually occupies space in

the screen buffer (with or without width). Thus, a command to set the terminal to a
new rendition would change the rendition of some characters already displayed.

Chapter 2. Curses Interfaces 185

Enhanced Curses

See Also
doupdate(), is_linetouched(), putchar(), tgetent(), tigetflag(), <term.h> .

186 0S/390 V2R4.0 C Curses

Enhanced Curses

putwin()

Name
putwin - dump window to a file

Synopsis

#include <curses.h>

int putwin(WINDOW *win, FILE =filep);

Description
Refer to getwin().

Chapter 2. Curses Interfaces 187

Enhanced Curses

giflush()

Name
giflush - enable queue flushing

Synopsis

#include <curses.h>

void qiflush(void);

Description
Refer to nogiflush().

188 0S/390 V2R4.0 C Curses

raw()

Name
raw - set Raw Mode

Synopsis

#include <curses.h>
int raw(void);

Description
Refer to cbhreak().

Curses

Chapter 2. Curses Interfaces

189

Enhanced Curses

redrawwin()

Name
redrawwin, wredrawlIn - line update status functions

Synopsis

#include <curses.h>
int redrawwin(WINDOW *win);

int wredrawIn(WINDOW *win, int beg Tine, int num_lines);

Description

The redrawwin() and wredrawln() functions inform the implementation that some or
all of the information physically displayed for the specified window may have been
corrupted. The redrawwin() function marks the entire window; wredrawin() marks
only num_lines lines starting at line number beg_line. The functions prevent the
next refresh operation on that window from performing any optimization based on
assumptions about what is physically displayed there.

Return Value
Upon successful completion, these functions return OK. Otherwise they return ERR.

Errors
No errors are defined.

Application Usage
The redrawwin() and wredrawln() functions could be used in a text editor to
implement a command that redraws some or all of the screen.

See Also
clearok(), doupdate(), <curses.h> .

190 0S/390 V2R4.0 C Curses

refresh()

Name
refresh - refresh current window

Synopsis

#include <curses.h>

int refresh(void);

Description
Refer to doupdate().

Curses

Chapter 2. Curses Interfaces

191

Curses

reset_prog_mode()

Name
reset_prog_mode, reset_shell_mode - restore program or shell terminal modes

Synopsis

#include <curses.h>
int reset_prog_mode(void);

int reset_shell_mode(void);

Description
Refer to def_prog_mode().

192 0S/390 V2R4.0 C Curses

resetty()

Curses

Name
resetty, savetty - save/restore terminal mode

Synopsis

#include <curses.h>
int resetty(void);

int savetty(void);

Description
The resetty() function restores the program mode as of the most recent call to
savetty().

The savetty() function saves the state that would be put in place by a call to
reset_prog_mode().

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

See Also
def _prog_mode(), <curses.h> .

Chapter 2. Curses Interfaces 193

Enhanced Curses

restartterm()

Name
restartterm - change terminal type

Synopsis

#include <term.h>

int restartterm(char *term, int fildes, int =errret);

Description
Refer to del_curterm().

194 0S/390 V2R4.0 C Curses

ripoffline()

Enhanced Curses

Name
ripoffline - reserve a line for a dedicated purpose

Synopsis

#include <curses.h>

int ripoffline(int Tine, int (*init) (WINDOW *win, int columns));

Description
The ripoffline() function reserves a screen line for use by the application.

Any call to ripoffline() must precede the call to initscr() or newterm(). If line is
positive, one line is removed from the beginning of stdscr; if /ine is negative, one
line is removed from the end. Removal occurs during the subsequent call to
initscr() or newterm(). When the subsequent call is made, the function pointed to by
init is called with two arguments: a WINDOW pointer to the one-line window that
has been allocated and an integer with the number of columns in the window. The
initialization function cannot use the LINES and COLS external variables and
cannot call wrefresh() or doupdate(), but may call wnoutrefresh().

Up to five lines can be ripped off. Calls to ripoffline() above this limit have no effect
but report success.

Return Value
The ripoffline() function returns OK.

Errors
No errors are defined.

Application Usage

Calling slk_init() reduces the size of the screen by one line if initscr() eventually
uses a line from stdscr to emulate the soft labels. If slk_init() rips off a line, it
thereby reduces by one the number of lines an application can reserve by
subsequent calls to ripoffline(). Thus, portable applications that use soft label
functions should not call ripoffline() more than four times.

When initscr() or newterm() calls the initialization function pointed to by init, the
implementation may pass NULL for the WINDOW pointer argument win. This
indicates inability to allocate a one-line window for the line that the call to ripoffline()
ripped off. Portable applications should verify that win is not NULL before
performing any operation on the window it represents.

See Also
doupdate(), initscr(), slk_attroff(), <curses.h> .

Chapter 2. Curses Interfaces 195

Curses

savetty()

Name
savetty - save terminal mode

Synopsis

#include <curses.h>

int savetty(void);

Description
Refer to resetty().

196 0S/390 V2R4.0 C Curses

Curses

scanw()

Name
scanw - convert formatted input from the current window

Synopsis

#include <curses.h>

int scanw(char *fmt, ...);

Description
Refer to mvscanw().

Chapter 2. Curses Interfaces 197

Enhanced Curses

scr_dump()

Name
scr_dump, scr_init, scr_restore, scr_set - screen file input/output functions

Synopsis

#include <curses.h>

int scr_dump(const char *filename);
int scr_init(const char *filename);
int scr_restore(const char *filename);

int scr_set(const char *filename);

Description
The scr_dump() function writes the current contents of the virtual screen to the file
named by filename in an unspecified format.

The scr_restore() function sets the virtual screen to the contents of the file named
by filename, which must have been written using scr_dump(). The next refresh
operation restores the screen to the way it looked in the dump file.

The scr_init() function reads the contents of the file named by filename and uses
them to initialize the Curses data structures to what the terminal currently has on its
screen. The next refresh operation bases any updates on this information, unless
either of the following conditions is true:

e The terminal has been written to since the virtual screen was dumped to
filename

e The terminfo capabilities rmcup and nrrmc are defined for the current terminal.

The scr_set() function is a combination of scr_restore() and scr_init(). It tells the
program that the information in the file named by filename is what is currently on
the screen, and also what the program wants on the screen. This can be thought of
as a screen inheritance function.

Return Value
On successful completion, these functions return OK. Otherwise, they return ERR.

Errors
No errors are defined.

Application Usage
The scr_init() function is called after initscr() or a system() call to share the screen
with another process that has done a scr_dump() after its endwin() call.

To read a window from a file, call getwin(); to write a window to a file, call putwin().

198 0S/390 V2R4.0 C Curses

Enhanced Curses

See Also
delscreen(), doupdate(), endwin(), getwin(), open(), read(), write(), <curses.h>

Chapter 2. Curses Interfaces 199

Curses

scrl()

Name
scrl, scroll, wscrl - scroll a Curses window

Synopsis

#include <curses.h>
int scrl(int n);
int scroll(WINDOW *win);

int wscrl(WINDOW *win, int n);

Description
The scroll() function scrolls win one line in the direction of the first line.

The scrl() and wscrl() functions scroll the current or specified window. If nis
positive, the window scrolls n lines toward the first line. Otherwise, the window
scrolls -n lines toward the last line.

These functions do not change the cursor position. If scrolling is disabled for the
current or specified window, these functions have no effect.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

See Also
<curses.h> .

200 0sS/390 V2R4.0 C Curses

Curses

scrollok()

Name
scrollok - enable or disable scrolling on a window

Synopsis

#include <curses.h>

int scrollok(WINDOW *win, bool bf);

Description
Refer to clearok().

Chapter 2. Curses Interfaces 201

Enhanced Curses

setcchar()

Name
setcchar - set cchar_t from a wide character string and rendition

Synopsis

#include <curses.h>

int setcchar(cchar_t *wcval, const wchar_t *wch, const attr_t attrs,
short color pair, const void *opts);

Description

The setcchar() function initializes the object pointed to by wcval according to the
character attributes in attrs, the color pair in color_pair and the wide character
string pointed to by wch.

The opts argument is reserved for definition in a future edition of this document.
Currently, the application must provide a null pointer as opts.

Return Value
Upon successful completion, setcchar() returns OK. Otherwise, it returns ERR.

Errors
No errors are defined.

See Also
attroff(), can_change_color(), getcchar(), <curses.h> .

202 0S/390 V2R4.0 C Curses

Enhanced Curses

set_curterm()

Name
set_curterm - set current terminal

Synopsis

#include <term.h>

TERMINAL *set curterm(TERMINAL *nterm);

Description
Refer to del_curterm().

Chapter 2. Curses Interfaces 203

Curses

setscrreg()

Name
setscrreg, wsetscrreg - define software scrolling region

Synopsis

#include <curses.h>
int setscrreg(int top, int bot);

int wsetscrreg(WINDOW *win, int top, int bot);

Description
Refer to clearok().

204 0sS/390 V2R4.0 C Curses

Curses

set_term()

Name
set_term - switch between screens

Synopsis

#include <curses.h>

SCREEN *set_term(SCREEN *new);

Description
The set_term() function switches between different screens. The new argument
specifies the new current screen.

Return Value
Upon successful completion, set_term() returns a pointer to the previous screen.
Otherwise, it returns a null pointer.

Errors
No errors are defined.

Application Usage
This is the only function that manipulates SCREEN pointers; all other functions
affect only the current screen.

See Also
initscr(), <curses.h> .

Chapter 2. Curses Interfaces 205

Enhanced Curses

setupterm()

Name
setupterm - access the terminfo database

Synopsis

#include <term.h>

int setupterm(char *term, int fildes, int *errret);

Description
Refer to del_curterm().

206 0S/390 V2R4.0 C Curses

slk_attroff()

Enhanced Curses

Name

slk_attroff, slk_attr_off, slk_attron, slk_attr_on, slk_attrset, slk_attr_set, slk_clear,
slk_color, slk_init, slk_label, slk_noutrefresh, slk_refresh, slk_restore, slk_set,
slk_touch, slk_wset - soft label functions

Synopsis

#include <curses.h>

int slk_attroff(const chtype attrs);

int slk_attr off(const attr_t attrs, void *opts);
int slk_attron(const chtype attrs);

int slk_attr_on(const attr_t attrs, void *opts);
int s1k_attrset(const chtype attrs);

int slk_attr_set(const attr_t attrs, short color_pair_number, void
*opts);

int s1k_clear(void);

in s1k_color(short color_pair_number);

int slk_init(int fmt);

char *slk_label(int Tlabnum);

int slk _noutrefresh(void);

int s1k_refresh(void);

int sk restore(void);

int s1k_set(int Tabnum, const char *label, int justify);
int slk_touch(void);

int slk wset(int Tabnum, const wchar t *label, int justify);

Description

The Curses interface manipulates the set of soft function-key labels that exist on
many terminals. For those terminals that do not have soft labels, Curses takes
over the bottom line of stdscr, reducing the size of stdscr and the value of the
LINES external variable. There can be up to eight labels of up to eight display
columns each.

To use soft labels, slk_init() must be called before initscr(), newterm() or ripoffline()
is called. If initscr() eventually uses a line from stdscr to emulate the soft labels,
then fmt determines how the labels are arranged on the screen. Setting fmtto 0
indicates a 3-2-3 arrangement of the labels; 1 indicates a 4-4 arrangement. Other
values for fmt are unspecified.

Chapter 2. Curses Interfaces 207

Enhanced Curses

The slk_init() function has the effect of calling ripoffline() to reserve one screen line
to accommodate the requested format.

The slk_set() and slk_wset() functions specify the text of soft label number labnum,
within the range from 1 to and including 8. The label argument is the string to be
put on the label. With slk_set(), and slk_wset(), the width of the label is limited to
eight column positions. A null string or a null pointer specifies a blank label. The
justify argument can have the following values to indicate how to justify label within
the space reserved for it:

0 Align the start of label with the start of the space
1 Center label within the space
2 Align the end of label with the end of the space

The slk_refresh() and slk_noutrefresh() functions correspond to the wrefresh() and
wnoutrefresh() functions.

The slk_label() function obtains soft label number labnum.
The slk_clear() function immediately clears the soft labels from the screen.

The slk_restore() function immediately restores the soft labels to the screen after a
call to slk_clear().

The slk_touch() function forces all the soft labels to be output the next time
slk_noutrefresh() or slk_refresh() is called.

The slk_attron(), slk_attrset() and slk_attroff() functions correspond to attron(),
attrset(), and attroff(). They have an effect only if soft labels are simulated on the
bottom line of the screen.

The slk_attr_off(), slk_attr_on() and slk_attr_set(), and slk_color() functions
correspond to slk_attroff(), slk_attron(), slk_attrset() and color_set() and thus
support the attribute constants with WA__ prefix and color.

The opts argument is reserved for defintion in a future edition of this document.
Currently, the application must provide a null pointer as opts.

Return Value
Upon successful completion, slk_label() returns the requested label with leading
and trailing blanks stripped. Otherwise, it returns a null pointer.

Upon successful completion, the other functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

208 0S/390 V2R4.0 C Curses

Enhanced Curses

Application Usage

When using multi-byte character sets, applications should check the width of the
string by calling mbstowcs() and then weswidth() before calling slk_set(). When
using wide characters, applications should check the width of the string by calling
weswidth() before calling slk_set().

Since the number of columns that a wide character string will occupy is
codeset-specific, call wewidth() and weswidth() to check the number of column
positions in the string before calling slk_wset().

Most applications would use slk_noutrefresh() because a wrefresh() is likely to
follow soon.

See Also
attr_get(), attroff(), delscreen(), mbstowcs(), ripoffline(), weswidth(), <curses.h> .

Chapter 2. Curses Interfaces 209

Curses

standend()

Name
standend, standout, wstandend, wstandout - set and clear window attributes

Synopsis

#include <curses.h>
int standend(void);
int standout(void);
int wstandend (WINDOW *win);

int wstandout (WINDOW *win);

Description
The standend() and wstandend() functions turn off all attributes of the current or
specified window.

The standout() and wstandout() functions turn on the standout attribute of the
current or specified window.

Return Value
These functions always return 1.

Errors
No errors are defined.

See Also
attroff(), attr_get(), <curses.h> .

210 0S/390 V2R4.0 C Curses

start_color()

Name
start_color - initialize use of colors on terminal

Synopsis

#include <curses.h>

int start_color(void);

Description
Refer to can_change_color().

Enhanced Curses

Chapter 2. Curses Interfaces

211

Enhanced Curses

stdscr

Name
stdscr - default window

Synopsis

#include <curses.h>

extern WINDOW *stdscr;

Description

The external variable stdscr specifies the default window used by functions that do
not specify a window using an argument of type WINDOW *. Other windows may
be created using newwin().

See Also
derwin(), <curses.h> .

212 0S/390 V2R4.0 C Curses

Enhanced Curses

subpad()

Name
subpad - create a subwindow in a pad

Synopsis

#include <curses.h>

WINDOW *subpad (WINDOW *orig, int nlines, int ncols, int begin_y,
int begin_x);

Description
Refer to newpad().

Chapter 2. Curses Interfaces 213

Curses

subwin()

Name
subwin - create a subwindow

Synopsis

#include <curses.h>

WINDOW *subwin(WINDOW *orig, int nlines, int ncols, int begin_y,
int begin x);

Description
Refer to derwin().

214 0S/390 V2R4.0 C Curses

syncok()

Enhanced Curses

Name
syncok, wcursyncup, wsyncdown, wsyncup - synchronise a window with its parents
or children

Synopsis

#include <curses.h>

int syncok(WINDOW *win, bool bf);
void wcursyncup (WINDOW *win);
void wsyncdown (WINDOW *win);

void wsyncup (WINDOW *win);

Description

The syncok() function determines whether all ancestors of the specified window are
implicitly touched whenever there is a change in the window. If bfis TRUE, such
implicit touching occurs. If bfis FALSE, such implicit touching does not occur. The
initial state is FALSE.

The wcursyncup() function updates the current cursor position of the ancestors of
win to reflect the current cursor position of win.

The wsyncdown() function touches win if any ancestor window has been touched.

The wsyncup() function unconditionally touches all ancestors of win.

Return Value
Upon successful completion, syncok() returns OK. Otherwise, it returns ERR.

The other functions do not return a value.

Errors
No errors are defined.

Application Usage
Applications seldom call wsyncdown() because it is called by all refresh operations.

See Also
doupdate(), is_linetouched(), <curses.h> .

Chapter 2. Curses Interfaces 215

Enhanced Curses

termattrs()

Name
termattrs - get supported terminal video attributes

Synopsis

#include <curses.h>
chtype termattrs(void);

attr_t term attr(void);

Description
The termattrs() function extracts the video attributes of the current terminal which is
supported by the chtype data type.

The term_attrs() function extracts information for the video attributes of the current
terminal which is supported for a cchar _t.

Return Value

The termattrs() function returns a logical OR of A_values of all of all video attributes
supported by the terminal. The term_attrs() function returns a logical OR of WA _
values of all video attributes supported by the terminal.

Errors
No errors are defined.

See Also
attroff(), attr_get(), <curses.h> .

216 0S/390 V2R4.0 C Curses

Enhanced Curses

termname()

Name
termname - get terminal name

Synopsis

#include <curses.h>

char *termname(void);

Description
The termname() function obtains the terminal name as recorded by setupterm().

Return Value
The termname() function returns a pointer to the terminal name.

Errors
No errors are defined.

See Also
del_curterm(), getenv() initscr(), <curses.h> .

Chapter 2. Curses Interfaces 217

Enhanced Curses

tgetent()

Name
tgetent, tgetflag, tgetnum, tgetstr, tgoto - termcap database emulation (TO BE
WITHDRAWN)

Synopsis

#include <term.h>

int tgetent(char *bp, const char *name);
int tgetflag(char id[2]);

int tgetnum(char id[2]);

char xtgetstr(char id[2], char **area);

char xtgoto(char *cap, int col, int row);

Description
The tgetent() function looks up the termcap entry for name. The emulation ignores
the buffer pointer bp.

The tgetflag() function gets the boolean entry for id.
The tgetnum() function gets the numeric entry for id.

The tgetstr() function gets the string entry for id. If area is not a null pointer and
does not point to a null pointer, tgetstr() copies the string entry into the buffer
pointed to by *area and advances the variable pointed to by area to the first byte
after the copy of the string entry.

The tgoto() function instantiates the parameters col and row into capability cap and
returns a pointer to the resulting string.

All of the information available in the terminfo database need not be available
through these functions.

Return Value
Upon successful completion, functions that return an integer return OK. Otherwise,
they return ERR.

Functions that return pointers return a null pointer on error.

Errors
No errors are defined.

Application Usage

These functions are included as a conversion aid for programs that use the
termcap library. Their arguments are the same and the functions are emulated
using the terminfo database.

218 0S/390 V2R4.0 C Curses

Enhanced Curses

These functions are only guaranteed to operate reliably on character sets in which
each character fits into a single byte, whose attributes can be expressed using only
constants with the A_ prefix.

Any terminal capabilities from the terminfo database that cannot be retrieved using
these interfaces can be retrieved using the interfaces described on the tigetflag()

page.

Portable applications must use tputs() to output the strings returned by tgetstr() and
tgoto().

See Also
putc(), setupterm(), tigetfig(), <term.h> .

Chapter 2. Curses Interfaces 219

Enhanced Curses

tigetflag()

Name
tigetflag, tigetnum, tigetstr, tparm - retrieve capabilities from the terminfo database

Synopsis

#include <term.h>

int tigetflag(char *capname);
int tigetnum(char *capname);
char *tigetstr(char xcapname);

char *tparm(char *cap, long pl, long p2, Tong p3, long p4,
long p5, long p6, long p7, long p8, long p9);

Description

The tigetflag(), tigetnum(), and tigetstr() functions obtain boolean, numeric and
string capabilities, respectively, from the selected record of the terminfo database.
For each capability, the value to use as capname appears in the Capname column.

The tparm() function takes as cap a string capability. If cap is parameterized,
tparm() resolves the parameterization. If the parameterized string refers to
parameters %p1 through %p9, then tparm() substitutes the values of p1 through p9,
respectively.

Return Value

Upon successful completion, tigetflg(), tigetnum() and tigetstr() return the specified
capability. The tigetflag() function returns -1 if capname is not a boolean capability.
The tigetnum() function returns -2 if capname is not a numeric capability. The
tigetstr() function returns (char *)-1 if capname is not a string capability.

Upon successful completion, tparm() returns str with parameterization resolved.
Otherwise, it returns a null pointer.

Errors
No errors are defined.

Application Usage
For parameterized string capabilities, the application should pass the return value
from tigetstr() to tparm(), as described above.

Applications intending to send terminal capabilities directly to the terminal (which
should only be done using tputs() or putp()) instead of using Curses, normally
should obey the following rules:

e Call reset_shell_mode() to restore the display modes before exiting.

e |f using cursor addressing, output enter_ca_mode upon startup and output
exit_ca_mode before exiting.

e |f using shell escapes, output exit_ ca_mode and call reset_shell_mode() before
calling the shell; call reset_prog_mode() and output enter_ca_mode after
returning from the shell.

220 0S/390 V2R4.0 C Curses

Enhanced Curses

All parameterized terminal capabilities defined in this document can be passed to
tparm(). Some implementations create their own capabilities, create capabilities for
non-terminal devices, and redefine the capabilities in this document. These

practices are non-conforming because it may be that tparm() cannot parse these
user-defined strings.

See Also
def_prog_mode(), tgetent(), putp(), <term.h>.

Chapter 2. Curses Interfaces 221

Enhanced Curses

timeout()

Name
timeout - control blocking on input

Synopsis

#include <curses.h>

void timeout(int delay);

Description
Refer to notimeout().

222 0S/390 V2R4.0 C Curses

touchline()

Name
touchline, touchwin - window refresh control functions

Synopsis

#include <curses.h>
int touchline(WINDOW *win, int start, int count)

int touchwin(WINDOW *win);

Description
Refer to is_linetouched().

Curses

Chapter 2. Curses Interfaces

223

Enhanced Curses

tparm()

Name
tparm - retrieve capabilities from the terminfo database

Synopsis

#include <term.h>

char *tparm(char =*cap, long pl, long p2, long p3, long p4,
long p5, long p6, Tong p7, Tong p8, long p9);

Description
Refer to tigetflag().

224 0S/390 V2R4.0 C Curses

Enhanced Curses

tputs()

Name
tputs - output commands to the terminal

Synopsis

#include <curses.h>

int tputs(const char *str, int affcnt, int (*putfunc)(int));

Description
Refer to putp().

Chapter 2. Curses Interfaces 225

Curses

typeahead()

Name
typeahead - control checking for typeahead

Synopsis

#include <curses.h>

int typeahead(int fildes);

Description
The typeahead() function controls the detection of typeahead during a refresh,
based on the value of fildes:

e If fildes is a valid file descriptor, typeahead is enabled during refresh; Curses
periodically checks fildes for input and aborts the refresh if any character is
available. (This is the initial setting, and the typeahead file descriptor
corresponds to the input file associated with the screen created by initscr() or
newterm().) The value of fildes need not be the file descriptor on which the
refresh is occurring.

e If fildes is -1, Curses does not check for typeahead during refresh.

Return Value
Upon successful completion, typeahead() returns OK. Otherwise, it returns ERR.

Errors
No errors are defined.

See Also
doupdate(), getch(), initscr(), <curses.h> .

226 0S/390 V2R4.0 C Curses

unctrl()

Curses

Name
unctrl - generate printable representation of a character

Synopsis

#include <unctrl.h>

char =unctrl(chtype c);

Description

The unctrl() function generates a character string that is a printable representation
of c. If cis a control character, it is converted to the ~X notation. If ¢ contains
rendition information, the effect is undefined.

Return Value
Upon successful completion, unctrl() returns the generated string. Otherwise, it

returns a null pointer.

Errors
No errors are defined.

See Also
keyname(), wunctrl(), <unctrl.h> .

Chapter 2. Curses Interfaces 227

Enhanced Curses

ungetch()

Name
ungetch, unget_wch - push a character onto the input queue

Synopsis

#include <curses.h>
int ungetch(int ch);

int unget_wch(const wchar_t wch);

Description
The ungetch() function pushes the single-byte character ch onto the head of the
input queue.

The unget_wch() function pushes the wide character wch onto the head of the input
queue.

One character of push-back is guaranteed. If these functions are called too many
times without an intervening call to getch() or get_wch(), the operation may fail.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

See Also
getch(), get_wch(), <curses.h> .

228 0S/390 V2R4.0 C Curses

untouchwin()

Name
untouchwin - window refresh control function

Synopsis

#include <curses.h>

int untouchwin(WINDOW *win);

Description
Refer to is_linetouched().

Enhanced Curses

Chapter 2. Curses Interfaces

229

Enhanced Curses

use_env()

Name
use_env - specify source of screen size information

Synopsis

#include <curses.h>

void use_env(bool boolval);

Description

The use_env() function specifies the technique by which the implementation
determines the size of the screen. If boolval is FALSE, the implementation uses
the values of lines and columns specified in the terminfo database. If boolval is
TRUE, the implementation uses the LINES and COLUMNS environment variables.
The initial value is TRUE.

Any call to use_env() must precede calls to initscr(), newterm() or setupterm().

Return Value
The function does not return a value.

Errors
No errors are defined.

See Also
del_curterm(), initscr(), <curses.h> .

230 0S/390 V2R4.0 C Curses

vidattr()

Enhanced Curses

Name
vidattr, vid_attr, vidputs, vid_puts - output attributes to the terminal

Synopsis

#include <curses.h>

int vidattr(chtype attr);

int vid_attr(attr_t attr, short color_pair_number, void =*opt);
int vidputs(chtype attr,, int (*putfunc)(int));

int vid_puts(attr_t attr, short pair_number, void *opt, int_t
(*putfunc) (init_t));

Description
These functions output commands to the terminal that change the terminal's
attributes.

If the terminfo database indicates that the terminal in use can display characters in
the rendition specified by attr, then vidattr() outputs one or more commands to
request that the terminal display subsequent characters in that rendition. The
function outputs by calling putchar(). The vidattr() function neither relies on nor
updates the model that Curses maintains of the prior rendition mode.

The vidputs() function computes the same terminal output string that vidattr() does,
based on attr, but vidputs() outputs by calling the user-supplied function putfunc.
The vid_attr() and vid_puts() functions correspond to vidattr() and vidputs()
respectively, but take a set of arguments, one of type attr_t for the attributes, short
for the color_pair_number and a void* and thus support the attribute constants with
the WA _ prefix.

The opts argument is reserved for definition in a future edition of this document.
Currently, the application must provide a null pointer as opts.

The user-supplied function putfunc (specified as an argument to vidputs()) is either
putchar() or some other function with the same prototype. The vidputs() function
ignores the return value of putfunc.

The vid_attr() and vid_puts() functions correspond to vidattr() and vidputs(),
respectively, but take an argument of type attr_t and thus support the attribute
constants with the WA_ prefix.

The user-supplied function putwfunc (specified as an argument to vid_puts()) is

either putwchar() or some other function with the same prototype. The vid_puts()
function ignores the return value of putwfunc.

Chapter 2. Curses Interfaces 231

Enhanced Curses

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

Application Usage

After use of any of these functions, the model Curses maintains of the state of the
terminal might not match the actual state of the terminal. The application should
touch and refresh the window before resuming conventional use of Curses.

Use of these functions requires that the application contain so much information
about a particular class of terminal that it defeats the purpose of using Curses.

On some terminals, a command to change rendition conceptually occupies space in

the screen buffer (with or without width). Thus, a command to set the terminal to a
new rendition would change the rendition of some characters already displayed.

See Also
doupdate(), is_linetouched(), putchar()), putwchar(), tigetflag(), <curses.h> .

232 0S/390 V2R4.0 C Curses

Enhanced Curses

vline()

Name
vline - draw vertical line

Synopsis

#include <curses.h>

int vline(chtype ch, int n);

Description
Refer to hline().

Chapter 2. Curses Interfaces 233

Enhanced Curses

vline_set()

Name
vline_set - draw vertical line from complex character and rendition

Synopsis

#include <curses.h>

int vline_set(const cchar_t *ch, int n);

Description
Refer to hline_set().

234 0S/390 V2R4.0 C Curses

vwprintw()

Enhanced Curses

Name
vwprintw - print formatted output in window

Synopsis
#include <varargs.h>
#include <curses.h>

int vwprintw(WINDOW *, char *, va_list varglist);

Description
The vwprintw() function achieves the same effect as wprintw() using a variable
argument list. The third argument is a va_list, as defined in <varargs.h> .

Return Value
Upon successful completion, vwprintw() returns OK. Otherwise, it returns ERR.

Errors
No errors are defined.

Application Usage

The vwprintw() function is deprecated because it relies on deprecated functions in
the XSH specification. The vw_printw() function is preferred. The use of the
vwprintw() and the vw_printw() functions in the same file will not work, due to the
requirments to include varargs.h and stdarg.h which both contain definitions of
va_list.

See Also
mvprintw(), forintf(), vw_printw(), <curses.h> , <varargs.h> .

Chapter 2. Curses Interfaces 235

Enhanced Curses

vW_printw()

Name
vw_printw - print formatted output in window

Synopsis
#include <stdarg.h>
#include <curses.h>

int vw_printw(WINDOW *, char *, va_list varglist);

Description
The vw_printw() function achieves the same effect as wprintw() using a variable
argument list. The third argument is a va_list, as defined in <stdarg.h> .

Return Value
Upon successful completion, vw_printw() returns OK. Otherwise, it returns ERR.

Errors
No errors are defined.

Application Usage

The vw_printw() function is preferred over vwprintw(). The use of the vwprintw()
and the vw_printw() functions in the same file will not work, due to the requirement
to include varargs.h and stdarg.h which both contain definitions of va_list.

See Also
mvprintw(), fprintf(), <curses.h> , <stdarg.h> .

236 0S/390 V2R4.0 C Curses

vwscanw()

Enhanced Curses

Name
vwscanw - convert formatted input from a window

Synopsis
#include <varargs.h>
#include <curses.h>

int vwscanw(WINDOW *, char *, va_list varglist);

Description
The vwscanw() function achieves the same effect as wscanw() using a variable
argument list. The third argument is a va_list, as defined in <varargs.h> .

Return Value
Upon successful completion, vwscanw() returns OK. Otherwise, it returns ERR.

Errors
No errors are defined.

Application Usage

The vwscanw() function is deprecated because it relies on deprecated functions in
the XSH specification. The vw_scanw() function is preferred. The use of the
vwscanw() and the vw_scanw() functions in the same file will not work, due to the
requirement to include varargs.h and stdarg.h which both contain definitions of
va_list.

See Also
fscanf(), mvscanw(), vw_scanw(), <curses.h> , varargs.h> .

Chapter 2. Curses Interfaces 237

Enhanced Curses

vw_scanw()

Name
vw_scanw - convert formatted input from a window

Synopsis
#include <stdarg.h>
#include <curses.h>

int vw_scanw(WINDOW *, char *, va_list varglist);

Description
The vw_scanw() function achieves the same effect as wscanw() using a variable
argument list. The third argument is a va_list, as defined in <stdarg.h> .

Return Value
Upon successful completion, vw_scanw() returns OK. Otherwise, it returns ERR.

Errors
No errors are defined.

Application Usage

The vw_scanw() function is preferred over vwscanw(). The use of the vwscanw()
and the vw_scanw() functions in the same file will not work, due to the requirement
to include varargs.h and stdarg.h which both contain definitions of va_list.

See Also
fscanf(), mvscanw(), <curses.h> , <stdarg.h> .

238 0S/390 V2R4.0 C Curses

Name

w - pointer page for functions with w prefix

Description

Curses

Most uses of the w prefix indicate that a Curses function takes a win argument that
specifies the affected window.? (The corresponding functions without the w prefix
operate on the current window.)

The w functions are discussed together with the corresponding functions without

the w prefix. They are found on the following entries:

Function
waddch()
waddchnstr()
waddchstr()
waddnstr()
waddstr()
waddnwstr()
waddwstr()
wadd_wech()
wadd_wchnstr()
wadd_wechstr()
wattroff()
wattron()
wattrset()
wattr_get()
wattr_off()
wattr_on()
wattr_set()
wbkgd()
wbkgdset()
wbkgrnd()
wbkgrndset()
wborder()
wborder_set()
wchgat()
weclear()
weclrtobot()
weclrtoeol()
weursyncup() *
wdelch()
wdeleteln()
wechochar()
wecho_wchar()
werase()
wgetbkgrnd()
wgetch()
wgetnstr()
wgetn_wstr()
wgetstr()

Refer to

addch()
addchstr()
addchstr()
addnstr()
addnstr()
addnwstr()
addnwstr()
add_wech()
add_wchnstr()
add_wchnstr()
attroff()
attroff()
attroff()
attr_get()
attr_get()
attr_get()
attr_get()
bkgd()
bkgd()
bkgrnd()
bkgrnd()
border()
border_set()
chgat()
clear()
clrtobot()
clrtoeol()
syncok()
delch()
deleteln()
echochar()
echo_wechar()
clear()
bkgrnd()
getch()
getnstr()
getn_wstr()
getnstr()

* There is no corresponding function without the

w prefix.

3 The wunctrl() function is an exception to this rule and has an entry under its own name.

Chapter 2. Curses Interfaces

239

Curses

Function
wget_wch()
wget_wstr()
whline()
whline_set()
winch()
winchnstr()
winchstr()
winnstr()
winnwstr()
winsch()
winsdelln()
winsertin()
winsnstr()
winsstr()
winstr()
wins_nwstr()
wins_wch()
wins_wstr()
winwstr()
win_wch()
win_wchnstr()
win_wechstr()
wmove()
wnoutrefresh()
wprintw()
wredrawin()
wrefresh()
wscanw()
wscrl()
wsetscrreg()
wstandend()
wstandout()
wsyncdown() *
wsyncup() *
wtimeout()
wtouchin() *
wvline()
wvline_set()

* There is no corresponding function without the

w prefix.

240 0S/390 V2R4.0 C Curses

Refer to
get_wech()
getn_wstr()
hline()
hline_set()
inch()
inchnstr()
inchnstr()
innstr()
innwstr()
insch()
insdelin()
insertin()
insnstr()
insnstr()
innstr()
ins_nwstr()
ins_wch()
ins_nwstr()
innwstr()
in_wch()
in_wchnstr()
in_wchnstr()
move()
doupdate()
mvprintw()
redrawin()
doupdate()
mvscanw()
scrl()
clearok()
standend()
standend()
syncok()
syncok()
notimeout()
is_linetouch()
hline()
hline_set()

Enhanced Curses

wunctrl()

Name
wunctrl - generate printable representation of a wide character

Synopsis

#include <curses.h>

wchar_t *wunctrl(cchar_t *wc);

Description
The wunctrl() function generates a wide character string that is a printable
representation of the wide character we.
This function also performs the following processing on the input argument:
e Control characters are converted to the ~X notation.
¢ Any rendition information is removed.
Return Value
Upon successful completion, wunctrl() returns the generated string. Otherwise, it
returns a null pointer.

Errors
No errors are defined.

See Also
keyname(), unctrl(), <curses.h> .

Chapter 2. Curses Interfaces 241

Enhanced Curses

242 0S/390 V2R4.0 C Curses

Chapter 3. Headers

This chapter describes the contents of headers used by the Curses functions,
macros and external variables.

Headers contain the definition of symbolic constants, common structures,
preprocessor macros and defined types. Each function in Chapter 4 specifies the
headers that an application must include in order to use that function. In most
cases only one header is required. These headers are present on an application
development system; they do not have to be present on the target execution
system.

© Copyright IBM Corp. 1996, 1999 243

CURSES

<curses.h>

Name
curses.h - definitions for screen handling and optimization functions

Synopsis

#include <curses.h>

Description
Objects

The <curses.h> header provides a declaration for COLOR_PAIRS, COLORS,
COLS, curscr, LINES and stdscr.

Constants

The following constants are defined:

EOF Function return value for end-of-file

ERR Function return value for failure

FALSE Boolean false value

OK Function return value for success

TRUE Boolean true value

WEOF Wide-character function return value for end-of-file, as

defined in <wchar.h>.

The following constant is defined if the implementation supports the indicated
revision of the X/Open Curses specification.

_XOPEN_CURSES X/Open Curses, Issue 4 Verson 2, May 1996, C610 <ISBN>
(i.e. this document).

Data Types

The following data types are defined through typedef :

attr_t An OR-ed set of attributes

bool Boolean data type

chtype A character, attributes and a color-pair
SCREEN An opaque terminal representation
wchar_t As described in <stddef.h>

wint_t As described in <wchar.h>

cchar_t References a string of wide characters
WINDOW An opaque window representation

The inclusion of <curses.h> may make visible all symbols from the headers
<stdio.h>, <term.h>, <termios.h> and <wchar.h>.

Attribute Bits

The following symbolic constants are used to manipulate objects of type attr_t:

WA_ ALTCHARSET Alternate character set
WA BLINK Blinking

WA_ BOLD Extra bright or bold
WA_ DIM Half bright

244 0S/390 V2R4.0 C Curses

WA_ HORIZONTAL

WA_ INVIS
WA_ LEFT
WA_ LOW
WA_ PROTECT
WA_ REVERSE

WA_ RIGHT

WA_ STANDOUT

WA_ TOP

WA_ UNDERLINE
WA_ VERTICAL

CURSES

Horizontal highlight
Invisible

Left highlight

Low highlight
Protected

Reverse video
Right highlight
Best highlighting mode of the terminal
Top highlight
Underlining
Vertical highlight

These attribute flags shall be distinct.

The following symbolic constants are used to manipulate attribute bits in objects of
type chtype :

A_ALTCHARSET Alternate character set

A_BLINK Blinking

A BOLD Extra bright or bold
A _DIM Half bright

A_INVIS Invisible

A_PROTECT Protected

A REVERSE Reverse video

A_STANDOUT
A_UNDERLINE

Best highlighting mode of the terminal
Underlining

These attribute flags need not be distinct except when _XOPEN_CURSES is
defined and the application sets XOPEN_SOURCE_EXTENDED to 1.

The following symbolic constants can be used as bit-masks to extract the
components of a chtype :

A_ATTRIBUTES Bit-mask to extract attributes
A_CHARTEXT Bit-mask to extract a character
A_COLOR Bit-mask to extract color-pair information

The following symbolic constants can be used as bit-masks to extract the
components of a chtype:

A _ATTRIBUTES Bit-mask to extract attributes
A_CHARTEXT Bit-mask to extract a character
A_COLOR Bit-mask to extract color-pair information

Line-Drawing Constants

The <curses.h> header defines the symbolic constants shown in the leftmost two
columns of the following table for use in drawing lines. The symbolic constants that
begin with ACS__ are char constants. The symbolic constants that begin with
WACS_ are cchar_t constants for use with the wide-character interfaces that take a
pointer to a cchar_t.

In the POSIX locale, the characters shown in the POSIX Locale Default column are

used when the terminal database does not specify a value using the acsc
capability.

Chapter 3. Headers 245

CURSES

char Constant

ACS_ULCORNER
ACS_LLCORNER
ACS_URCORNER
ACS_LRCORNER
ACS_RTEE
ACS_LTEE
ACS_BTEE
ACS_TTEE
ACS_HLINE
ACS_VLINE
ACS_PLUS
ACS_S1
ACS_S9
ACS_DIAMOND
ACS_CKBOARD
ACS_DEGREE
ACS_PLMINUS
ACS_BULLET
ACS_LARROW
ACS_RARROW
ACS_DARROW
ACS_UARROW
ACS_BOARD
ACS_LANTERN
ACS_BLOCK

Color-Related Macros

char_t Constant

WACS_ULCORNER
WACS_LLCORNER
WACS_URCORNER
WACS_LRCORNER
WACS_RTEE
WACS_LTEE
WACS_BTEE
WACS_TTEE
WACS_HLINE
WACS_VLINE
WACS_PLUS+
WACS_S1
WACS_S9
WACS_DIAMOND
WACS_CKBOARD
WACS_DEGREE
WACS_PLMINUS
WACS_BULLET
WACS_LARROW
WACS_RARROW
WACS_DARROW
WACS_UARROW
WACS_BOARD
WACS_LANTERN
WACS_BLOCK

POSIX Locale
Default

+ + + + + + + o+

plus

>< V AN O # + |

H*H H

The following color-related macros are defined:

COLOR_BLACK
COLOR_BLUE
COLOR_GREEN
COLOR_CYAN
COLOR_RED

COLOR_MAGENTA

COLOR_YELLOW
COLOR_WHITE

Coordinate-Related Macros

The following coordinate-related macros are defined:

void getbegyx (WINDOW *win, int y, int x);
void getmaxyx (WINDOW *win, int y, int x);
void getparyx(WINDOW #win, int y, int x);
void getyx (WINDOW *win, int y, int x);

Key Codes

Glyph Description

upper left-hand corner
lower left-hand corner
upper right-hand corner
lower right-hand corner
right tee (-|)

left tee (})

bottom tee (])

top tee (])

horizontal line

vertical line

scan line 1

scan line 9
diamond

checker board (stipple)
degree symbol
plus/minus

bullet

arrow pointing left
arrow pointing right
arrow pointing down
arrow pointing up
board of squares
lantern symbol

solid square block

The following symbolic constants representing function key values are defined:

Key Code
KEY_CODE_YES

246 0S/390 V2R4.0 C Curses

Description

Used to indicate that a wchar_t variable contains a key code

KEY_BREAK
KEY_DOMWN
KEY_UP
KEY_LEFT
KEY_RIGHT
KEY_HOME
KEY_BACKSPACE
KEY_FO
KEY_F(n)
KEY_DL
KEY_IL
KEY_DC
KEY_IC
KEY_EIC
KEY_CLEAR
KEY_EOS
KEY_EOL
KEY_SF
KEY_SR
KEY_NPAGE
KEY_PPAGE
KEY_STAB
KEY_CTAB
KEY_CATAB
KEY_ENTER
KEY_SRESET
KEY_RESET
KEY_PRINT
KEY_LL
KEY_Al
KEY_A3
KEY_B2
KEY_C1
KEY_C3

CURSES

Break key

Down arrow key

Up arrow key

Left arrow key

Right arrow key

Home key

Backspace

Function keys; space for 64 keys is reserved
For 0<n<63

Delete line

Insert line

Delete character
Insert char or enter insert mode
Exit insert char mode
Clear screen

Clear to end of screen
Clear to end of line
Scroll 1 line forward
Scroll 1 line backward (reverse)
Next page

Previous page

Set tab

Clear tab

Clear all tabs

Enter or send

Soft (partial) reset
Reset or hard reset
Print or copy

Home down or bottom
Upper left of keypad
Upper right of keypad
Center of keypad
Lower left of keypad
Lower right of keypad

The virtual keypad is a 3-by-3 keypad arranged as follows:

Al UP A3
LEFT B2 RIGHT
C1 DOWN C3

Each legend, such as Al, corresponds to a symbolic constant for a key code from
the preceding table, such as KEY_AL.

The following symbolic constants representing function key values are also defined:

Key Code
KEY BTAB
KEY_BEG
KEY_CANCEL
KEY_CLOSE
KEY COMMAND
KEY_COPY

Description

Back tab key
Beginning key
Cancel key

Close key

Cmd (command) key
Copy key

Chapter 3. Headers 247

CURSES

KEY_CREATE Create key
KEY_END End key

KEY EXIT Exit key
KEY_FIND Find key
KEY_HELP Help key
KEY_MARK Mark key

KEY MESSAGE Message key
KEY_MOVE Move key
KEY_NEXT Next object key
KEY_OPEN Open key
KEY_OPTIONS Options key
KEY_PREVIOUS Previous object key
KEY_REDO Redo key

KEY_REFERENCE
KEY_REFRESH

Reference key
Refresh key

KEY_REPLACE Replace key
KEY_RESTART Restart key
KEY_RESUME Resume key
KEY_SAVE Save key

KEY_SBEG Shifted beginning key

KEY_SCANCEL
KEY_SCOMMAND

Shifted cancel key
Shifted command key

KEY_SCOPY Shifted copy key
KEY_SCREATE Shifted create key
KEY_SDC Shifted delete char key
KEY_SDL Shifted delete line key
KEY SELECT Select key

KEY_SEND Shifted end key
KEY_SEOL Shifted clear line key
KEY_SEXIT Shifted exit key
KEY_SFIND Shifted find key
KEY_SHELP Shifted help key
KEY_SHOME Shifted home key
KEY_SIC Shifted input key

KEY SLEFT Shifted left arrow key
KEY_SMESSAGE Shifted message key
KEY_SMOVE Shifted move key
KEY_SNEXT Shifted next key

KEY_SOPTIONS
KEY_SPREVIOUS

Shifted options key
Shifted prev key

KEY_SPRINT Shifted print key
KEY_SREDO Shifted redo key
KEY_ SREPLACE Shifted replace key
KEY_SRIGHT Shifted right arrow
KEY_SRSUME Shifted resume key
KEY_SSAVE Shifted save key
KEY_SSUSPEND Shifted suspend key
KEY_SUNDO Shifted undo key
KEY_SUSPEND Suspend key
KEY_UNDO Undo key

Function Prototypes

The following are declared as functions, and may also be defined as macros:

248 0S/390 V2R4.0 C Curses

int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
void
ind
void
int

int

int
int
bool
int
int
int
int
int
int
int
int
int
int

int
int
int
int
int
int
void
int
WINDOW
int
WINDOW
int
int
int

CURSES

addch(const chtype);
addchstr(const chtype *, init);
addchnstr(chtype *const chstr, int n);
addchstr(const chtype *);
addnstr(const char *, init);
addnwstr(const wchar_t *, int);
addstr(const char *);
add_wch(const cchar_t *);
add_wchnstr(const cchar_t *, int);
add_wchstr(const cchar_ t =*);
addwstr(const wchar_t *);
attroff(int);
attron(int);
attrset(int);
attr_get(attr_t *, short *, void*);
attr_off(attr_t void *);
attr on(attr_t, void *);
attr_set(attr_t, short, void *);
baudrate(void);
beep(void);
bkgd(chtype);
bkgdset(chtype);
bkgrnd(const cchar_t =*);
bkgrndset (const cchar t *);
border(chtype, chtype, chtype, chtype, chtype,
chtype, chtype, chtype);
border_set(const cchar_t *, const cchar_t =*,
const cchar_t %, const cchar_t =,
const cchar_t *, const cchar_t =,
const cchar_t *, const cchar_t *);
box (WINDOW %, chtype, chtype);
box_set(WINDOW *, const cchar_t *, const cchar t *);
can_change_color(void);
cbreak(void);
chgat(int, attr_t, short, const void *);
clearok (WINDOW *, bool);
clear(void);
clrtobot (WINDOW *win, bool bf);
clrtoeol(void);
color_content(short, short *, short *, short =*);
COLOR_PAIR(int);
Color_set(short,void *);
copywin(const WINDOW %, WINDOW %, int, int, int,
int, int, int, int);
curs_set(int);
def_prog_mode(void);
def_shell_mode(void);
delay output(int);
delch(void);
deleteln(void);
delscreen(SCREEN *);
delwin(WINDOW =*);
*derwin(WINDOW *, int, int, int, int);
doupdate(void);
*dupwin (WINDOW =) ;
echo(void);
echochar(const chtype);
echo_wchar(const cchar_ t *);

Chapter 3. Headers

249

CURSES

int endwin(void);

char erasechar(void);

int erase(void);

int erasewchar(wchar_t *);

void filter(void);

int flash(void);

int flushinp(void);

chtype getbkgd (WINDOW =);

int getbkgrnd(cchar_t *);

int getcchar(const cchar_t *, wchar_t *, attr_t *,
short *, void *);

int getch(void);

int getnstr(char *, int);

int getn wstr(wint_t *, int);

int getstr(char *);

int get_wch(wint_t *);

WINDOW *getwin(FILE *);

int get wstr(wint_t *);

int halfdelay(int);

bool has_colors(void);

bool has_ic(void);

bool has_il(void);

int hline(chtype, int);

int hline_set(const cchar t *, int);

void idcok(WINDOW *, bool);

int id1ok (WINDOW *win, bool bf);

void immedok (WINDOW *, bool);

chtype inch(void);

int inchnstr(chtype *, int);

int inchstr(chtype *);

WINDOW *initscr(void);

int init_color(short, short, short, short);

int init_pair(short, short, short);
int innstr(char *, int);
int innwstr(wchar_t *, int);

int insch(chtype);
int insdelln(int;
int insertin(void);

int insnstr(cons char %, int);

int insstr(char *const str);

int ins_nwstr(const wchar t %, int);
int insstr(const char *);

int instr(char *);
int ins_wch(const cchar_t *);

int ins_wchstr(const cchar_t *);
int intrflush(WINDOW *, bool);
int in_wch(cchar_t *);

int in_wchnstr(cchar_t *, int);
int in_wchstr(cchar_t *);

int inwstr(wchar t x);

bool isendwin(void);

bool is_Tinetouched (WINDOW *, int);
bool is_wintouched (WINDOW =*);
char xkeyname(int);

char *key name(wchar t);

int keypad (WINDOW *, bool);
char killchar(void);

int killwchar(wchar_ t =*);

250 0S/390 V2R4.0 C Curses

int
char
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
chtype
int
int
int
int
int
int
in
int
int
int
int
in
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int

CURSES

Teaveok (WINDOW *, bool);

*Tongname (void) ;

meta (WINDOW *, bool);

move(int, int);

mvaddch(int, int, const chtype);

mvaddchnstr(int, int, const chtype *, int);
mvaddchstr(int, int, const chtype *);
mvaddnstr(int, int, const char *, int);
mvaddnwstr(int, int, const wchar_t *, int);
mvaddstr(int, int, const char *);

mvadd_wch(int, int, const cchar_t *);
mvadd_wchnstr(int, int, const cchar t *, int);
mvadd_wchstr(int, int, const cchar_t *);
mvaddwstr(int, int, const wchar t *);

mvchgat(int, int, int, attr_t, short, const void *);
mvcur(int, int, int, int);

mvdelch(int, int);

mvderwin(WINDOW *, int, int);

mvgetch(int, int);

mvgetnstr(int, int, char *, int);

mvgetn wstr(int, int, wint_t *, int);
mvgetstr(int, int, char =);

mvget _wch(int, int, wint_t *);

mvget wstr(int, int, wint t =*);

mvhline(int, int, chtype, int);

mvhline set(int, int, const cchar_ t *, int);
mvinch(int, int);

mvinchnstr(int, int, chtype *, int);
mvinchstr(int, int, chtype *);

mvinnstr(int, int, char *, int);

mvinnwstr(int, int, wchar t *, int);

mvinsch(int, int, chtype);

mvinsnstr(int, int, const char *, int);
mvins_nwstr(int, int, const wchar_t *, int);
mvinsstr(int, int, const char *);

mvinstr(int, int, char *);

mvins_wch(int, int, const cchar_t *);

mvins watr(int, int, const wchar t *);
mvin_wch(int, int, cchar_t *);

mvin_wchnstr(int, int, cchar_t =*,);
mvin_wchstr(int, int, cchar_t *);

mvinwstr(int, int, wchar_t *);

mvprintw(int, int, char *, ...);

mvscanw(int, int, char *, ...);

mvvline(int, int, chtype, int);

mvvline_set(int, int, const cchar_t *, int);
mvwaddch (WINDOW *, int, int, const chtype);
mvwaddchnstr(WINDOW =, int, int, const chtype *, init);
mvwaddchstr (WINDOW *, int, int, const chtype *);
mvwaddnstr (WINDOW *, int, int, const char *, int);
mvwaddnwstr(WINDOW *, int, int, const wchar_t *, int);
mvwaddstr(WINDOW =, int, int, const char *);
mvwadd_wch(WINDOW *, int, int, const cchar t x);
mvwadd_wchnstr(WINDOW *, int, int, const cchar_t *, int);
mvwadd_wchnstr(WINDOW *, int, int, const cchar_ t =*);
mvwaddwstr(WINDOW *, int, int, const wchar_t *);
mvwchgat (WINDOW *, int, int, int, attr_t,

Chapter 3. Headers

251

CURSES

int
int
int
int
int
int
int
int
int
int
chtype
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
WINDOW
SCREEN
WINDOW
int
int
int
int
int
void
int
int
int
int
int
int
int
int
int
int
int
int
int
void
int
int
int

252 0S/390 V2R4.0 C Curses

short, const void =*);
mvwdelch (WINDOW *, int, int);
mvwgetch (WINDOW *, int, int);
mvwgetnstr(WINDOW *, int, int, char %, int);
mvwgetn_wstr(WINDOW *, int, int, wint_t *, int);
mvwgetstr(WINDOW =, int, int, char *);
mvwget wch(WINDOW *, int, int, wint_ t =*);
mvwget wstr(WINDOW *, int, int, wint_t =*);
mvwhline (WINDOW *, int, int, chtype, int);
mvwhline_set (WINDOW *, int, int, const cchar_t *, int);
mvwin(WINDOW *, int, int);
mvwinch(WINDOW *, int, int);
mvwinchnstr (WINDOW *, int, int, chtype *, int);
mvwinchstr(WINDOW *, int, int, chtype *);
mvwinnstr(WINDOW =, int, int, char *, int);
mvwinnwstr(WINDOW *, int, int, wchar_t *, int);
mvwinsch(WINDOW *, int, int, chtype);
mvwinsnstr(WINDOW *, int, int, const char %, int);
mvwins_nwstr(WINDOW *, int, int, const wchar t *, int);
mvwinsstr(WINDOW =, int, int, const char *);
mvwinstr(WINDOW *, int, int, char =*);
mvwins_wch(WINDOW *, int, int, const cchar_t *);
mvwins_wstr(WINDOW *, int, int, const wchar t *);
mvwin_wch(WINDOW *, int, int, cchar_ t =*);
mvwin_wchnstr(WINDOW *, int, int, cchar_t *, int);
mvwin_wchstr(WINDOW *, int, int, cchar_t *);
mvwinwstr(WINDOW *, int, int, wchar_t *);
mvwprintw(WINDOW =, int, int, char *, ...);
mvwscanw (WINDOW *, int, int, char *, ...);
mvwvline (WINDOW *, int, int, chtype, int);
mvwvline _set(WINDOW *, int, int, const cchar_ t *, int);
napms (int);
*newpad(int, int);
*newterm(char *, FILE *, FILE =*);
*newwin(int, int, int, int);
nl(void);
nocbreak(void);
nodelay (WINDOW *, bool);
noecho(void);
nonl(void);
noqiflush(void);
noraw(void);
notimeout (WINDOW *, bool);
overlay(const WINDOW =, WINDOW *);
overwrite(const WINDOW *, WINDOW =*);
pair_content(short, short *, short *);
PAIR_NUMBER(int);
pechochar(WINDOW *, chtype);
pecho_wchar(WINDOW *, const cchar_t *);
pnoutrefresh(WINDOW *, int, int, int, int, int, int);
prefresh(WINDOW =, int, int, int, int, int, int);
printw(char *, ...);
putp(const char x);
putwin(WINDOW *, FILE =);
qiflush(void);
raw(void);
redrawwin (WINDOW =)
refresh(void);

int resetty(void);

int reset_prog mode(void);

int reset_shell_mode(void);

int resetty(void);

int ripoffline(int, int (%) (WINDOW *, int));
int savetty(void);

int scanw(char *, ...);
int scr_dump(const char *);
int scr_init(const char *);

int scri(int);

int scrol1 (WINDOW =);

int scrolTok (WINDOW *, bool);

int scr_restore(const char *);

int scr_set(const char *);

int setcchar(cchar_t const wchar_t *, const attr_t,
short, const void *);

int setscrreg(int, int);

SCREEN *set term(SCREEN *);

int setupterm(char *, int, int *);

int slk_attr_off(const attr_t void *);

int slk_attroff(const chtype);

int s1k_attr_on(const attr_t void *);

int slk_attron(const chtype);

int s1k_attr_set(const attr_t, short, void *);

int slk_attrset(const chtype);

int s1k _clear(void);

int s1k_color(short);

int slk_init(int);

char =*slk label(int);

int s1k_noutrefresh(void);

int s1k_refresh(void);

int s1k_restore(void);

int slk_set(int, const char *, int);
int s1k_touch(void);
int slk_wset(int, const wchar_t *, int);

int standend(void);

int standout(void);

int start_color(void);

WINDOW *subpad (WINDOW *, int, int, int, int);

WINDOW *subwin(WINDOW %, int, int, int, int);

int syncok (WINDOW =, bool);

chtype termattrs(void);

attr_t term attrs(void);

char *termname(void);

int tigetflag(char *);

int tigetnum(char *);

char =*tigetstr(char *);

void timeout(int);

int touchline(WINDOW *, int, int);

int touchwin(WINDOW *);

char =tparm(char *, long, long, long, long, long, long,
long, long, long);

int typeahead(int);

int ungetch(int);

int unget_wch(const wchar_t);

int untouchwin (WINDOW =*);

void use_env(bool);

int vid_attr(attr_t short, void *);

CURSES

Chapter 3. Headers 253

CURSES

int vidattr(chtype);

int vid_puts(attr_t attr, short, void *, int (*)(int);

int vidputs(chtype, int (*)(int));

int vliine(chtype, int);

int vline_set(const cchar_ t *, int);

int vwprintw(WINDOW *, char *, va_list *);

int vw_printw(WINDOW *, char *, va_Tist *);

int vwscanw(WINDOW *, char *, va_list *);

int vw_scanw(WINDOW *, char %, va_list *);

int waddch (WINDOW *, const chtype);

int waddchnstr(WINDOW *, const chtype *, int);

int waddchstr(WINDOW *, const chtype *);

int waddnstr (WINDOW *, const char *, int);

int waddnwstr(WINDOW *, const wchar_ t *, int);

int waddstr(WINDOW *, const char =*);

int wadd_wch(WINDOW *, const cchar_t *);

int wadd_wchnstr(WINDOW *, const cchar_t *, int);

int wadd_wchstr(WINDOW *, const cchar_ t *);

int waddwstr(WINDOW *, const wchar_t *);

int wattroff (WINDOW *, int);

int wattron(WINDOW =, int);

int wattrset (WINDOW *, int);

int wattr_get (WINDOW *, attr_t *, short *, void *);

int wattr off (WINDOW *, attr t void);

int wattr _on(WINDOW *, attr t void);

int wattr_set (WINDOW =, attr t, short, void *);

int wbkgd (WINDOW =, chtype);

void wbkgdset (WINDOW *, chtype);

int wbkgrnd (WINDOW *, const cchar_ t =*);

void wbkgrndset (WINDOW *, const cchar_t *);

int wborder (WINDOW *, chtype, chtype, chtype, chtype,

chtype, chtype, chtype, chtype);

int wborder_set(WINDOW *, const cchar_t *, const cchar_t *,
const cchar_t %, const cchar_t =,
const cchar_t %, const cchar_t =,
const cchar_t *, const cchar_t *);

int wchgat (WINDOW *, int, attr_ t, short, const void *);

int wclear (WINDOW =*);

int wclrtobot (WINDOW *);

int wclrtoeol (WINDOW *);

void wcursyncup (WINDOW *);

int wcolor_set(WINDOW *, short, void *);

int wdelch (WINDOW =)

int wdeleteln(WINDOW *);

int wechochar (WINDOW *, const chtype);

int wecho_wchar(WINDOW *, const cchar_t *);

int werase (WINDOW =)

int wgetbkgrnd (WINDOW *, cchar t *);

int wgetch (WINDOW *);

int wgetnstr (WINDOW *, char *, int);

int wgetn wstr(WINDOW *, wint_t *, int);

int wgetstr(WINDOW =, char *);

int wget_wch (WINDOW *, wint t *);

int wget wstr(WINDOW *, wint_t *);

int wh1line(WINDOW *, chtype, int);

int whline set(WINDOW *, const cchar_t %, int);

chtype winch(WINDOW =) ;

int winchnstr(WINDOW *, chtype *, int ;

254 0S/390 V2R4.0 C Curses

CURSES

int winchstr(WINDOW *, chtype *);

int winnstr(WINDOW =, char *, int);

int winnwstr(WINDOW *, wchar_t *, int);
int winsch(WINDOW *, chtype);

int winsdelIn(WINDOW *, int);

int winsertIn(WINDOW *);

int winsnstr (WINDOW *, const char *, int);
int wins_nwstr(WINDOW *, const wchar_ t %, int);
int winsstr(WINDOW *, const char *);

int winstr (WINDOW *, char *);

int wins_wch(WINDOW *, const cchar_t *);
int wins_wstr(WINDOW *, const wchar_ t =*);
int win_wch(WINDOW *, cchar_t *);

int win_wchnstr(WINDOW *, cchar t *, int);
int win_wchstr(WINDOW *, cchar_ t *);

int winwstr(WINDOW *, wchar_t *);

int wmove (WINDOW =, int, int);

int wnoutrefresh (WINDOW *);

int wprintw(WINDOW *, char *, ...);

int wredrawIn (WINDOW *, int, int);

int wrefresh (WINDOW =)

int wscanw (WINDOW *, char *, ...);

int wscrl (WINDOW =, int);

int wsetscrreg(WINDOW =, int, int);

int wstandend (WINDOW =)

int wstandout (WINDOW *);

void wsyncup (WINDOW =);

void wsyncdown (WINDOW *);

void wtimeout (WINDOW *, int);

int wtouchTn(WINDOW *, int, int, int);
wchar_t *wunctrl(cchar_t *);

int wvline(WINDOW *, chtype, int);

int wvline set(WINDOW *, const cchar_t *, int);

See Also
<stdio.h> , <term.h>, <termios.h> , <unctrl.h> , <wchar.h> .

Chapter 3. Headers 255

Enhanced Curses

<term.h>

Name
term.h - terminal capabilities

Synopsis

#include <term.h>

Description
The following data type is defined through typedef :

TERMINAL An opaque representation of the capabilities for a single
terminal from the terminfo database.

The <term.h> header provides a declaration for the following object: cur_term. It
represents the current terminal record from the terminfo database that the
application has selected by calling set_curterm().

The <term.h> header contains the variable names listed in the Variable column.

The following are declared as functions, and may also be defined as macros:

int del_curterm(TERMINAL *);

int putp(const char =);

int restartterm(char *, int, int *);

TERMINAL *set curterm(TERMINAL *);

int setupterm(char *, int, int *);

int tgetent(char *, const char);

int tgetflag(char *);

int tgetnum(char *);

char =*tgetstr(char *, char *x);

char =*tgoto(char *, int, int);

int tigetflag(char *);

int tigetnum(char *);

char =*tigetstr(char *);

char =tparm(char *, long, long, long, long, long,
Tong, long, long, long);

int tputs(const char %, int, int (*)(int));

See Also
printf(), putp(), tigetflag(), tgetent(), <curses.h> .

256 0S/390 V2R4.0 C Curses

CURSES

<unctrl.h>

Name
unctrl.h - definitions for unctrl()

Description
The <unctrl.h> header defines the chtype type as defined in <curses.h>.

The following is declared as a function, and may also be defined as a macro:

char xunctrl(chtype);

See Also
unctrl(), <curses.h> .

Chapter 3. Headers 257

CURSES

258 0S/390 V2R4.0 C Curses

Chapter 4. Terminfo Source Format (ENHANCED CURSES)

The terminfo database contains a description of the capabilities of a variety of
devices, such as terminals and printers. Devices are described by specifying a set
of capabilities, by quantifying certain aspects of the device, and by specifying
character sequences that effect particular results.

This chapter specifies the format of terminfo source files.

X/Open-compliant implementations provide a facility that accepts source files in the
format specified in this chapter as a means of entering information into the
terminfo database. The facility for installing this information into the database is
implementation-specific. A valid terminfo entry describing a given model of
terminal can be added to terminfo on any X/Open-compliant implementation to
permit use of the same terminal model.

The terminfo database is often used by screen-oriented applications such as vi
and Curses programs, as well as by some utilities such as Is and more. This
usage allows them to work with a variety of devices without changes to the
programs.

© Copyright IBM Corp. 1996, 1999 259

Source File Syntax

Source File Syntax

Source files can use the ISO 8859-1 codeset. The behavior when the source file is
in another codeset is unspecified. Traditional practice has been to translate
information from other codesets into the source file syntax.

terminfo source files consist of one or more device descriptions. Each description
defines a mnemonic name for the terminal model. Each description consists of a
header (beginning in column 1) and one or more lines that list the features for that
particular device. Every line in a terminfo source file must end in a comma. Every
line in a terminfo source file except the header must be indented with one or more
white spaces (either spaces or tabs).

Entries in terminfo source files consist of a number of comma-separated fields.
White space after each comma is ignored. Embedded commas must be escaped
by using a backslash. The following example shows the format of a terminfo
source file:

aliasl | alias2 | ... | aliasn | longname,
<white space> am, lines #24,
<white space> home=\Eeh,

The first line, commonly referred to as the header line, must begin in column one
and must contain at least two aliases separated by vertical bars. The last field in
the header line must be the long name of the device and it may contain any string.

Alias names must be unique in the terminfo database and they must conform to
file naming conventions established by implementation-specific terminfo
compilation utilities. Implementations will recognize alias names consisting only of
characters from the portable filename character set except that implementations
need not accept a first character of minus(-). For example, a typical restriction is
that they cannot contain white space or slashes. There may be further constraints
imposed on source file values by the implementation-specific terminfo compilation
utilities.

Each capability in terminfo is of one of the following types:

¢ Boolean capabilities show that a device has or does not have a particular
feature.

¢ Numeric capabilities quantify particular features of a device.

e String capabilities provide sequences that can be used to perform particular
operations on devices.

Capability names adhere to an informal length limit of five characters. Whenever
possible, capability names are chosen to be the same as or similar to those
specified by the ANSI X3.64-1979 standard. Semantics are also intended to match
those of the ANSI standard.

All string capabilities may have padding specified, with the exception of those used
for input. Input capabilities, listed under the Strings section in the following tables,
have names beginning with key . These capabilities are defined in <term.h>.

260 0S/390 V2R4.0 C Curses

Minimum Guaranteed Limits

Source File Syntax

All X/Open-compliant implementations support at least the following limits for the

terminfo source file:

Source File Characteristic

Minimum Guaranteed Value

numeric value

Length of a line 1023 bytes
Length of a terminal alias 14 bytes
Length of a terminal model name 128 bytes
Width of a single field 128 bytes
Length of a string value 1000 bytes
Length of a string representing a 99 digits

Magnitude of a numeric value

0 up to and including 32767

An implementation may support higher limits than those specified above.

Formal Grammar

The grammar and lexical conventions in this section together describe the syntax
for terminfo terminal descriptions within a terminfo source file. A terminal
description that satisfies the requirements of this section will be accepted by all

implementations.

Chapter 4. Terminfo Source Format (ENHANCED CURSES) 261

Source File Syntax

descriptions : START_OF_HEADER LINE* rest_of_header_Tine feature_lines
| descriptions START OF HEADER LINE rest of header line
| feature_lines

rest_of_header_line : PIPE LONGNAME COMMA NEWLINE
| aliases PIPE LONGNAME COMMA NEWLINE

t

feature_lines : start_feature_line rest_of_feature_line
| feature lines start feature line rest_of feature line

bl

start_feature line : START_FEATURE_LINE_BOOLEANS
| START_FEATURE_LINE_NUMERICS
| START_FEATURE_LINE_STRING?

t

rest of feature line : features COMMA NEWLINE
| COMMA NEWLINE

E]

features : COMMA feature
| features COMMA feature

t

aliases : PIPE ALIAS
| aliases PIPE ALIAS

t

feature : BOOLEAN
| NUMERIC
| STRING

t]

The lexical conventions for terminfo descriptions are as follows:
1. White space consists of the ‘' and <tab> character.
2. An ALIAS may contain any graph® characters other than *,",'/’ and ‘|'.
3. A LONGNAME may contain any print® characters other than ‘,;" and ‘|'.
4. A BOOLEAN feature may contain any print characters other than ‘;’, ‘=", and #'.
5. A NUMERIC feature consists of:

a. A name which may contain any print character other than ‘;’, ‘=, and ‘#.

4 An ALIAS that begins in column one. This is handled by the lexical analyzer.

5 A BOOLEAN feature that begins after column one but is the first feature on the feature line. This is handled by the lexical
analyzer.

6 A NUMERIC feature that begins after column one but is the first feature on the feature line. This is handled by the lexical
analyzer.

7 A STRING feature that begins after column one but is the first feature on the feature line. This is handled by the lexical analyzer.
8 Graph characters are those characters for which isgraph() returns non-zero.
9 Print characters are those characters for which isprint() returns non-zero.

262 0S/390 V2R4.0 C Curses

Source File Syntax

b. The ‘# character.

c. A positive integer which conforms to the C language convention for integer
constants.

. A STRING feature consists of:

a. A name which may contain any print character other than ‘;’, ‘=, and ‘#'.
b. The ‘=" character.

c. A string which may contain any print characters other than *,.

. White space immediately following a ‘,’ is ignored.

. Comments consist of <bol>, optional whitespace, a required ‘#, and a

terminating <eol>.

. A header line must begin in column one.
10.
11.

A feature line must not begin in column one.

Blank lines are ignored.

Defined Capabilities

X/Open defines the capabilities listed in the following table. All X/Open-compliant
implementations must accept each of these capabilities in an entry in a terminfo
source file. Implementations use this information to determine how properly to
operate the current terminal. In addition, implementations return any of the current
terminal's capabilities when the application calls the query functions listed in
tgetent().

The table of capabilities has the following columns:

Variable Names for use by the Curses functions that operate on the terminfo

database. These names are reserved and the application must not
define them.

Capname The short name for a capability specified in the terminfo source file.

It is used for updating the source file and by the tput command.

Termcap Codes provided for compatibility with older applications. These codes

are TO BE WITHDRAWN. Because of this, not all Capnames have
Termcap codes.

Booleans
Cap- Term- Description
Variable name cap
auto_Tleft_margin bw bw cubl wraps from column O
to last column
auto_right margin am am Terminal has automatic
margins
back_color_erase bce ut Screen erased with
background color
can_change cce cc Terminal can re-define
existing color
ceol_standout_gTlitch xhp XS Standout not erased by
overwriting (hp)
col_addr_glitch xhpa YA Only positive motion for

hpa/mhpa caps

Chapter 4. Terminfo Source Format (ENHANCED CURSES) 263

Source File Syntax

Cap- Term- Description

Variable name cap

cpi_changes_res cpix YF Changing character pitch
changes resolution

cr_cancels_micro_mode crxm YB Using cr turns off micro
mode

dest_tabs_magic_smso xt xt Destructive tabs, magic
smso char (t1061)

eat _newline glitch xenl xn Newline ignored after 80
columns (Concept)

erase_overstrike eo eo Can erase overstrikes with a
blank

generic_type gn gn Generic line type (e.g.,
dialup, switch)

hard_copy hc hc Hardcopy terminal

hard_cursor chts HC Cursor is hard to see

has_meta_key km km Has a meta key (shift, sets
parity bit)

has_print_wheel daisy YC Printer needs operator to
change character set

has_status_line hs hs Has extra "status line"

hue Tightness_saturation hls h1 Terminal uses only HLS
color notation (Tektronix)

insert_null_glitch in in Insert mode distinguishes
nulls

1pi_changes_res Ipix YG Changing line pitch changes
resolution

memory_above da da Display may be retained
above the screen

memory_below db db Display may be retained
below the screen

move_insert _mode mir mi Safe to move while in insert
mode

move_standout_mode msgr ms Safe to move in standout
modes

needs_xon_xoff nxon nx Padding won't work, xon/xoff
required

no_esc_ctlc xsb xb Beehive (fl=escape, f2=ctrl
C)

no_pad_char npc NP Pad character doesn't exist

non_dest scroll _region ndscr ND Scrolling region is
nondestructive

non_rev_rmcup nrrmce NR smcup does not reverse
rmecup

over_strike 0s 0s Terminal overstrikes on
hard-copy terminal

prtr_silent mc5i 5i Printer won't echo on screen

row_addr_glitch Xvpa YD Only positive motion for
vpa/mvpa caps

semi_auto_right margin sam YE Printing in last column
causes cr

status_line_esc_ok eslok es Escape can be used on the

264 0S/390 V2R4.0 C Curses

status line

Source File Syntax

Cap- Term- Description

Variable name cap

tilde_glitch hz hz Hazeltine; can't print tilde (")

transparent_underline ul ul Underline character
overstrikes

xon_xoff xon X0 Terminal uses xon/xoff
handshaking

Numbers

Cap- Term- Description

Variable name cap

bit_image_entwining bitwin Yo Number of passes for each
bit-map row

bit_image_type bitype Yp Type of bit image device

buffer capacity bufsz Ya Number of bytes buffered
before printing

buttons btns BT Number of buttons on the
mouse

columns cols co Number of columns in a line

dot_horz_spacing spinh Yc Spacing of dots horizontally
in dots per inch

dot_vert_spacing spinv Yb Spacing of pins vertically in
pins per inch

init_tabs it it Tabs initially every # spaces

label_height Ih Th Number of rows in each
label

Tabel width Iw Tw Number of columns in each
label

Tines lines 11 Number of lines on a screen
or a page

Tines_of memory Im Tm Lines of memory if > lines;
0 means varies

max_attributes ma ma Maximum combined video
attributes terminal can
display

magic_cookie_glitch xmc sg Number of blank characters
left by smso or rmso

max_colors colors Co Maximum number of colors
on the screen

max_micro_address maddr Yd Maximum value in
micro_..._address

max_micro_jump mjump Ye Maximum value in
parm_..._micro

max_pairs pairs pa Maximum number of
color-pairs on the screen

maximum_windows wnum MW Maximum number of
definable windows

micro_col_size mcs Yf Character step size when in
micro mode

micro_line_size mls Yg Line step size when in micro

mode

Chapter 4. Terminfo Source Format (ENHANCED CURSES) 265

Source File Syntax

Cap- Term- Description

Variable name cap

no_color_video ncv NC Video attributes that can't be
used with colors

num_labels nlab N1 Number of labels on screen
(start at 1)

number_of pins npins Yh Number of pins in print-head

output_res_char orc Yi Horizontal resolution in units
per character

output_res_Tine orl Yj Vertical resolution in units
per line

output_res_horz_inch orhi Yk Horizontal resolution in units
per inch

output_res_vert_inch orvi Y1 Vertical resolution in units
per inch

padding_baud_rate pb pb Lowest baud rate where
padding needed

print_rate cps Ym Print rate in characters per
second

virtual_terminal vt vt Virtual terminal number

wide_char_size widcs Yn Character step size when in
double-wide mode

width_status_line wsl WS Number of columns in status
line

Strings
Cap- Term- Description

Variable name cap

acs_chars acsc ac Graphic charset pairs
aAbBcC

alt scancode _esc scesa S8 Alternate escape for
scancode emulation (default
is for VT100)

back_tab cht bt Back tab

bell bel b1 Audible signal (bell)

bit_image_carriage_return bicr Yv Move to beginning of same
row

bit_image newline binel 7z Move to next row of the bit
image

bit_image_repeat birep Xy Repeat bit-image cell #1 #2
times

carriage_return cr cr Carriage return

change_char_pitch cpi ZA Change number of
characters per inch

change_line_pitch Ipi ZB Change number of lines per
inch

change_res_horz chr ZC Change horizontal resolution

change_res_vert cvr ZD Change vertical resolution

change_scroll_region csr cs Change to lines #1 through
#2 (VT100)

char_padding rmp rpP Like ip but when in replace

266 0S/390 V2R4.0 C Curses

mode

Source File Syntax

Cap- Term- Description

Variable name cap

char_set_names csnm Zy Returns a list of character
set names

clear_all_tabs thc ct Clear all tab stops

clear_margins mgc MC Clear all margins (top,
bottom, and sides)

clear_screen clear cl Clear screen and home
cursor

clr_bol ell ch Clear to beginning of line,
inclusive

clr_eol el ce Clear to end of line

clr_eos ed cd Clear to end of display

code_set_init csin ci Init sequence for multiple
codesets

color_names colornrm Yw Give name for color #1

column_address hpa ch Set horizontal position to
absolute #1

command_character cmdch cC Terminal settable cmd
character in prototype

create_window cwin CW Define win #1 to go from
#2 #3 to #4,#5

cursor_address cup cm Move to row #1 col #2

cursor_down cudl do Down one line

cursor_home home ho Home cursor (if no cup)

cursor_invisible civis vi Make cursor invisible

cursor_left cubl Te Move left one space.

cursor_mem_address mrcup CM™ Memory relative cursor
addressing

cursor_normal chorm ve Make cursor appear normal
(undo vsl/vi)

cursor_right cufl nd Non-destructive space
(cursor or carriage right)

cursor_to 11 I 11 Last line, first column (if no
cup)

cursor_up cuul up Upline (cursor up)

cursor_visible Cwvis Vs Make cursor very visible

define_bit_image region defbi Yx Define rectangular bit-image
region

define_char defc ZE Define a character in a
character set

delete character dchl dc Delete character

delete_line dil dl Delete line

device_type devt dv Indicate language/codeset
support

dial_phone dial DI Dial phone number #1

dis_status_Tine dsl ds Disable status line

display_clock dclk DK Display time-of-day clock

display_pc_char dispc S1 Display PC character

down_half _Tine hd hd Half-line down (forward 1/2
linefeed)

ena_acs enacs eA Enable alternate character

set

Chapter 4. Terminfo Source Format (ENHANCED CURSES) 267

Source File Syntax

Cap- Term- Description
Variable name cap
end_bit_image_region endbi Yy End a bit-image region
enter_alt_charset_mode smacs as Start alternate character set
enter_am mode smam SA Turn on automatic margins
enter_blink mode blink mb Turn on blinking
enter_bold_mode bold md Turn on bold (extra bright)
mode
enter_ca_mode smcup ti String to begin programs
that use cup
enter_delete_mode smdc dm Delete mode (enter)
enter_dim_mode dim mh Turn on half-bright mode
enter_doublewide mode swidm ZF Enable double wide printing
enter_draft quality sdrfq G Set draft quality print
enter_horizontal_h1_mode ehhlm Turn on horizontal highlight
mode
enter_insert_mode smir im Insert mode (enter)
enter_italics_mode sitm ZH Enable italics
enter_left_hl_mode elhim Turn on left highlight mode
enter_leftward_mode slm Z1 Enable leftward carriage
motion
enter_Tow_h1l_mode elohim Turn on low highlight mode
enter_micro_mode smicm ZJ Enable micro motion
capabilities
enter _near_letter_quality snlq ZK Set near-letter quality print
enter normal_quality snrmq ZL Set normal quality print
enter_pc_charset_mode smpch S2 Enter PC character display
mode
enter_protected mode prot mp Turn on protected mode
enter_reverse _mode rev mr Turn on reverse video mode
enter_right_hl_mode erhim Turn on right highlight mode
enter_scancode_mode smsc S4 Enter PC scancode mode
enter_secure_mode invis mk Turn on blank mode
(characters invisible)
enter_shadow_mode sshm M Enable shadow printing
enter_standout_mode Smso so Begin standout mode
enter_subscript_mode ssubm N Enable subscript printing
enter_superscript_mode ssupm Z0 Enable superscript printing
enter_top_hl_mode ethim Turn on top highlight mode
enter_underline_mode smul us Start underscore mode
enter_upward_mode sum ZP Enable upward carriage
motion
enter_vertical_hl_mode evhim Turn on vertical highlight
mode
enter_xon_mode smxon SX Turn on xon/xoff
handshaking
erase_chars ech ec Erase #1 characters
exit_alt_charset_mode rmacs ae End alternate character set
exit_am mode rmam RA Turn off automatic margins
exit_attribute _mode sgr0 me Turn off all attributes
exit_ca_mode rmecup te String to end programs that
use cup
exit_delete_mode rmdc ed End delete mode

268 0S/390 V2R4.0 C Curses

Source File Syntax

Cap- Term- Description
Variable name cap
exit_doublewide_mode rwidm ZQ Disable double wide printing
exit_insert_mode rmir ei End insert mode
exit_italics_mode ritm ZR Disable italics
exit_leftward mode rim A Enable rightward (normal)
carriage motion
exit_micro_mode rmicm T Disable micro motion
capabilities
exit_pc_charset mode rmpch S3 Disable PC character
display mode
exit_scancode_mode rmsc S5 Disable PC scancode mode
exit_shadow_mode rshm YAl Disable shadow printing
exit_standout mode rmso se End standout mode
exit_subscript_mode rsubm A" Disable subscript printing
exit_superscript_mode rsupm ZW Disable superscript printing
exit_underline_mode rmul ue End underscore mode
exit_upward mode rum ZX Enable downward (normal)
carriage motion
exit_xon_mode rmxon RX Turn off xon/xoff
handshaking
fixed pause pause PA Pause for 2-3 seconds
flash_hook hook fh Flash the switch hook
flash_screen flash vb Visible bell (may move
cursor)
form_feed ff ff Hardcopy terminal page
eject
from_status_line fsl fs Return from status line
get_mouse getm Gm Curses should get button
events
goto_window wingo WG Go to window #1
hangup hup HU Hang-up phone
init_Istring isl il Terminal or printer
initialization string
init_2string is2 is Terminal or printer
initialization string
init_3string is3 i3 Terminal or printer
initialization string
init_file if if Name of initialization file
init_prog iprog iP Path name of program for
initialization
initialize_color initc IC Set color #1 to RGB #2, #3,
#4
initialize_pair initp Ip Set color-pair #1 to fg #2, bg
#3
insert character ichl ic Insert character
insert_line i1 al Add new blank line
insert padding ip ip Insert pad after character
inserted

Note: The “key_ " strings are sent by specific keys. The “key " descriptions
include the macro, defined in <curses.h>, for the code returned by getch() when
the key is pressed (see getch()).

key al kal K1 upper left of keypad

Chapter 4. Terminfo Source Format (ENHANCED CURSES) 269

Source File Syntax

Cap- Term- Description

Variable name cap

key a3 ka3 K3 upper right of keypad

key b2 kb2 K2 center of keypad

key backspace kbs kb sent by backspace key

key beg kbeg e1 sent by beg(inning) key

key btab kebt kB sent by back-tab key

key cl kcl K4 lower left of keypad

key c3 ke3 K5 lower right of keypad

key cancel kcan @2 sent by cancel key

key catab ktbc ka sent by clear-all-tabs key

key_clear kclr kC sent by clear-screen or
erase key

key close kclo @3 sent by close key

key_command kemd @4 sent by cmd (command) key

key copy kcpy @5 sent by copy key

key create kert @6 sent by create key

key ctab kctab kt sent by clear-tab key

key dc kdchl kD sent by delete-character key

key dT kdl1 kL sent by delete-line key

key down kcudl kd sent by terminal down-arrow
key

key eic krmir kM sent by rmir or smir in
insert mode

key end kend @7 sent by end key

key enter kent @8 sent by enter/send key

key eol kel kE sent by clear-to-end-of-line
key

key_eos ked kS sent by
clear-to-end-of-screen key

key exit kext @9 sent by exit key

key f0 kfO ko sent by function key fO

key f1 kfl k1 sent by function key f1

key f62 kf62 Fq sent by function key 62

key f63 kf63 Fr sent by function key f63

key find kfnd @0 sent by find key

key help khip %1 sent by help key

key home khome kh sent by home key

key ic kichl kI sent by ins-char/enter
ins-mode key

key i1 kill kA sent by insert-line key

key left kcubl k1 sent by terminal left-arrow
key

key 1T kil kH sent by home-down key

key mark kmrk %2 sent by mark key

key message kmsg %3 sent by message key

key _mouse kmous Km 0631, Mouse event has
occurred

key move kmov %0 sent by move key

key next knxt %5 sent by next-object key

key npage knp kN sent by next-page key

270 0S/390 V2R4.0 C Curses

Source File Syntax

Cap- Term- Description

Variable name cap

key _open kopn %6 sent by open key

key options kopt %7 sent by options key

key ppage kpp kP sent by previous-page key

key previous kprv %8 sent by previous-object key

key print kprt %9 sent by print or copy key

key redo krdo %0 sent by redo key

key reference kref &1 sent by ref(erence) key

key refresh krfr &2 sent by refresh key

key replace krpl &3 sent by replace key

key restart krst &4 sent by restart key

key resume kres &5 sent by resume key

key right kcufl kr sent by terminal right-arrow
key

key save ksav %6 sent by save key

key sbeg kBEG &9 sent by shifted beginning
key

key_scancel kCAN 0 sent by shifted cancel key

key scommand kCMD *1 sent by shifted command
key

key scopy kCPY *2 sent by shifted copy key

key screate kCRT *3 sent by shifted create key

key sdc kDC *4 sent by shifted delete-char
key

key sdl kDL *5 sent by shifted delete-line
key

key select kslt *6 sent by select key

key send KEND *7 sent by shifted end key

key seol KEOL *8 sent by shifted clear-line key

key sexit KEXT *9 sent by shifted exit key

key sf kind kF sent by scroll-forward/down
key

key sfind kFND *0 sent by shifted find key

key shelp kHLP #1 sent by shifted help key

key shome kHOM #2 sent by shifted home key

key sic kiC #3 sent by shifted input key

key sleft KLFT #4 sent by shifted left-arrow key

key smessage kMSG %a sent by shifted message key

key smove kMOV %b sent by shifted move key

key snext KNXT %C sent by shifted next key

key soptions kOPT %d sent by shifted options key

key sprevious kPRV %e sent by shifted prev key

key sprint kPRT %f sent by shifted print key

key sr kri kR sent by scroll-backward/up
key

key sredo kRDO %g sent by shifted redo key

key sreplace kRPL %h sent by shifted replace key

key sright kRIT %i sent by shifted right-arrow
key

key_srsume kRES %3 sent by shifted resume key

key ssave kSAV 11 sent by shifted save key

key ssuspend kSPD 12 sent by shifted suspend key

Chapter 4. Terminfo Source Format (ENHANCED CURSES) 271

Source File Syntax

Cap- Term- Description

Variable name cap

key stab khts kT sent by set-tab key

key sundo kUND 13 sent by shifted undo key

key suspend kspd &7 sent by suspend key

key undo kund &8 sent by undo key

key up kcuul ku sent by terminal up-arrow
key

keypad local rmkx ke Out of “keypad-transmit”
mode

keypad_xmit smkx ks Put terminal in
“keypad-transmit” mode

Tab_f0 If0 10 Labels on function key fO if
not fO

lab_f1 If1 11 Labels on function key f1 if
not f1

lab_f2 If2 12 Labels on function key f2 if
not f2

lab_f3 If3 13 Labels on function key f3 if
not 3

lab_f4 If4 14 Labels on function key f4 if
not f4

lab_f5 If5 15 Labels on function key f5 if
not f5

Tab_f6 If6 16 Labels on function key f6 if
not f6

lab_f7 If7 17 Labels on function key f7 if
not 7

lab_f8 If8 18 Labels on function key f8 if
not f8

lab_f9 If9 19 Labels on function key f9 if
not f9

lab_f10 If10 la Labels on function key f10 if
not f10

label_format fln Lf Label format

Tabel_off rmin LF Turn off soft labels

Tabel_on smin LO Turn on soft labels

meta_off rmm mo Turn off "meta mode"

meta_on smm mm Turn on "meta mode" (8th
bit)

micro_column_address mhpa ZY Like column_address for
micro adjustment

micro_down mcudl 77 Like cursor_down for micro
adjustment

micro_left mcubl Za Like cursor_left for micro
adjustment

micro_right mcufl Zb Like cursor_right for micro
adjustment

micro_row_address mvpa Zc Like row_address for micro
adjustment

micro_up mcuul Zd Like cursor_up for micro
adjustment

mouse_info minfo Mi Mouse status information

272 0S/390 V2R4.0 C Curses

Source File Syntax

Cap- Term- Description

Variable name cap

newline nel nw Newline (behaves like cr
followed by [f)

order_of pins porder Ze Matches software bits to
print-head pins

orig_colors oc oc Set all color(-pair)s to the
original ones

orig_pair op op Set default color-pair to the
original one

pad_char pad pc Pad character (rather than
null)

parm_dch dch DC Delete #1 chars

parm_delete Tine di DL Delete #1 lines

parm_down_cursor cud DO Move down #1 lines.

parm_down_micro mcud Zf Like parm_down_cursor for
micro adjust.

parm_ich ich IC Insert #1 blank chars

parm_index indn SF Scroll forward #1 lines.

parm_insert line il AL Add #1 new blank lines

parm_Teft_cursor cub LE Move cursor left #1 spaces

parm_left micro mcub yAs| Like parm_left_cursor for
micro adjust.

parm_right_cursor cuf RI Move right #1 spaces.

parm_right _micro mcuf Zh Like parm_right_cursor for
micro adjust.

parm_rindex rin SR Scroll backward #1 lines.

parm_up_cursor cuu up Move cursor up #1 lines.

parm_up_micro mcuu Zi Like parm_up_cursor for
micro adjust.

pc_term_options pctrm S6 PC terminal options

pkey key pfkey pk Prog funct key #1 to type
string #2

pkey local pfloc pl Prog funct key #1 to execute
string #2

pkey plab pfx x1 Prog key #1 to xmit string
#2 and show string #3

pkey xmit pfx pX Prog funct key #1 to xmit
string #2

plab_norm pin pn Prog label #1 to show string
#2

print_screen mcO ps Print contents of the screen

prtr_non mcSp p0 Turn on the printer for #1
bytes

prtr_off mc4 pf Turn off the printer

prtr_on mc5 po Turn on the printer

pulse pulse PU Select pulse dialing

quick _dial gdial QD Dial phone number #1,
without progress detection

remove_clock rmclk RC Remove time-of-day clock

repeat_char rep rp Repeat char #1 #2 times

req_for_input rfi RF Send next input char (for

ptys)

Chapter 4. Terminfo Source Format (ENHANCED CURSES) 273

Source File Syntax

Cap- Term- Description

Variable name cap

req_mouse_pos reqgmp RQ Request mouse position
report

reset Istring rsl rl Reset terminal completely to
sane modes

reset 2string rs2 r2 Reset terminal completely to
sane modes

reset 3string rs3 r3 Reset terminal completely to
sane modes

reset_file rf rf Name of file containing reset
string

restore_cursor rc rc Restore cursor to position of
last sc

row_address vpa cv Set vertical position to
absolute #1

save_cursor sc sc Save cursor position

scancode_escape scesc S7 Escape for scancode
emulation

scroll_forward ind sf Scroll text up

scroll_reverse ri sr Scroll text down

select _char set scs Zj Select character set

set0_des_seq sOds s0 Shift into codeset 0 (EUC
set 0, ASCII)

setl des_seq slds sl Shift into codeset 1

set2 des_seq s2ds s2 Shift into codeset 2

set3_des_seq s3ds s3 Shift into codeset 3

set_a_attributes sgrl Define second set of video
attributes #1-#6

set_a_background setab AB Set background color to #1
using ANSI escape

set_a foreground setaf AF Set foreground color to #1
using ANSI escape

set_attributes sgr sa Define first set of video
attributes #1-#9

set_background setb Sb Set background color to #1

set_bottom margin smgb Zk Set bottom margin at current
line

set_bottom margin_parm smgbp Z1 Set bottom margin at line #1
or #2 lines from bottom

set_clock sclk SC Set clock to hours (#1),
minutes (#2), seconds (#3)

set_color_band setcolor Yz Change to ribbon color #1

set_color_pair scp sp Set current color pair to #1

set_foreground setf Sf Set foreground color to #1

set_left margin smgl ML Set left margin at current
column

set left margin_parm smglp m Set left (right) margin at
column #1 (#2)

set_1r margin smglr ML Sets both left and right
margins

set_page_length slines YZ Set page length to #1 lines

274 0S/390 V2R4.0 C Curses

Source File Syntax

Cap- Term- Description

Variable name cap

set_pglen_inch slength YI Set page length to #1
hundredth of an inch

set_right_margin smgr MR Set right margin at current
column

set_right_margin_parm smgrp Zn Set right margin at column
#1

set_tab hts st Set a tab in all rows, current
column

set_tb_margin smgtb MT Sets both top and bottom
margins

set_top_margin smgt Z0 Set top margin at current
line

set_top_margin_parm smgtp Zp Set top (bottom) margin at
line #1 (#2)

set_window wind wi Current window is lines
#1-#2 cols #3-#4

start_bit_image shim Zq Start printing bit image
graphics

start_char_set def scsd Zr Start definition of a
character set

stop_bit_image rbim Zs End printing bit image
graphics

stop_char_set def rcsd Zt End definition of a character
set

subscript_characters subcs Zu List of “subscript-able”
characters

superscript_characters supcs Zv List of “superscript-able”
characters

tab ht ta Tab to next 8-space
hardware tab stop

these cause cr docr Zw Printing any of these chars
causes cr

to_status_line tsl ts Go to status line, col #1

tone tone TO0 Select touch tone dialing

usero uo uo User string O

userl ul ul User string 1

user2 u2 u2 User string 2

user3 u3 u3 User string 3

userd u4 ud User string 4

users u5 ub User string 5

user6 ué ub User string 6

user/ uv u’7 User string 7

user8 u8 u8 User string 8

user9 u9 u9 User string 9

underline_char uc uc Underscore one char and
move past it

up_half_Tine hu hu Half-line up (reverse 1/2
linefeed)

wait_tone wait WA Wait for dial tone

xoff_character xoffc XF X-off character

xon_character xonc XN X-on character

Chapter 4. Terminfo Source Format (ENHANCED CURSES) 275

Source File Syntax

Cap- Term- Description
Variable name cap
zero_motion zerom Zx No motion for the

subsequent character

Sample Entry
The following entry describes the AT&T 610 terminal.

610|610bct |ATT610|att610|AT&T610;80c01umn;98key keyboard,
am, eslok, hs, mir, msgr, xenl, xon,
cols#80, it#8, Th#2, Tines#24, 1w#8, nlab#8, ws1#80,
acsc= aaffggjjkkllmmnnooppqqrrssttuuvvwwxxyyzz{{||}} "
be1="G, blink=\E[5m, bold=\E[1m, cbt=\E[Z,
civis=\E[251, clear=\E[H\E[J, cnorm=\E[25h\E[121,
cr=\r, csr=\E[%i%pl%d;%p2%dr, cub=\E[%pl1%dD, cubl=\b,
cud=\E[%p1%dB, cudl=\E[B, cuf=\E[%p1%dC, cufl=\E[C,
cup=\E[%1%p1%d;%p2%dH, cuu=\E[%p1%dA, cuul=\E[A,
cvvis=\E[12;25h, dch=\E[%p1%dP, dch1=\E[P, dim=\E[2m,
d1=\E[%p1%dM, d11=\E[M, ed=\E[J, el=\E[K, ell=\E[IK,
flash=\E[5h$<200>\E[51, fs1=\E8, home=\E[H, ht=\t,
ich=\E[%p1%d@, i1=\E[%pl1%dL, i11=\E[L, ind=\ED, .ind=\ED$<9>,
invis=\E[8m,
is1=\E[8;0 | \E[3;4;5;13;15T\E[13;20T\E[7h\E[12h\E(B\E)O,
is2=\E[Om™0, is3=\E(B\E)0O, kLFT=\E[\s@, kRIT=\E[\sA,
kbs="H, kcbt=\E[Z, kclr=\E[2J, kcubl=\E[D, kcudl=\E[B,
kcufl=\E[C, kcuul=\E[A, kfP=\EOc, kfPO=\ENp,
kfP1=\ENq, kfP2=\ENr, kfP3=\ENs, kfP4=\ENt, kfI=\EOd,
kfB=\EOe, kf4=\EOf, kf(CW=\EOg, kf6=\EOh, kf7=\EO1i,
kf8=\E0j, kf9=\ENo, khome=\E[H, kind=\E[S, kri=\E[T,
11=\E[24H, mc4=\E[4i, mc5=\E[51, nel=\EE,
pfx1=\E[%p1%d;%p2%1%02dq%%p1%{9}%<%t\s\s\sF%p1%1d\s\s\s\s\s

\s\s\s\s\s\s%;%p2%s,
pIn=\E[%p1%d;0;0;0q%p2%:-16.16s, rc=\E8, rev=\E[7m,
ri=\EM, rmacs="0, rmir=\E[41, rmIn=\E[2p, rmso=\E[m,
rmul=\E[m, rs2=\Ec\E[31, sc=\E7,

sgr=\E[0%%p6%t ; 1%;%%p5%t ;2% ;%%p2%t ;4% ;%%pa%t ;5%;
%%p3%pl% | %t;7%;%%p7%t;8%;m%%p9%t "N%e™0%; ,

sgr0=\E[m™0, smacs="N, smir=\E[4h, smin=\E[p,

smso=\E[7m, smul=\E[4m, ts1=\E7\E[25;%i%pl%dx,

Types of Capabilities in the Sample Entry
The sample entry shows the formats for the three types of terminfo capabilities:
Boolean, numeric, and string. All capabilities specified in the terminfo source file
must be followed by commas, including the last capability in the source file. In
terminfo source files, capabilities are referenced by their capability names (as
shown in the Capname column of the previous tables).

Boolean Capabilities

A boolean capability is true if its Capname is present in the entry, and false if its
Capname is not present in the entry.

The ‘@’ character following a Capname is used to explicitly declare that a boolean
capability is false.

276 0S/390 V2R4.0 C Curses

Source File Syntax

Numeric Capabilities

Numeric capabilities are followed by the character ‘# and then a positive integer
value. The example assigns the value 80 to the cols numeric capability by coding:

cols#80

Values for numeric capabilities may be specified in decimal, octal or hexadecimal,
using normal C-language conventions.

String Capabilities

String-valued capabilities such as el (clear to end of line sequence) are listed by
the Capname, an ‘=', and a string ended by the next occurrence of a comma.

A delay in milliseconds may appear anywhere in such a capability, preceded by $
and enclosed in angle brackets, as in el=\EK$<3>. The Curses implementation
achieves delays by outputting to the terminal an appropriate number of
system-defined padding characters. The tputs() function provides delays when
used to send such a capability to the terminal.

The delay can be any of the following: a number, a number followed by an
asterisk, such as 5*, a number followed by a slash, such as 5/, or a number
followed by both, such as 5*/.

* A " shows that the required delay is proportional to the number of lines
affected by the operation, and the amount given is the delay required per
affected unit. (In the case of insert characters, the factor is still the number of
lines affected. This is always 1 unless the device has in and the software uses
it.) When a ' is specified, it is sometimes useful to give a delay of the form 3.5
to specify a delay per unit to tenths of milliseconds. (Only one decimal place is
allowed.)

* A ‘I indicates that the delay is mandatory and padding characters are
transmitted regardless of the setting of xon. If /" is not specified or if a device
has xon defined, the delay information is advisory and is only used for cost
estimates or when the device is in raw mode. However, any delay specified for
bel or flash is treated as mandatory.

Chapter 4. Terminfo Source Format (ENHANCED CURSES) 277

The following notation is valid in terminfo source files for specifying special

characters:

Notation Represents Character
X Control-x (for any appropriate x)
\a Alert
\b Backspace

\E or \e An ESCAPE character
\f Form feed
\l Linefeed
\n Newline
\r Carriage return
\s Space
\t Tab
\» Caret (")
\\ Backslash (\)
\, Comma (,)
\: Colon (3)
\0 Null

\nnn Any character, specified as three octal digits

(See the XBD specification, General Terminal Interface .)
Commented-out Capabilities

Sometimes individual capabilities must be commented out. To do this, put a period
before the capability name. For example, see the second ind Note that capabilities
are defined in a left-to-right order and, therefore, a prior definition will override a
later definition.

Device Capabilities

Basic Capabilities
The number of columns on each line for the device is given by the cols numeric
capability. If the device has a screen, then the number of lines on the screen is
given by the lines capability. If the device wraps around to the beginning of the
next line when it reaches the right margin, then it should have the am capability. If
the terminal can clear its screen, leaving the cursor in the home position, then this
is given by the clear string capability. If the terminal overstrikes (rather than
clearing a position when a character is struck over) then it should have the os
capability. If the device is a printing terminal, with no soft copy unit, specify both
hc and os. If there is a way to move the cursor to the left edge of the current row,
specify this as cr. (Normally this will be carriage return, control-M.) If there is a
way to produce an audible signal (such as a bell or a beep), specify it as bel. If,
like most devices, the device uses the xon-xoff flow-control protocol, specify xon.

If there is a way to move the cursor one position to the left (such as backspace),
that capability should be given as cubl. Similarly, sequences to move to the right,
up, and down should be given as cufl, cuul, and cudl, respectively. These local
cursor motions must not alter the text they pass over; for example, you would not
normally use “cufl =\s” because the space would erase the character moved over.

278 0S/390 V2R4.0 C Curses

A very important point here is that the local cursor motions encoded in terminfo

are undefined at the left and top edges of a screen terminal. Programs should
never attempt to backspace around the left edge, unless bw is specified, and
should never attempt to go up locally off the top. To scroll text up, a program goes
to the bottom left corner of the screen and sends the ind (index) string. To scroll
text down, a program goes to the top left corner of the screen and sends the ri
(reverse index) string. The strings ind and ri are undefined when not on their
respective corners of the screen.

Parameterized versions of the scrolling sequences are indn and rin. These
versions have the same semantics as ind and ri, except that they take one
argument an scroll the number of lines specified by that argument.

They are also undefined except at the appropriate edge of the screen.

The am capability tells whether the cursor sticks at the right edge of the screen
when text is output, but this does not necessarily apply to a cufl from the last
column. Backward motion from the left edge of the screen is possible only when
bw is specified. In this case, cubl will move to the right edge of the previous row.
If bw is not given, the effect is undefined. This is useful for drawing a box around
the edge of the screen, for example. If the device has switch-selectable automatic
margins, am should be specified in the terminfo source file. In this case,
initialization strings should turn on this option, if possible. If the device has a
command that moves to the first column of the next line, that command can be
given as nel (newline). It does not matter if the command clears the remainder of
the current line, so if the device has no cr and If it may still be possible to craft a
working nel out of one or both of them.

These capabilities suffice to describe hardcopy and screen terminals. Thus the
AT&T 5320 hardcopy terminal is described as follows:

5320|att5320|AT&T 5320 hardcopy terminal,
am, hc, os,
cols#132,
bel1=~G, cr=\r, cubl=\b, cndl=\n,
dch1=\E[P, d11=\E[M,
ind=\n,

while the Lear Siegler ADM-3 is described as

adm3|1si adm3,
am, bel="G, clear="Z, cols#80, cr="M, cubl="H,
cudl="J, ind="J, lines#24,

Parameterized Strings

Cursor addressing and other strings requiring arguments are described by a
argumentized string capability with escapes in a form (%x) comparable to printf().
For example, to address the cursor, the cup capability is given, using two
arguments: the row and column to address to. (Rows and columns are numbered
from zero and refer to the physical screen visible to the user, not to any unseen
memory.) If the terminal has memory relative cursor addressing, that can be
indicated by mrcup .

The argument mechanism uses a stack and special % codes to manipulate the

stack in the manner of Reverse Polish Notation (postfix). Typically a sequence
pushes one of the arguments onto the stack and then prints it in some format.

Chapter 4. Terminfo Source Format (ENHANCED CURSES) 279

Often more complex operations are necessary. Operations are in postfix form with
the operands in the usual order. That is, to subtract 5 from the first argument, one
would use %p1%{5}%-.

The % encodings have the following meanings:

%% Outputs ‘%’.

% [:]flags][width[.precision]][doxXs]
As in printf(); flags are [-+#] and space.

%c Print pop() gives %.c.

%p[1-9] Push the ith argument.

%P[a-z] Set dynamic variable [a-z] to pop().
%g[a-z] Get dynamic variable [a-z] and push it.
%P[A-Z] Set static variable [a-z] to pop().
%g[A-Z] Get static variable [a-z] and push it.

%'c’ Push char constant c.
%{nn} Push decimal constant nn.
%l Push strlen(pop()).

%+ %- %* %/ %m
Arithmetic (%m is mod): push(pop integer2 op pop integerl) where
integerl represents the top of the stack
%& %| %"
Bit operations: push(pop integer2 op pop integerl)
%= %> %<
Logical operations: push(pop integer2 op pop integerl)

%A %O Logical operations: and, or
%! %"~ Unary operations: push(op pop())

%i (For ANSI terminals) add 1 to the first argument (if one argument
present), or first two arguments (if more than one argument present).

% expr %t thenpart %e elsepart %;
If-then-else, %e elsepart is optional; else-if's are possible ala Algol 68:
% c1 %t bl %e c2 %t b2 %e c3 %t b3 %e c4 %t b4 %e b5%; ci are
conditions, bi are bodies.

If the “-” flag is used with “%[doxXs],” then a colon must be placed between the
“%" and the “-” to differentiate the flag from the binary “%-" operator. For example:
“%:-16.16s.”

Consider the Hewlett-Packard 2645, which, to get to row 3 and column 12, needs
to be sent \E&al12c03Y padded for 6 milliseconds. Note that the order of the rows
and columns is inverted here, and that the row and column are zero-padded as two
digits. Thus its cup capability is:

cup=\E&a%p2%2.2dc%pl%2.2dY$<6>

280 0S/390 V2R4.0 C Curses

Cursor Motions

The Micro-Term ACT-IV needs the current row and column sent preceded by a ~T,
with the row and column simply encoded in binary:

cup="T%pl%c%p2%c

Devices that use “%c” need to be able to backspace the cursor (cubl), and to
move the cursor up one line on the screen (cuul). This is necessary because it is
not always safe to transmit \n, ~D, and \r, as the system may change or
discard them. (The library functions dealing with terminfo set tty modes so that
tabs are never expanded, so \t is safe to send. This turns out to be essential for
the Ann Arbor 4080.)

A final example is the LS| ADM-3a, which uses row and column offset by a blank
character, thus:

cup=\E=%p1%'\s'%+%c%p2%"'\s'%+%c

After sending “\E=,” this pushes the first argument, pushes the ASCII value for a
space (32), adds them (pushing the sum on the stack in place of the two
previous values), and outputs that value as a character. Then the same is
done for the second argument. More complex arithmetic is possible using the
stack.

If the terminal has a fast way to home the cursor (to very upper left corner of
screen) then this can be given as home; similarly a fast way of getting to the lower
left-hand corner can be given as II; this may involve going up with cuul from the
home position, but a program should never do this itself (unless Il does) because it
can make no assumption about the effect of moving up from the home position.
Note that the home position is the same as addressing to (0,0): to the top left
corner of the screen, not of memory. (Thus, the EH sequence on Hewlett-Packard
terminals cannot be used for home without losing some of the other features on the
terminal.)

If the device has row or column absolute-cursor addressing, these can be given as
single argument capabilities hpa (horizontal position absolute) and vpa (vertical
position absolute). Sometimes these are shorter than the more general
two-argument sequence (as with the Hewlett-Packard 2645) and can be used in
preference to cup. If there are argumentized local motions (such as “move n
spaces to the right”), these can be given as cud, cub, cuf, and cuu with a single
argument indicating how many spaces to move. These are primarily useful if the
device does not have cup, such as the Tektronix 4025.

If the device needs to be in a special mode when running a program that uses
these capabilities, the codes to enter and exit this mode can be given as smcup
and rmcup . This arises, for example, from terminals, such as the Concept, with
more than one page of memory. If the device has only memory relative cursor
addressing and not screen relative cursor addressing, a one screen-sized window
must be fixed into the device for cursor addressing to work properly. This is also
used for the Tektronix 4025, where smcup sets the command character to be the
one used by terminfo . If the rmcup sequence will not restore the screen after an
smcup sequence is output (to the state prior to outputting smcup), specify nrrmc .

Chapter 4. Terminfo Source Format (ENHANCED CURSES) 281

Area Clears

If the terminal can clear from the current position to the end of the line, leaving the
cursor where it is, this should be given as el. If the terminal can clear from the
beginning of the line to the current position inclusive, leaving the cursor where it is,
this should be given as ell. If the terminal can clear from the current position to
the end of the display, then this should be given as ed. ed is only defined from the
first column of a line. (Thus, it can be simulated by a request to delete a large
number of lines, if a true ed is not available.)

Insert/Delete Line

If the terminal can open a new blank line before the line where the cursor is, this
should be given as il1; this is done only from the first position of a line. The cursor
must then appear on the newly blank line. If the terminal can delete the line which
the cursor is on, then this should be given as dI1; this is done only from the first
position on the line to be deleted. Versions of il1 and dl1 which take a single
argument and insert or delete that many lines can be given as il and dl.

If the terminal has a settable destructive scrolling region (like the VT100) the
command to set this can be described with the csr capability, which takes two
arguments: the top and bottom lines of the scrolling region. The cursor position is,
alas, undefined after using this command. It is possible to get the effect of insert or
delete line using this command - the sc and rc (save and restore cursor)
commands are also useful. Inserting lines at the top or bottom of the screen can
also be done using ri or ind on many terminals without a true insert/delete line, and
is often faster even on terminals with those features.

To determine whether a terminal has destructive scrolling regions or
non-destructive scrolling regions, create a scrolling region in the middle of the
screen, place data on the bottom line of the scrolling region, move the cursor to the
top line of the scrolling region, and do a reverse index (ri) followed by a delete line
(dI1) or index (ind). If the data that was originally on the bottom line of the
scrolling region was restored into the scrolling region by the dI1 or ind, then the
terminal has non-destructive scrolling regions. Otherwise, it has destructive
scrolling regions. Do not specify csr if the terminal has non-destructive scrolling
regions, unless ind, ri, indn, rin, dl, and dI1 all simulate destructive scrolling.

If the terminal has the ability to define a window as part of memory, which all
commands affect, it should be given as the argumentized string wind. The four
arguments are the starting and ending lines in memory and the starting and ending
columns in memory, in that order.

If the terminal can retain display memory above, then the da capability should be
given; if display memory can be retained below, then db should be given. These
indicate that deleting a line or scrolling a full screen may bring non-blank lines up
from below or that scrolling back with ri may bring down non-blank lines.

Insert/Delete Character

There are two basic kinds of intelligent terminals with respect to insert/delete
character operations which can be described using terminfo . The most common
insert/delete character operations affect only the characters on the current line and
shift characters off the end of the line rigidly. Other terminals, such as the Concept
100 and the Perkin-Elmer Owl, make a distinction between typed and untyped
blanks on the screen, shifting upon an insert or delete only to an untyped blank on

282 0S/390 V2R4.0 C Curses

the screen which is either eliminated, or expanded to two untyped blanks. You can
determine the kind of terminal you have by clearing the screen and then typing text
separated by cursor motions. Type “abc def” using local cursor motions (not
spaces) between the abc and the def. Then position the cursor before the abc and
put the terminal in insert mode. If typing characters causes the rest of the line to
shift rigidly and characters to fall off the end, then your terminal does not
distinguish between blanks and untyped positions. If the abc shifts over to the def
which then move together around the end of the current line and onto the next as
you insert, you have the second type of terminal, and should give the capability in,
which stands for “insert null.” While these are two logically separate attributes (one
line versus multiline insert mode, and special treatment of untyped spaces) we
have seen no terminals whose insert mode cannot be described with the single
attribute.

terminfo can describe both terminals that have an insert mode and terminals which
send a simple sequence to open a blank position on the current line. Give as smir
the sequence to get into insert mode. Give as rmir the sequence to leave insert
mode. Now give as ichl any sequence needed to be sent just before sending the
character to be inserted. Most terminals with a true insert mode will not give ichl;
terminals that send a sequence to open a screen position should give it here. (If
your terminal has both, insert mode is usually preferable to ichl. Do not give both
unless the terminal requires both to be used in combination.) If post-insert padding
is needed, give this as a number of milliseconds padding in ip (a string option).
Any other sequence which may need to be sent after an insert of a single character
may also be given in ip. If your terminal needs both to be placed into an “insert
mode” and a special code to precede each inserted character, then both smir /rmir
and ichl can be given, and both will be used. The ich capability, with one
argument, n, will insert n blanks.

If padding is necessary between characters typed while not in insert mode, give this
as a number of milliseconds padding in rmp.

It is occasionally necessary to move around while in insert mode to delete
characters on the same line (for example, if there is a tab after the insertion
position). If your terminal allows motion while in insert mode you can give the
capability mir to speed up inserting in this case. Omitting mir will affect only
speed. Some terminals (notably Datamedia) must not have mir because of the
way their insert mode works.

Finally, you can specify dchl to delete a single character, dch with one argument,
n, to delete n characters, and delete mode by giving smdc and rmdc to enter and
exit delete mode (any mode the terminal needs to be placed in for dchl1 to work).

A command to erase n characters (equivalent to outputting n blanks without moving
the cursor) can be given as ech with one argument.

Highlighting, Underlining, and Visible Bells

Your device may have one or more kinds of display attributes that allow you to
highlight selected characters when they appear on the screen. The following
display modes (shown with the names by which they are set) may be available:

e A blinking screen (blink)

e Bold or extra-bright characters (bold)

Chapter 4. Terminfo Source Format (ENHANCED CURSES) 283

e Dim or half-bright characters (dim)
e Blanking or invisible text (invis)

e Protected text (prot)

* A reverse-video screen (rev)

* An alternate character set (smacs to enter this mode and rmacs to exit it) (If a
command is necessary before you can enter alternate character set mode, give
the sequence in enacs or “enable alternate-character-set” mode.) Turning on
any of these modes singly may turn off other modes.

sgr0 should be used to turn off all video enhancement capabilities. It should
always be specified because it represents the only way to turn off some
capabilities, such as dim or blink .

Choose one display method as standout mode and use it to highlight error
messages and other text to which you want to draw attention. Choose a form of
display that provides strong contrast but that is easy on the eyes. (We recommend
reverse-video plus half-bright or reverse-video alone.) The sequences to enter and
exit standout mode are given as smso and rmso , respectively. If the code to
change into or out of standout mode leaves one or even two blank spaces on the
screen, as the TVI 912 and Teleray 1061 do, then xmc should be given to tell how
many spaces are left.

Sequences to begin underlining and end underlining can be specified as smul and
rmul , respectively. If the device has a sequence to underline the current character
and to move the cursor one space to the right (such as the Micro-Term MIME), this
sequence can be specified as uc.

Terminals with the “magic cookie” glitch (xmc) deposit special “cookies” when they
receive mode-setting sequences, which affect the display algorithm rather than
having extra bits for each character. Some terminals, such as the Hewlett-Packard
2621, automatically leave standout mode when they move to a new line or the
cursor is addressed. Programs using standout mode should exit standout mode
before moving the cursor or sending a newline, unless the msgr capability,
asserting that it is safe to move in standout mode, is present.

If the terminal has a way of flashing the screen to indicate an error quietly (a bell
replacement), then this can be given as flash ; it must not move the cursor. A good
flash can be done by changing the screen into reverse video, pad for 200 ms, then
return the screen to normal video.

If the cursor needs to be made more visible than normal when it is not on the
bottom line (to make, for example, a non-blinking underline into an easier to find
block or blinking underline) give this sequence as cvvis . The boolean chts should
also be given. If there is a way to make the cursor completely invisible, give that
as civis . The capability cnorm should be given, which undoes the effects of either
of these modes.

If your terminal generates underlined characters by using the underline character
(with no special sequences needed) even though it does not otherwise overstrike
characters, then specify the capability ul. For devices on which a character
overstriking another leaves both characters on the screen, specify the capability os.
If overstrikes are erasable with a blank, then this should be indicated by specifying
€eo.

284 0S/390 V2R4.0 C Curses

If there is a sequence to set arbitrary combinations of modes, this should be given
as sgr (set attributes), taking nine arguments. Each argument is either O or
non-zero, as the corresponding attribute is on or off. The nine arguments are, in
order: standout, underline, reverse, blink, dim, bold, blank, protect, alternate
character set. Not all modes need to be supported by sgr; only those for which
corresponding separate attribute commands exist should be supported. For
example, let's assume that the terminal in question needs the following escape
sequences to turn on various modes.

tparm Argument Attribute Escape Sequence
none \E[Om

pl standout \E[0;4;7m

p2 underline \E[0;3m

p3 reverse \E[0;4m

p4 blink \E[0;5m

p5 dim \E[0;7m

p6 bold \E[0;3;4m

p7 invis \E[0;8m

p8 protect not available

p9 altcharset ~0 (off) ~N (on)

Note that each escape sequence requires a 0 to turn off other modes before
turning on its own mode. Also note that, as suggested above, standout is set up to
be the combination of reverse and dim. Also, because this terminal has no bold
mode, bold is set up as the combination of reverse and underline. In addition, to
allow combinations, such as underline+blink, the sequence to use would be
\E[0;3;5m . The terminal doesn't have protect mode, either, but that cannot be
simulated in any way, so p8 is ignored. The altcharset mode is different in that it is
either ~O or *N, depending on whether it is off or on. If all modes were to be
turned on, the sequence would be:

\E[0;3;4;5;7;8m"N

Now look at when different sequences are output. For example, ;3 is output when
either p2 or p6 is true, that is, if either underline or bold modes are turned on.
Writing out the above sequences, along with their dependencies, gives the
following:

Sequence When to Output terminfo Translation

\E[O always \E[O

;3 if p2 or p6 %%p2%p6%6|%ot; 3%;

4 if p1 or p3 or p6 %%p1%p3%|%p6%6|Yot;4%;
5 if p4 %%p4%t;5%;

;7 if p1 or p5 %%p1%p5%|%t; 7%;

;8 if p7 %%p7%:t;8%;

m always m

caret.N or ~O if p9 N, else ~O %%p9%t"N%e~0%;

Putting this all together into the sgr sequence gives:

Remember that sgr and sgr0 must always be specified.

Chapter 4. Terminfo Source Format (ENHANCED CURSES) 285

Keypad

If the device has a keypad that transmits sequences when the keys are pressed,
this information can also be specified. Note that it is not possible to handle devices
where the keypad only works in local (this applies, for example, to the unshifted
Hewlett-Packard 2621 keys). If the keypad can be set to transmit or not transmit,
specify these sequences as smkx and rmkx . Otherwise the keypad is assumed to
always transmit.

The sequences sent by the left arrow, right arrow, up arrow, down arrow, and home
keys can be given as kcubl, kcufl, kcuul, kcudl and khome, respectively. If
there are function keys such as f0, f1, ..., 63, the sequences they send can be
specified as kfO, kfl, kf63. If the first 11 keys have labels other than the default fO
through f10, the labels can be given as If0, If1, ..., If10.

The codes transmitted by certain other special keys can be given: kil (home
down), kbs (backspace), ktbc (clear all tabs), kctab (clear the tab stop in this
column), kclr (clear screen or erase key), kdchl (delete character), kdl1 (delete
line), krmir (exit insert mode), kel (clear to end of line), ked (clear to end of
screen), kichl (insert character or enter insert mode), kill (insert line), knp (next
page), kpp (previous page), kind (scroll forward/down), kri (scroll backward/up),
khts (set a tab stop in this column). In addition, if the keypad has a 3 by 3 array of
keys including the four arrow keys, the other five keys can be given as kal, ka3,
kb2, kcl, and kc3. These keys are useful when the effects of a 3 by 3 directional
pad are needed. Further keys are defined above in the capabilities list.

Strings to program function keys can be specified as pfkey, pfloc, and pfx. A
string to program screen labels should be specified as pIn. Each of these strings
takes two arguments: a function key identifier and a string to program it with.
pfkey causes pressing the given key to be the same as the user typing the given
string; pfloc causes the string to be executed by the terminal in local mode; and
pfx causes the string to be transmitted to the computer. The capabilities nlab, Iw
and lh define the number of programmable screen labels and their width and
height.

If there are commands to turn the labels on and off, give them in smin and rmin .
smin is normally output after one or more pln sequences to make sure that the
change becomes visible.

Tabs and Initialization

If the device has hardware tabs, the command to advance to the next tab stop can
be given as ht (usually control-l). A “backtab” command that moves leftward to the
next tab stop can be given as cbt. By convention, if tty modes show that tabs are
being expanded by the computer rather than being sent to the device, programs
should not use ht or cbt (even if they are present) because the user might not
have the tab stops properly set. If the device has hardware tabs that are initially
set every n spaces when the device is powered up, the numeric argument it is
given, showing the number of spaces the tabs are set to. This is normally used by
tput init to determine whether to set the mode for hardware tab expansion and
whether to set the tab stops. If the device has tab stops that can be saved in
nonvolatile memory, the terminfo description can assume that they are properly
set. If there are commands to set and clear tab stops, they can be given as thc
(clear all tab stops) and hts (set a tab stop in the current column of every row).

286 0S/390 V2R4.0 C Curses

Delays

Status Lines

Other capabilities include: isl, is2, and is3, initialization strings for the device;
iprog , the path name of a program to be run to initialize the device; and if, the
name of a file containing long initialization strings. These strings are expected to
set the device into modes consistent with the rest of the terminfo description.
They must be sent to the device each time the user logs in and be output in the
following order: run the program iprog ; output isl; output is2; set the margins
using mgc, smgl and smgr ; set the tabs using tbc and hts; print the file if; and
finally output is3. This is usually done using the init option of tput.

Most initialization is done with is2. Special device modes can be set up without
duplicating strings by putting the common sequences in is2 and special cases in
isl and is3. Sequences that do a reset from a totally unknown state can be given
as rsl, rs2, rf, and rs3, analogous to isl, is2, is3, and if. (The method using files,
if and rf, is used for a few terminals however, the recommended method is to use
the initialization and reset strings.) These strings are output by tput reset, which is
used when the terminal gets into a wedged state. Commands are normally placed
inrsl, rs2, rs3, and rf only if they produce annoying effects on the screen and are
not necessary when logging in. For example, the command to set a terminal into
80-column mode would normally be part of is2, but on some terminals it causes an
annoying glitch on the screen and is not normally needed because the terminal is
usually already in 80-column mode.

If a more complex sequence is needed to set the tabs than can be described by
using tbc and hts, the sequence can be placed in is2 or if.

Any margin can be cleared with mgc. (For instructions on how to specify
commands to set and clear margins.

Certain capabilities control padding in the tty driver. These are primarily needed by
hard-copy terminals, and are used by fput init to set tty modes appropriately.
Delays embedded in the capabilities cr, ind, cubl, ff, and tab can be used to set
the appropriate delay bits to be set in the tty driver. If pb (padding baud rate) is
given, these values can be ignored at baud rates below the value of pb.

If the terminal has an extra “status line” that is not normally used by software, this
fact can be indicated. If the status line is viewed as an extra line below the bottom
line, into which one can cursor address normally (such as the Heathkit H19's 25th
line, or the 24th line of a VT100 which is set to a 23-line scrolling region), the
capability hs should be given. Special strings that go to a given column of the
status line and return from the status line can be given as tsl and fsl. (fsl must
leave the cursor position in the same place it was before tsl. If necessary, the sc
and rc strings can be included in tsl and fsl to get this effect.) The capability tsl
takes one argument, which is the column number of the status line the cursor is to
be moved to.

If escape sequences and other special commands, such as tab, work while in the
status line, the flag eslok can be given. A string which turns off the status line (or
otherwise erases its contents) should be given as dsl. If the terminal has
commands to save and restore the position of the cursor, give them as sc and rc.
The status line is normally assumed to be the same width as the rest of the screen
(that is, cols). If the status line is a different width (possibly because the terminal

Chapter 4. Terminfo Source Format (ENHANCED CURSES) 287

does not allow an entire line to be loaded) the width, in columns, can be indicated
with the numeric argument wsl .

Line Graphics

If the device has a line drawing alternate character set, the mapping of glyph to
character would be given in acsc. The definition of this string is based on the
alternate character set used in the Digital VT100 terminal, extended slightly with
some characters from the AT&T 4410v1 terminal.

VT100+
Glyph Name Character
arrow pointing right +

arrow pointing left ,
arrow pointing down .
solid square block 0
lantern symbol I
arrow pointing up -
diamond

checker board (stipple)
degree symbol
plus/minus

board of squares
lower right corner
upper right corner
upper left corner

lower left corner

plus

scan line 1

horizontal line

scan line 9

left tee (|-)

right tee (-|)

bottom tee (|)

top tee (|)

vertical line

bullet

I X S < C~+~0WOO0S33 —Xx—TTQ +~Q®

The best way to describe a new device's line graphics set is to add a third column
to the above table with the characters for the new device that produce the
appropriate glyph when the device is in alternate-character-set mode. For example:

Glyph Name VT100+ Character Used
Character on New Device

upper left corner
lower left corner
upper right corner
lower right corner
horizontal line
vertical line

X Q— x 3 —
- O 4H4m=D

Now write down the characters left to right; for example:

acsc=1RmFkTjGqg\,x.

288 0S/390 V2R4.0 C Curses

In addition, terminfo lets you define multiple character sets.

Color Manipulation
Most color terminals belong to one of two classes of terminal:

Tektronix-style

The Tektronix method uses a set of N predefined colors (usually 8) from which
an application can select "current" foreground and background colors. Thus a
terminal can support up to N colors mixed into N*N color-pairs to be displayed
on the screen at the same time.

Hewlett-Packard-style

In the HP method, the application cannot define the foreground independently
of the background, or vice-versa. Instead, the application must define an entire
color-pair at once. Up to M color-pairs, made from 2*M different colors, can be
defined this way.

The numeric variables colors and pairs define the number of colors and color-pairs
that can be displayed on the screen at the same time. If a terminal can change the
definition of a color (for example, the Tektronix 4100 and 4200 series terminals),
this should be specified with ccc (can change color). To change the definition of a
color (Tektronix 4200 method), use initc (initialize color). It requires four
arguments: color number (ranging from 0 to colors -1) and three RGB (red, green,
and blue) values or three HLS colors (Hue, Lightness, Saturation). Ranges of RGB
and HLS values are terminal-dependent.

Tektronix 4100 series terminals only use HLS color notation. For such terminals (or
dual-mode terminals to be operated in HLS mode) one must define a boolean
variable hls; that would instruct the init_color() functions to convert its RGB
arguments to HLS before sending them to the terminal. The last three arguments
to the initc string would then be HLS values.

If a terminal can change the definitions of colors, but uses a color notation different
from RGB and HLS, a mapping to either RGB or HLS must be developed.

If the terminal supports ANSI escape sequences to set background and foreground,
they should be coded as setab and setaf, respectively. If the terminal supports
other escape sequences to set background and foreground, they should be coded
as setb and setf, respectively. The vidputs() function and the refresh functions use
setab and setaf if they are defined. Each of these capabilities requires one
argument: the number of the color. By convention, the first eight colors (0-7) map
to, in order: black, red, green, yellow, blue, magenta, cyan, white. However, color
re-mapping may occur or the underlying hardware may not support these colors.
Mappings for any additional colors supported by the device (that is, to numbers
greater than 7) are at the discretion of the terminfo entry writer.

To initialize a color-pair (HP method), use initp (initialize pair). It requires seven
arguments: the number of a color-pair (range=0 to pairs -1), and six RGB values:
three for the foreground followed by three for the background. (Each of these
groups of three should be in the order RGB.) When initc or initp are used, RGB or
HLS arguments should be in the order "red, green, blue" or "hue, lightness,
saturation"), respectively. To make a color-pair current, use scp (set color-pair). It
takes one argument, the number of a color-pair.

Chapter 4. Terminfo Source Format (ENHANCED CURSES) 289

Some terminals (for example, most color terminal emulators for PCs) erase areas
of the screen with current background color. In such cases, bce (background color
erase) should be defined. The variable op (original pair) contains a sequence for
setting the foreground and the background colors to what they were at the terminal
start-up time. Similarly, oc (original colors) contains a control sequence for setting
all colors (for the Tektronix method) or color-pairs (for the HP method) to the values
they had at the terminal start-up time.

Some color terminals substitute color for video attributes. Such video attributes
should not be combined with colors. Information about these video attributes
should be packed into the ncv (no color video) variable. There is a one-to-one
correspondence between the nine least significant bits of that variable and the
video attributes. The following table depicts this correspondence.

Attribute Bit Position Decimal Value Characteristic
That Sets
WA _ STANDOUT 0 1 sgr, parameter 1
WA _ UNDERLINE 1 2 sgr, parameter 2
WA _REVERSE 2 4 sgr, parameter 3
WA _ BLINK 3 8 sgr, parameter 4
WA _ DIM 4 16 sgr, parameter 5
WA_BOLD 5 32 sgr, parameter 6
WA_ INVIS 6 64 sgr, parameter 7
WA_PROTECT 7 128 sgr, parameter 8
WA _ 8 256 sgr, parameter 9
ALTCHARSET
WA _ 9 512 sgrl, parameter 1
HORIZONTAL
WA_LEFT 10 1024 sgrl, parameter 2
WA_LOW 11 2048 sgrl, parameter 3
WA_ RIGHT 12 4096 sgrl, parameter 4
WA_TOP 13 8192 sgrl, parameter 5
WA _ VERTICAL 14 16384 sgrl, parameter 6

When a particular video attribute should not be used with colors, set the
corresponding ncv bit to 1; otherwise set it to 0. To determine the information to
pack into the ncv variable, add the decimal values corresponding to those
attributes that cannot coexist with colors. For example, if the terminal uses colors
to simulate reverse video (bit number 2 and decimal value 4) and bold (bit number
5 and decimal value 32), the resulting value for ncv will be 36 (4 + 32).

Miscellaneous
If the terminal requires other than a null (zero) character as a pad, then this can be
given as pad. Only the first character of the pad string is used. If the terminal
does not have a pad character, specify npc.

If the terminal can move up or down half a line, this can be indicated with hu
(half-line up) and hd (half-line down). This is primarily useful for superscripts and
subscripts on hardcopy terminals. If a hardcopy terminal can eject to the next page
(form feed), give this as ff (usually control-L).

If there is a command to repeat a given character a given number of times (to save

time transmitting a large number of identical characters) this can be indicated with
the argumentized string rep. The first argument is the character to be repeated

290 0S/390 V2R4.0 C Curses

and the second is the number of times to repeat it. Thus, tparm(repeat_char, ‘X',
10) is the same as XXXXXXXXXX .

If the terminal has a settable command character, such as the Tektronix 4025, this
can be indicated with cmdch . A prototype command character is chosen which is
used in all capabilities. This character is given in the cmdch capability to identify it.
The following convention is supported on some systems: If the environment
variable CC exists, all occurrences of the prototype character are replaced with the
character in CC.

Terminal descriptions that do not represent a specific kind of known terminal, such
as switch, dialup, patch, and network, should include the gn (generic) capability so
that programs can complain that they do not know how to talk to the terminal.
(This capability does not apply to virtual terminal descriptions for which the escape
sequences are known.) If the terminal is one of those supported by the virtual
terminal protocol, the terminal number can be given as vt. A line-turn-around
sequence to be transmitted before doing reads should be specified in rfi.

If the device uses xon/xoff handshaking for flow control, give xon. Padding
information should still be included so that functions can make better decisions
about costs, but actual pad characters will not be transmitted. Sequences to turn
on and off xon/xoff handshaking may be given in smxon and rmxon . If the
characters used for handshaking are not *S and ~Q, they may be specified with
xonc and xoffc .

If the terminal has a “meta key” which acts as a shift key, setting the 8th bit of any
character transmitted, this fact can be indicated with km. Otherwise, software will
assume that the 8th bit is parity and it will usually be cleared. If strings exist to turn
this “meta mode” on and off, they can be given as smm and rmm.

If the terminal has more lines of memory than will fit on the screen at once, the
number of lines of memory can be indicated with Im. A value of Im#0 indicates
that the number of lines is not fixed, but that there is still more memory than fits on
the screen.

Media copy strings which control an auxiliary printer connected to the terminal can
be given as:

mcO Print the contents of the screen
mc4 Turn off the printer
mc5 Turn on the printer

When the printer is on, all text sent to the terminal will be sent to the printer. A
variation, mc5p, takes one argument, and leaves the printer on for as many
characters as the value of the argument, then turns the printer off. The argument
should not exceed 255. If the text is not displayed on the terminal screen when the
printer is on, specify mc5i (silent printer). All text, including mc4, is transparently
passed to the printer while an mc5p is in effect.

Chapter 4. Terminfo Source Format (ENHANCED CURSES) 291

Special Cases

The working model used by terminfo fits most terminals reasonably well.
However, some terminals do not completely match that model, requiring special
support by terminfo . These are not meant to be construed as deficiencies in the
terminals; they are just differences between the working model and the actual
hardware. They may be unusual devices or, for some reason, do not have all the
features of the terminfo model implemented.

Terminals that cannot display tilde (7) characters, such as certain Hazeltine
terminals, should indicate hz.

Terminals that ignore a linefeed immediately after an am wrap, such as the
Concept 100, should indicate xenl. Those terminals whose cursor remains on the
right-most column until another character has been received, rather than wrapping
immediately upon receiving the right-most character, such as the VT100, should
also indicate xenl.

If el is required to get rid of standout (instead of writing normal text on top of it),
xhp should be given.

Those Teleray terminals whose tabs turn all characters moved over to blanks,
should indicate xt (destructive tabs). This capability is also taken to mean that it is
not possible to position the cursor on top of a “magic cookie.” Therefore, to erase
standout mode, it is necessary, instead, to use delete and insert line.

For Beehive Superbee terminals that do not transmit the escape or control-C
characters, specify xsb, indicating that the f1 key is to be used for escape and the
f2 key for control-C.

Similar Terminals

If there are two similar terminals, one can be defined as being just like the other
with certain exceptions. The string capability use can be given with the name of
the similar terminal. The capabilities given before use override those in the
terminal type invoked by use. A capability can be canceled by placing
capability-name@ prior to the appearance of the string capability use. For
example, the entry:

att4424-2|Teletype 4424 in display function group ii,
rev@, sgr@, smul@, use=att4424,

defines an AT&T 04424 terminal that does not have the rev, sgr, and smul
capabilities, and hence cannot do highlighting. This is useful for different modes for
a terminal, or for different user preferences. More than one use capability may be
given.

Printer Capabilities

The terminfo database lets you define capabilities of printers as well as terminals.

292 0S/390 V2R4.0 C Curses

Rounding Values

Because argumentized string capabilities work only with integer values, terminfo
designers should create strings that expect numeric values that have been
rounded. Application designers should note this and should always round values to
the nearest integer before using them with a argumentized string capability.

Printer Resolution

A printer's resolution is defined to be the smallest spacing of characters it can
achieve. In general, the horizontal and vertical resolutions are independent. Thus
the vertical resolution of a printer can be determined by measuring the smallest
achievable distance between consecutive printing baselines, while the horizontal
resolution can be determined by measuring the smallest achievable distance
between the leftmost edges of consecutive printed, identical, characters.

All printers are assumed to be capable of printing with a uniform horizontal and
vertical resolution. The view of printing that terminfo currently presents is one of
printing inside a uniform matrix: All characters are printed at fixed positions relative
to each “cell” in the matrix; furthermore, each cell has the same size given by the
smallest horizontal and vertical step sizes dictated by the resolution. (The cell size
can be changed as will be seen later.)

Many printers are capable of “proportional printing,” where the horizontal spacing
depends on the size of the character last printed. terminfo does not make use of
this capability, although it does provide enough capability definitions to allow an
application to simulate proportional printing.

A printer must not only be able to print characters as close together as the
horizontal and vertical resolutions suggest, but also of “moving” to a position an
integral multiple of the smallest distance away from a previous position. Thus
printed characters can be spaced apart a distance that is an integral multiple of the
smallest distance, up to the length or width of a single page.

Some printers can have different resolutions depending on different “modes.” In
“normal mode,” the existing terminfo capabilities are assumed to work on columns
and lines, just like a video terminal. Thus the old lines capability would give the
length of a page in lines, and the cols capability would give the width of a page in
columns. In “micro mode,” many terminfo capabilities work on increments of lines
and columns. With some printers the micro mode may be concomitant with normal
mode, so that all the capabilities work at the same time.

Specifying Printer Resolution

The printing resolution of a printer is given in several ways. Each specifies the
resolution as the number of smallest steps per distance:

Characteristic Number of Smallest Steps

orhi Steps per inch horizontally
orvi Steps per inch vertically
orc Steps per column

orl Steps per line

When printing in normal mode, each character printed causes movement to the
next column, except in special cases described later; the distance moved is the
same as the per-column resolution. Some printers cause an automatic movement

Chapter 4. Terminfo Source Format (ENHANCED CURSES) 293

to the next line when a character is printed in the rightmost position; the distance
moved vertically is the same as the per-line resolution. When printing in micro
mode, these distances can be different, and may be zero for some printers.

Automatic Motion after Printing
Normal Mode:

orc Steps moved horizontally
orl Steps moved vertically
Micro Mode:

mcs Steps moved horizontally
mls Steps moved vertically

Some printers are capable of printing wide characters. The distance moved when
a wide character is printed in normal mode may be different from when a regular
width character is printed. The distance moved when a wide character is printed in
micro mode may also be different from when a regular character is printed in micro
mode, but the differences are assumed to be related: If the distance moved for a
regular character is the same whether in normal mode or micro mode (mcs=orc),
then the distance moved for a wide character is also the same whether in normal
mode or micro mode. This doesn't mean the normal character distance is
necessarily the same as the wide character distance, just that the distances don't
change with a change in normal to micro mode. However, if the distance moved
for a regular character is different in micro mode from the distance moved in normal
mode (mcs<orc), the micro mode distance is assumed to be the same for a wide
character printed in micro mode, as the table below shows.

Automatic Motion after Printing Wide Character

Normal Mode or Micro Mode (mcs = orc):

widcs

Steps moved horizontally

Micro Mode (mcs < orc):

mcs

Steps moved horizontally

There may be control sequences to change the number of columns per inch (the
character pitch) and to change the number of lines per inch (the line pitch). If these
are used, the resolution of the printer changes, but the type of change depends on

the printer:
Changing the Character/Line Pitches
cpi Change character pitch
cpix If set, cpi changes orhi, otherwise changes orc
Ipi Change line pitch
Ipix If set, Ipi changes orvi, otherwise changes orl
chr Change steps per column
cvr Change steps per line

294 0S/390 V2R4.0 C Curses

The cpi and Ipi string capabilities are each used with a single argument, the pitch
in columns (or characters) and lines per inch, respectively. The chr and cvr string
capabilities are each used with a single argument, the number of steps per column
and line, respectively.

Using any of the control sequences in these strings will imply a change in some of
the values of orc, orhi, orl, and orvi. Also, the distance moved when a wide
character is printed, widcs , changes in relation to orc. The distance moved when
a character is printed in micro mode, mcs, changes similarly, with one exception: if
the distance is 0 or 1, then no change is assumed.

Programs that use cpi, Ipi, chr, or cvr should recalculate the printer resolution (and
should recalculate other values).

Capabilities that Cause Movement

In the following descriptions, “movement” refers to the motion of the “current
position.” With video terminals this would be the cursor; with some printers, this is
the carriage position. Other printers have different equivalents. In general, the
current position is where a character would be displayed if printed.

terminfo has string capabilities for control sequences that cause movement a
number of full columns or lines. It also has equivalent string capabilities for control
sequences that cause movement a number of smallest steps.

String Capabilities for Motion

mcubl Move 1 step left

mcufl Move 1 step right

mcuul Move 1 step up

mcudl1 Move 1 step down

mcub Move N steps left

mcuf Move N steps right

mcuu Move N steps up

mcud Move N steps down

mhpa Move N steps from the left
mvpa Move N steps from the top

The latter six strings are each used with a single argument, N.

Sometimes the motion is limited to less than the width or length of a page. Also,
some printers don't accept absolute motion to the left of the current position.
terminfo has capabilities for specifying these limits.

Limits to Motion

mjump Limit on use of mcubl1, mcufl, mcuul, mcudl
maddr Limit on use of mhpa, mvpa

xhpa If set, hpa and mhpa can't move left

xvpa If set, vpa and mvpa can't move up

If a printer needs to be in a “micro mode” for the motion capabilities described
above to work, there are string capabilities defined to contain the control sequence

Chapter 4. Terminfo Source Format (ENHANCED CURSES) 295

to enter and exit this mode. A boolean is available for those printers where using a
carriage return causes an automatic return to normal mode.

Entering/Exiting Micro Mode

smicm Enter micro mode
rmicm Exit micro mode
crxm Using cr exits micro mode

The movement made when a character is printed in the rightmost position varies
among printers. Some make no movement, some move to the beginning of the
next line, others move to the beginning of the same line. terminfo has boolean
capabilities for describing all three cases.

What Happens After Character Printed in Rightmost Position

sam Automatic move to beginning of same line

Some printers can be put in a mode where the normal direction of motion is
reversed. This mode can be especially useful when there are no capabilities for
leftward or upward motion, because those capabilities can be built from the motion
reversal capability and the rightward or downward motion capabilities. It is best to
leave it up to an application to build the leftward or upward capabilities, though, and
not enter them in the terminfo database. This allows several reverse motions to
be strung together without intervening wasted steps that leave and reenter reverse
mode.

Entering/Exiting Reverse Modes

sim Reverse sense of horizontal motions
rim Restore sense of horizontal motions
sum Reverse sense of vertical motions
rum Restore sense of vertical motions

While sense of horizontal motions reversed:

mcubl Move 1 step right
mcufl Move 1 step left
mcub Move N steps right
mcuf Move N steps left
cubl Move 1 column right
cufl Move 1 column left
cub Move N columns right
cuf Move N columns left

While sense of vertical motions reversed:

mcuul Move 1 step down
mcudl Move 1 step up
mcuu Move N steps down
mcud Move N steps up
cuul Move 1 line down
cudl Move 1 line up

cuu Move N lines down
cud Move N lines up

296 0S/390 V2R4.0 C Curses

The reverse motion modes should not affect the mvpa and mhpa absolute motion
capabilities. The reverse vertical motion mode should, however, also reverse the
action of the line “wrapping” that occurs when a character is printed in the
right-most position. Thus printers that have the standard terminfo capability am
defined should experience motion to the beginning of the previous line when a
character is printed in the rightmost position in reverse vertical motion mode.

The action when any other motion capabilities are used in reverse motion modes is
not defined; thus, programs must exit reverse motion modes before using other
motion capabilities.

Two miscellaneous capabilities complete the list of motion capabilities. One of
these is needed for printers that move the current position to the beginning of a line
when certain control characters, such as line-feed or form-feed, are used. The
other is used for the capability of suspending the motion that normally occurs after
printing a character.

Miscellaneous Motion Strings

docr List of control characters causing cr
zerom Prevent auto motion after printing next single character
Margins

terminfo provides two strings for setting margins on terminals: one for the left and
one for the right margin. Printers, however, have two additional margins, for the
top and bottom margins of each page. Furthermore, some printers require not
using motion strings to move the current position to a margin and then fixing the
margin there, but require the specification of where a margin should be regardless
of the current position. Therefore terminfo offers six additional strings for defining
margins with printers.

Setting Margins

smgl Set left margin at current column
smgr Set right margin at current column
smgb Set bottom margin at current line
smgt Set top margin at current line
smgbp Set bottom margin at line N
smglp Set left margin at column N
smgrp Set right margin at column N
smgtp Set top margin at line N

The last four strings are used with one or more arguments that give the position of
the margin or margins to set. If both of smglp and smgrp are set, each is used
with a single argument, N, that gives the column number of the left and right
margin, respectively. If both of smgtp and smgbp are set, each is used to set the
top and bottom margin, respectively: smgtp is used with a single argument, N, the
line number of the top margin; however, smgbp is used with two arguments, N and
M, that give the line number of the bottom margin, the first counting from the top of
the page and the second counting from the bottom. This accommodates the two
styles of specifying the bottom margin in different manufacturers' printers. When
coding a terminfo entry for a printer that has a settable bottom margin, only the

Chapter 4. Terminfo Source Format (ENHANCED CURSES) 297

first or second argument should be used, depending on the printer. When writing
an application that uses smgbp to set the bottom margin, both arguments must be
given.

If only one of smglp and smgrp is set, then it is used with two arguments, the
column number of the left and right margins, in that order. Likewise, if only one of
smgtp and smgbp is set, then it is used with two arguments that give the top and
bottom margins, in that order, counting from the top of the page. Thus when
coding a terminfo entry for a printer that requires setting both left and right or top
and bottom margins simultaneously, only one of smglp and smgrp or smgtp and
smgbp should be defined; the other should be left blank. When writing an
application that uses these string capabilities, the pairs should be first checked to
see if each in the pair is set or only one is set, and should then be used
accordingly.

In counting lines or columns, line zero is the top line and column zero is the
left-most column. A zero value for the second argument with smgbp means the
bottom line of the page.

All margins can be cleared with mgc.

Shadows, Italics, Wide Characters, Superscripts, Subscripts

Five sets of strings describe the capabilities printers have of enhancing printed text.

Enhanced Printing

sshm Enter shadow-printing mode

rshm Exit shadow-printing mode

sitm Enter italicizing mode

ritm Exit italicizing mode

swidm Enter wide character mode

rwidm Exit wide character mode

ssupm Enter superscript mode

rsupm Exit superscript mode

supcs List of characters available as superscripts
ssubm Enter subscript mode

rsubm Exit subscript mode

subcs List of characters available as subscripts

If a printer requires the sshm control sequence before every character to be
shadow-printed, the rshm string is left blank. Thus programs that find a control
sequence in sshm but none in rshm should use the sshm control sequence before
every character to be shadow-printed; otherwise, the sshm control sequence should
be used once before the set of characters to be shadow-printed, followed by rshm .
The same is also true of each of the sitm/ritm , swidm/rwidm , ssupm/rsupm , and
ssubm/rsubm pairs.

terminfo also has a capability for printing emboldened text (bold). While shadow
printing and emboldened printing are similar in that they “darken” the text, many
printers produce these two types of print in slightly different ways. Generally,
emboldened printing is done by overstriking the same character one or more times.

298 0S/390 V2R4.0 C Curses

Shadow printing likewise usually involves overstriking, but with a slight movement
up and/or to the side so that the character is “fatter.”

It is assumed that enhanced printing modes are independent modes, so that it
would be possible, for instance, to shadow print italicized subscripts.

As mentioned earlier, the amount of motion automatically made after printing a wide
character should be given in widcs .

If only a subset of the printable ASCII characters can be printed as superscripts or
subscripts, they should be listed in supcs or subcs strings, respectively. If the
ssupm or ssubm strings contain control sequences, but the corresponding supcs
or subcs strings are empty, it is assumed that all printable ASCII characters are
available as superscripts or subscripts.

Automatic motion made after printing a superscript or subscript is assumed to be
the same as for regular characters.

Note that the existing msgr boolean capability describes whether motion control
sequences can be used while in “standout mode.” This capability is extended to
cover the enhanced printing modes added here. msgr should be set for those
printers that accept any motion control sequences without affecting shadow,
italicized, widened, superscript, or subscript printing. Conversely, if msgr is not set,
a program should end these modes before attempting any motion.

Alternate Character Sets
In addition to allowing you to define line graphics, terminfo lets you define alternate
character sets. The following capabilities cover printers and terminals with multiple
selectable or definable character sets:

Alternate Character Sets

scs Select character set N

scsd Start definition of character set N, M characters
defc Define character A, B dots wide, descender D
rcsd End definition of character set N

csnm List of character set names

daisy Printer has manually changed print-wheels

The scs, rcsd, and csnm strings are used with a single argument, N, a number
from O to 63 that identifies the character set. The scsd string is also used with the
argument N and another, M, that gives the number of characters in the set. The
defc string is used with three arguments: A gives the ASCII code representation for
the character, B gives the width of the character in dots, andD is zero or one
depending on whether the character is a “descender” or not. The defc string is
also followed by a string of “image-data” bytes that describe how the character
looks (see below).

Character set 0 is the default character set present after the printer has been
initialized. Not every printer has 64 character sets, of course; using scs with an
argument that doesn't select an available character set should cause a null pointer
to be returned by tparm .

Chapter 4. Terminfo Source Format (ENHANCED CURSES) 299

If a character set has to be defined before it can be used, the scsd control
sequence is to be used before defining the character set, and the rcsd is to be
used after. They should also cause a NULL pointer to be returned by tparm when
used with an argument N that doesn't apply. If a character set still has to be
selected after being defined, the scs control sequence should follow the rcsd
control sequence. By examining the results of using each of the scs, scsd, and
rcsd strings with a character set number in a call to tparm, a program can
determine which of the three are needed.

Between use of the scsd and rcsd strings, the defc string should be used to define
each character. To print any character on printers covered by terminfo , the ASCII
code is sent to the printer. This is true for characters in an alternate set as well as
“normal” characters. Thus the definition of a character includes the ASCII code that
represents it. In addition, the width of the character in dots is given, along with an
indication of whether the character should descend below the print line (such as the
lower case letter “g” in most character sets). The width of the character in dots
also indicates the number of image-data bytes that will follow the defc string.

These image-data bytes indicate where in a dot-matrix pattern ink should be
applied to “draw” the character.

It's easiest for the creator of terminfo entries to refer to each character set by
number; however, these numbers will be meaningless to the application developer.
The csnm string alleviates this problem by providing hames for each number.

When used with a character set number in a call to tparm, the csnm string will
produce the equivalent name. These names should be used as a reference only.
No naming convention is implied, although anyone who creates a terminfo entry
for a printer should use names consistent with the names found in user documents
for the printer. Application developers should allow a user to specify a character
set by number (leaving it up to the user to examine the csnm string to determine
the correct number), or by name, where the application examines the csnm string
to determine the corresponding character set number.

These capabilities are likely to be used only with dot-matrix printers. If they are not
available, the strings should not be defined. For printers that have manually
changed print-wheels or font cartridges, the boolean daisy is set.

Dot-Matrix Graphics
Dot-matrix printers typically have the capability of reproducing raster graphics
images. Three numeric capabilities and three string capabilities help a program
draw raster-graphics images independent of the type of dot-matrix printer or the
number of pins or dots the printer can handle at one time.

Dot-Matrix Graphics

npins Number of pins, N, in print-head

spinv Spacing of pins vertically in pins per inch
spinh Spacing of dots horizontally in dots per inch
porder Matches software bits to print-head pins
shbim Start printing bit image graphics, B bits wide
rbim End printing bit image graphics

The sbim sring is used with a single argument, B, the width of the image in dots.

300 0S/390 V2R4.0 C Curses

The model of dot-matrix or raster-graphics that terminfo presents is similar to the
technique used for most dot-matrix printers: each pass of the printer's print-head is
assumed to produce a dot-matrix that is N dots high and B dots wide. This is
typically a wide, squat, rectangle of dots. The height of this rectangle in dots will
vary from one printer to the next; this is given in the npins numeric capability. The
size of the rectangle in fractions of an inch will also vary; it can be deduced from
the spinv and spinh numeric capabilities. With these three values an application
can divide a complete raster-graphics image into several horizontal strips, perhaps
interpolating to account for different dot spacing vertically and horizontally.

The sbim and rbim strings start and end a dot-matrix image, respectively. The
shim string is used with a single argument that gives the width of the dot-matrix in
dots. A sequence of “image-data bytes” are sent to the printer after the shim string
and before the rbim string. The number of bytes is a integral multiple of the width
of the dot-matrix; the multiple and the form of each byte is determined by the
porder string as described below.

The porder string is a comma separated list of pin numbers optionally followed by
an numerical offset. The offset, if given, is separated from the list with a semicolon.
The position of each pin number in the list corresponds to a bit in an 8-bit data
byte. The pins are numbered consecutively from 1 to npins , with 1 being the top
pin. Note that the term “pin” is used loosely here; “ink-jet” dot-matrix printers don't
have pins, but can be considered to have an equivalent method of applying a single
dot of ink to paper. The bit positions in porder are in groups of 8, with the first
position in each group the most significant bit and the last position the least
significant bit. An application produces 8-bit bytes in the order of the groups in
porder .

An application computes the “image-data bytes” from the internal image, mapping
vertical dot positions in each print-head pass into 8-bit bytes, using a 1 bit where
ink should be applied and 0 where no ink should be applied. This can be reversed
(O bit for ink, 1 bit for no ink) by giving a negative pin number. If a position is
skipped in porder, a 0 bit is used. If a position has a lower case ‘X’ instead of a
pin number, a 1 bit is used in the skipped position. For consistency, a lower case
‘0’ can be used to represent a O filled, skipped bit. There must be a multiple of 8
bit positions used or skipped in porder ; if not, low-order bits of the last byte are set
to 0. The offset, if given, is added to each data byte; the offset can be negative.

Some examples may help clarify the use of the porder string. The AT&T 470,
AT&T 475 and C.Itoh 8510 printers provide eight pins for graphics. The pins are
identified top to bottom by the 8 bits in a byte, from least significant to most. The
porder strings for these printers would be 8,7,6,5,4,3,2,1. The AT&T 478 and
AT&T 479 printers also provide eight pins for graphics. However, the pins are
identified in the reverse order. The porder strings for these printers would be
1,2,3,4,5,6,7,8. The AT&T 5310, AT&T 5320, Digital LA100, and Digital LNO3
printers provide six pins for graphics. The pins are identified top to bottom by the
decimal values 1, 2, 4, 8, 16 and 32. These correspond to the low six bits in an
8-bit byte, although the decimal values are further offset by the value 63. The
porder string for these printers would be ,,6,5,4,3,2,1;63, or alternately
0,0,6,5,4,3,2,1,63.

Chapter 4. Terminfo Source Format (ENHANCED CURSES) 301

Effect of Changing Printing Resolution

If the control sequences to change the character pitch or the line pitch are used,
the pin or dot spacing may change:

Changing the Character/Line Pitches

cpi
cpix

Change character pitch
If set, cpi changes spinh

Ipi
Ipix

Change line pitch
If set, Ipi changes spinv

orhi' and orhi are the values of the horizontal resolution in steps per inch, before
using cpi and after using cpi, respectively. Likewise, orvi' and orvi are the values
of the vertical resolution in steps per inch, before using Ipi and after using Ipi,
respectively. Thus, the changes in the dots per inch for dot-matrix graphics follow
the changes in steps per inch for printer resolution.

302 0S/390 V2R4.0 C Curses

Print Quality
Many dot-matrix printers can alter the dot spacing of printed text to produce
near-letter-quality printing or draft-quality printing. It is important to be able to
choose one or the other because the rate of printing generally decreases as the
quality improves. Three strings describe these capabilities:

Print Quality

snlq Set near-letter quality print
snrmq Set normal quality print
sdrfq Set draft quality print

The capabilities are listed in decreasing levels of quality. If a printer doesn't have
all three levels, the respective strings should be left blank.

Printing Rate and Buffer Size
Because there is no standard protocol that can be used to keep a program
synchronized with a printer, and because modern printers can buffer data before
printing it, a program generally cannot determine at any time what has been
printed. Two numeric capabilities can help a program estimate what has been
printed.

Print Rate/Buffer Size

cps Nominal print rate in characters per second
bufsz Buffer capacity in characters

cps is the nominal or average rate at which the printer prints characters; if this
value is not given, the rate should be estimated at one-tenth the prevailing baud
rate. bufsz is the maximum number of subsequent characters buffered before the
guaranteed printing of an earlier character, assuming proper flow control has been
used. If this value is not given it is assumed that the printer does not buffer
characters, but prints them as they are received.

As an example, if a printer has a 1000-character buffer, then sending the letter “a”
followed by 1000 additional characters is guaranteed to cause the letter “a” to print.
If the same printer prints at the rate of 100 characters per second, then it should
take 10 seconds to print all the characters in the buffer, less if the buffer is not full.
By keeping track of the characters sent to a printer, and knowing the print rate and
buffer size, a program can synchronize itself with the printer.

Note that most printer manufacturers advertise the maximum print rate, not the
nominal print rate. A good way to get a value to put in for cps is to generate a few
pages of text, count the number of printable characters, and then see how long it
takes to print the text.

Applications that use these values should recognize the variability in the print rate.
Straight text, in short lines, with no embedded control sequences will probably print
at close to the advertised print rate and probably faster than the rate in cps.
Graphics data with a lot of control sequences, or very long lines of text, will print at
well below the advertised rate and below the rate in cps. If the application is using
cps to decide how long it should take a printer to print a block of text, the
application should pad the estimate. If the application is using cps to decide how

Chapter 4. Terminfo Source Format (ENHANCED CURSES) 303

much text has already been printed, it should shrink the estimate. The application
will thus err in favor of the user, who wants, above all, to see all the output in its
correct place.

Selecting a Terminal
If the environment variable TERMINFO is defined, any program using Curses
checks for a local terminal definition before checking in the standard place. For
example, if TERM is set to att4424, then the compiled terminal definition is found in
by default the path
a/att4424
within an implementation-specific directory.

(The a is copied from the first letter of att4424 to avoid creation of huge
directories.) However, if TERMINFO is set to $HOME/myterms , Curses first checks

$HOME/myterms/a/att4424
If that fails, it then checks the default pathname.

This is useful for developing experimental definitions or when write permission in
the implementation-defined default database is not available.

If the LINES and COLUMNS environment variables are set, or if the program is
executing in a window environment, line and column information in the environment
will override information read by terminfo .

Application Usage

The most effective way to prepare a terminal description is by imitating the
description of a similar terminal in terminfo and to build up a description gradually,
using partial descriptions with a screen-oriented editor, to check that they are
correct. To easily test a new terminal description the environment variable
TERMINFO can be set to the pathname of a directory containing the compiled
description, and programs will look there rather than in the terminfo database.

Conventions for Device Aliases
Every device must be assigned a name, such as vt100. Device names (except the
long name) should be chosen using the following conventions. The name should
not contain hyphens because hyphens are reserved for use when adding suffixes
that indicate special modes.

304 0sS/390 V2R4.0 C Curses

These special modes may be modes that the hardware can be in, or user
preferences. To assign a special mode to a particular device, append a suffix
consisting of a hyphen and an indicator of the mode to the device hame. For
example, the -w suffix means wide mode; when specified, it allows for a width of
132 columns instead of the standard 80 columns. Therefore, if you want to use a
vt100 device set to wide mode, name the device vt100-w. Use the following
suffixes where possible:

Suffix Meaning Example
-w Wide mode (more than 80 columns) 5410-w
-am With automatic margins (usually default) vt100-am
-nam Without automatic margins vt100-nam
-n Number of lines on the screen 2300-40
-na No arrow keys (leave them in local) c100-na
-np Number of pages of memory c100-4p
-rv Reverse video 4415-rv

Variations of Terminal Definitions
It is implementation-defined how the entries in terminfo may be created.

There is more than one way to write a terminfo entry. A minimal entry may permit
applications to use Curses to operate the terminal. If the entry is enhanced to
describe more of the terminal's capabilities, applications can use Curses to invoke
those features, and can take advantages of optimizations within Curses and thus
operate more efficiently. For most terminals, an optimal terminfo entry has already
been written.

Chapter 4. Terminfo Source Format (ENHANCED CURSES) 305

306 0S/390 V2R4.0 C Curses

Appendix A. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this publication
at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1996, 1999 307

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation

Mail Station P300

522 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply
reliability, serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for the
purposes of developing, using, marketing, or distributing application programs
conforming to IBM's application programming interfaces.

308 0S/390 V2R4.0 C Curses

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or

other countries or both:

AIX
BookManager
C++/MVS
C/MVS

C/370

CIcs
DFSMS/MVS

IBM

IBMLink

IMS

Language Ennvironment
MVS/ESA

0Ss/2

UNIX is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company, Limited.

Other company, product, and service hames, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others:

ANSI

IEEE

InterOpen

ISO

MKS

POSIX

X Window System
X Windows

American National Standards Institute

Institute of Electrical and Electronics Engineers
Mortice Kern Systems Inc.

International Organization for Standardization
Mortice Kern Systems Inc.

Institute of Electrical and Electronics Engineers
Massachusetts Institute of Technology
Massachusetts Institute of Technology

Appendix A. Notices 309

310 0S/390 V2R4.0 C Curses

Glossary

background . A property of a window that specifies a
character (the background character) and a rendition to
be used in a variety of situations.

Curses window . Data structures, which can be
thought of as two-dimensional arrays of characters that
represent screen displays. These data structures are
manipulated with Curses functions.

cursor position The line and column position on the
screen denoted by the terminal's cursor.

empty wide-character string A wide-character string
whose first element is a null wide-character code.

erase character . A special input character that deletes
the last character in the current line, if there is one.

kill character . A special input character that deletes
all data in the current line, if there are any.
null chtype . A chtype with all bits set to zero.

null wide-character code A wide-character code with

all bits set to zero.

pad. A window that is not necessarily associated with
a viewable part of a screen.

parent window . A window that has subwindows or
derived windows associated with it.

rendition . The rendition of a character displayed on
the screen is its attributes !and a color pair.

© Copyright IBM Corp. 1996, 1999

SCREEN. An opaque Curses data type that is
associated with the display screen.

subwindow . A window, created within another
window, but positioned relative to that other window.
Changes made to a subwindow do not affect its parent
window. A derived window differs from a subwindow
only in that it is positioned relative to the origin of its
parent window. Changes to a parent window will affect
both subwindows and derived windows.

touch . To set a flag in a window that indicates that the
information in the window could differ from the that
displayed on the terminal device.

wide-character code (C language) An integer value
corresponding to a single graphic symbol or control
code.

wide-character string A contiguous sequence of
wide-character codes terminated by and including the
first null wide-character code.

window . A two-dimensional array of characters
representing all or part of the terminal screen. The term
window in this document means one of the data
structures maintained by the Curses implementation,
unless specified otherwise. (This document does not
define the interaction between the Curses
implementation and other windowing system
paradigms.)

window hierarchy . The aggregate of a parent window
and all of its subwindows and derived windows.

311

312 0S/390 V2R4.0 C Curses

Index

A

add_wch interface for enhanced curses
add_wechnstr interface for enhanced curses
addch interface for curses

addchstr interface for curses

adding characters to the screen image
addnstr interface for enhanced curses
addnwstr interface for enhanced curses
alternate character sets

application usage |304

area clears [282

attr_get interface for enhanced curses
attroff interface for curses

B

basic capabilities [278

baudrate interface for curses

beep interface for curses

bit masks

bkgd interface for enhanced curses
bkgrnd interface for enhanced curses
border interface for enhanced curses
border_set curses for enhanced curses
box interface for curses

box_set interface for enhanced curses
buffer size |303

C

can_change_color interface for enhanced curses
capabilities that cause movement

cbreak interface for curses

chgat interface for enhanced curses

clear interface for curses

clearok interface for curses

clrtobot interface for curses

clrtoeol interface for curses

color manipulation [289

color_content interface for enhanced curses

color_pairs interface for enhanced curses
cols interface for enhanced curses
controlling the cursor [9][28]

conventions for device aliases |304
copywin interface for curses

creating windows

cur_term interface for enhanced curses
current window structure

curs_set interface for enhanced curses
curscr interface for curses

curses environment, windows

© Copyright IBM Corp. 1996, 1999

curses functions
curses interfaces
curses library [

curses.h header
cursor motions

D

def_prog_mode interface for curses
default colors

default window structure

defined capabilities 263

del_curterm interface for enhanced curses
delay_output interface for curses
delays [287

delch interface for curses

deleteln interface for curses

deleting characters

delscreen interface for curses

delwin interface for curses

derwin interface for curses
determining terminal capabilities
device capabilities [278

dot-matrix graphics |300

doupdate interface for curses

dupwin interface for enhanced curses

E

echo interface for curses

echo_wchar interface for enhanced curses [9]]
echochar interface for enhanced curse
effect of changing printing resolution |302
enabling text scrolling

endwin interface for curses

erase interface for curses

erasechar interface for curses

F

filter interface for enhanced curses
filters [9]

flash interface for curses

flushinp interface for curses

formal grammar

functions used for refreshing pads

garbled displays
get_wch interface for enhanced curses |112
get_wstr interface for enhanced curses |[115

313

getbegyx interface for curses

getbkgd interface for enhanced curses [100
getbkgrnd interface for enhanced curses
getcchar interface for enhanced curses |102
getch interface for curses

getmaxys interface for enhanced curses
getn_wstr interface for enhanced curses |108
getnstr interface for curses 106

getparyx interface for enhanced curses
getstr interface for curses

getting characters

getwin interface for enhanced curses
getyx interface for curses

H

halfdelay interface for enhanced curses |117
has_colors interface for enhanced curses [118
has_ic interface for curses [119

headers |[243

highlighting

hline interface for enhanced curses [120]
hline_set interface for enhanced curses |122

idcok interface for enhanced curses [124
idlok interface for curses (125

immedok interface for enhanced curses
in_wch interface for enhanced curses [147
in_wchnstr interface for enhanced curses |148
inch interface for curses |127

inchnstr interface for enhanced curses [128
init_color interface for enhanced curses |129
initializing curses

initscr interface for curses

innstr interface for enhanced curses
innwstr interface for enhanced curses [134]
ins_nwstr interface for enhanced curses
ins_wch interface for enhanced curses [144]
ins_wstr interface for enhanced curses [145]
insch interface for curses |136

insdelln interface for enhanced curses |137
insert/delete character

insert/delete line

insertln interface for curses (138

insnstr interface for enhanced curses [139
insstr interface for enhanced curses [142
instr interface for enhanced curses (143
intrflush-interface for curses 146

inwstr interface for enhanced curses [150
is_linetouched interface for curses [152
isendwin interface for enhanced curses

=Y
3]

314 0S/390 V2R4.0 C Curses

K

keyname interface for curses (154
keypad

keypad interface for curses
keys, function

killchar interface for curses

L

leaveok interface for curses (158

line graphics |288

lines interface for enhanced curses
longname interface for curses [160
low-level screen functions

M

manipulating characters
manipulating characters with curses
manipulating color

manipulating multiple terminals [19]
manipulating soft labels '-
manipulating terminals

manipulating TTYs [23]

manipulating video attributes
manipulating window content [9]
manipulating window data
manipulating windows

meta interface for enhanced curses
minimum guaranteed limits
miscellaneous

miscellaneous utilities

move interface for curses |162

mv interface for curses

mvecur interface for enhanced curses
mvderwin interface for enhanced curses (166
mvprintw interface for curses |[167
mvscanw interface for curses [168
mvwin interface for curses [169

N

naming conventions

napms interface for curses

newpad interface for curses

newterm interface for curses |173

newwin interface for curses [174

nl interface for curses |175

no interface for curses

nodelay interface for curses

nogiflush interface for enhanced curses [178]
notimeout interface for enhanced curses [179

O

obsolete curses functions
overlay interface for curses [180

P
pads [6][7]

pads, removing

pair_content interface for enhanced curses
parameterized strings |279

pechochar interface for enhanced curses [182
pnoutrefresh interface for curses

print quality

printer capabilities |292

printer resolution (293

printing rate |303

printwr interface for curses |184

putp interface for enhanced curses [185
putwin interface for enhanced curses [187

giflush interface for enhanced curses [188

R

raw interface for curses [189

redrawwin interface for enhanced curses |190
refresh interface for curses

refreshing areas

refreshing windows

reset_prog_mode interface for curses [192
resetty interface for curses |193

restartterm interface for enhanced cursesﬂ
ripoffline interface for enhanced curses |195
rounding values [293

S

sample entry
savetty interface for curses [196

scanw interface for curses [197

scr_dump interface for enhanced curses |198
scrl interface for curses [200]
scrollok interface for curses [207]

selecting a terminal [304

set_curterm interface for enhanced curses |[203
set_term interface for curses [205

setccar interface for enhanced curses [202
setscrreg interface for curses |204

setting curses options

setting terminal input and output modes
setting video attributes

setting video attributes and curses options
setupterm interface for enhanced curses |206

similar terminals [292

slk_attroff interface for enhanced curses
source file syntax [260]

special cases [292]
specifying printer resolution [293

standend interface for curses

start_color interface for enhanced curses
starting and stopping curses

status lines

stdscr interface for enhanced cursor
structure of a curses program

subpad interface for enhanced curses
subwin interface for curses

subwindows

subwindows, removing

syncok interface for enhanced curses |215

T

tabs and initialization |286

term.h header for enhanced curses [256]
termattrs interface for enhanced curses [216
terminfo source format

terminology

termname interface for enhanced curses 217
tgetent interface for enhanced curses
tigetflag interface for enhanced curses

timeout interface for enhanced curses -
touchline interface for curses [223]

tparm interface for enhanced curses [224]
tputs interface for enhanced curses
typeahead interface for enhanced curses |226
types of capabilities in the sample entry [276

U

unctrl function

unctrl header |257

unctrl interface for curses |227

underlining

understanding terminals

ungetch interface for enhanced curses |228
untouchwin interface for enhanced curses
use_env interface for enhanced curses [230
using the terminfo and termcap files

Vv

variations of terminal definitions
vidattr interface for enhanced curses
video attribut

visible bells

vline interface for enhanced curses [233]

vline_set interface for enhanced curses [234
vw_printw interface for enhanced curses |236

Index

315

vw_scanw interface for enhanced curses |238
vwprintw interface for enhanced curses [235
vwscanw interface for enhanced curses (237

W

w interface for curses [239

waddch function

waddstr function

wclear function

weclrtobot function

weclrtoeol function

wdelch function

wdeleteln function

werase function

wgetch function

window images, changing the screen
windows, removing

winsch function

winsertln function

working with color

wprintw function

wunctrl interface for enhanced curses

316 0S/390 V2R4.0 C Curses

Communicating Your Comments to IBM

0S/390
C Curses

Publication No. SC28-1907-01

If you especially like or dislike anything about this book, please use one of the methods
listed below to send your comments to IBM. Whichever method you choose, make sure you
send your name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter,
or completeness of this book. However, the comments you send should pertain to only the
information in this manual and the way in which the information is presented. To request
additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized
remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute
your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a reader's comment form (RCF) from a country other than the United
States, you can give the RCF to the local IBM branch office or IBM representative for
postage-paid mailing.

 If you prefer to send comments by mail, use the RCF at the back of this book.
e If you prefer to send comments by FAX, use this number:

— FAX: (International Access Code)+1+914+432-9405
¢ If you prefer to send comments electronically, use one of these network IDs:

— IBM Mail Exchange: USIB6TC9 at IBMMAIL
— Internet e-mail: mhvrcfs@us.ibm.com
— World Wide Web: http://www.ibm.com/s390/0s390/

Make sure to include the following in your note:
e Title and publication number of this book
e Page number or topic to which your comment applies

Optionally, if you include your telephone number, we will be able to respond to your
comments by phone.

Reader's Comments — We'd Like to Hear from You

0S/390
C Curses

Publication No. SC28-1907-01

You may use this form to communicate your comments about this publication, its organization, or subject

matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you. Your comments will be sent to the author's
department for whatever review and action, if any, are deemed appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please
direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM
representative or to the IBM branch office serving your locality.

Today's date:

What is your occupation?
Newsletter number of latest Technical Newsletter (if any) concerning this publication:

How did you use this publication?

[] As an introduction
[1] As a reference manual
[1] For another purpose (explain)

As a text (student)
As a text (instructor)

[]
[]

Is there anything you especially like or dislike about the organization, presentation, or writing in this
manual? Helpful comments include general usefulness of the book; possible additions, deletions, and
clarifications; specific errors and omissions.

Page Number: Comment:

Name Address

Company or Organization

Phone No.

Reader's Comments — We'd Like to Hear from You

SC28-1907-01

Fold and Tape

Please do not staple

Fold and Tape

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Department 55JA, Mail Station P384
522 South Road

Poughkeepsie NY 12601-5400

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

Fold and Tape

SC28-1907-01

Please do not staple

Fold and Tape

Cut or Fold
Along Line

Cut or Fold
Along Line

Program Number: 5647-A01

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

	About This Book
	Typographical Conventions
	Other Documents
	A Task-Oriented Guide to OS/390 OpenEdition Information
	Getting a Basic Understanding
	Administration
	Using the Shell and Utilities or Hierarchical File System
	Application Programming: Standards
	Designing and Coding Programs
	Compiling and Running Programs
	Debugging Programs
	Diagnosing Problems
	Non-IBM Books
	Standards Supported
	Application Programming Environments Not Supported

	Summary of Changes

	Chapter 1. The Curses Library
	Terminology
	Naming Conventions
	Structure of a Curses Program
	Initializing Curses
	Windows in the Curses Environment
	The Default Window Structure
	The Current Window Structure
	Subwindows
	Pads

	Manipulating Window Data with Curses
	Creating Windows
	Subwindows
	Pads
	Removing Windows, Pads, and Subwindows
	Changing the Screen or Window Images
	Refreshing Windows
	Functions Used for Refreshing Pads
	Refreshing Areas that Have Not Changed
	Garbled Displays
	Manipulating Window Content
	Support for Filters

	Controlling the Cursor
	Manipulating Characters with Curses
	Adding Characters to the Screen Image
	waddch Functions
	waddstr Functions
	winsch Functions
	winsertln Functions
	wprintw Functions
	unctrl Function
	Enabling Text Scrolling
	Deleting Characters
	werase Functions
	wclear Functions
	wclrtoeol Functions
	wclrtobot Functions
	wdelch Functions
	wdeleteln Functions
	Getting Characters
	wgetch Functions

	Understanding Terminals
	Manipulating Multiple Terminals
	Determining Terminal Capabilities
	Setting Terminal Input and Output Modes
	Using the terminfo and termcap Files
	Writing Programs That Use the terminfo Functions
	Low-Level Screen Functions
	Manipulating TTYs

	Working with Color
	Manipulating Video Attributes
	Video Attributes, Bit Masks, and the Default Colors
	Setting Video Attributes
	Setting Curses Options

	Manipulating Soft Labels
	Obsolete Curses Functions
	List of Curses Functions
	Starting and Stopping Curses
	Manipulating Windows
	Controlling the Cursor
	Manipulating Characters
	Manipulating Terminals
	Manipulating Color
	Setting Video Attributes and Curses Options
	Manipulating Soft Labels
	Miscellaneous Utilities

	Chapter 2. Curses Interfaces
	addch()
	addchstr()
	addnstr()
	addnwstr()
	add_wch()
	add_wchnstr()
	attroff()
	attr_get()
	baudrate()
	beep()
	bkgd()
	bkgd()
	bkgrnd()
	border()
	border_set()
	box()
	box_set()
	can_change_color()
	cbreak()
	chgat()
	clear()
	clearok()
	clrtobot()
	clrtoeol()
	color_content()
	COLOR_PAIRS
	COLS
	copywin()
	curscr
	curs_set()
	cur_term()
	def_prog_mode()
	delay_output()
	delch()
	del_curterm()
	deleteln()
	delscreen()
	delwin()
	derwin()
	doupdate()
	dupwin()
	echo()
	echochar()
	echo_wchar()
	endwin()
	erase()
	erasechar()
	filter()
	flash()
	flushinp()
	getbegyx()
	getbkgd()
	getbkgrnd()
	getcchar()
	getch()
	getmaxyx()
	getnstr()
	getn_wstr()
	getparyx()
	getstr()
	get_wch()
	getwin()
	get_wstr()
	getyx()
	halfdelay()
	has_colors()
	has_ic()
	hline()
	hline()
	hline_set()
	hline_set()
	idcok()
	idlok()
	immedok()
	inch()
	inchnstr()
	init_color()
	initscr()
	initscr()
	innstr()
	innwstr()
	insch()
	insdelln()
	insertln()
	insnstr()
	ins_nwstr()
	insstr()
	instr()
	ins_wch()
	ins_wstr()
	intrflush()
	in_wch()
	in_wchnstr()
	inwstr()
	isendwin()
	is_linetouched()
	keyname()
	keypad()
	killchar()
	leaveok()
	LINES
	longname()
	meta()
	move()
	mv
	mvcur()
	mvderwin()
	mvprintw()
	mvscanw()
	mvwin()
	napms()
	newpad()
	newterm()
	newwin()
	nl()
	no
	nodelay()
	noqiflush()
	notimeout()
	overlay()
	pair_content()
	pechochar()
	pnoutrefresh()
	printw()
	putp()
	putwin()
	qiflush()
	raw()
	redrawwin()
	refresh()
	reset_prog_mode()
	resetty()
	restartterm()
	ripoffline()
	savetty()
	scanw()
	scr_dump()
	scrl()
	scrollok()
	setcchar()
	set_curterm()
	setscrreg()
	set_term()
	setupterm()
	slk_attroff()
	standend()
	start_color()
	stdscr
	subpad()
	subwin()
	syncok()
	termattrs()
	termname()
	tgetent()
	tigetflag()
	timeout()
	touchline()
	tparm()
	tputs()
	typeahead()
	unctrl()
	ungetch()
	untouchwin()
	use_env()
	vidattr()
	vline()
	vline_set()
	vwprintw()
	vw_printw()
	vwscanw()
	vw_scanw()
	w
	wunctrl()

	Chapter 3. Headers
	<curses.h>
	<term.h>
	<unctrl.h>

	Chapter 4. Terminfo Source Format (ENHANCED CURSES)
	Source File Syntax
	Minimum Guaranteed Limits
	Formal Grammar
	Defined Capabilities
	Sample Entry
	Types of Capabilities in the Sample Entry

	Device Capabilities
	Basic Capabilities
	Parameterized Strings
	Cursor Motions
	Area Clears
	Insert/Delete Line
	Insert/Delete Character
	Highlighting, Underlining, and Visible Bells
	Keypad
	Tabs and Initialization
	Delays
	Status Lines
	Line Graphics
	Color Manipulation
	Miscellaneous
	Special Cases
	Similar Terminals

	Printer Capabilities
	Rounding Values
	Printer Resolution
	Specifying Printer Resolution
	Capabilities that Cause Movement
	Alternate Character Sets
	Dot-Matrix Graphics
	Effect of Changing Printing Resolution
	Print Quality
	Printing Rate and Buffer Size

	Selecting a Terminal
	Application Usage
	Conventions for Device Aliases
	Variations of Terminal Definitions

	Appendix A. Notices
	Trademarks

	Glossary
	Index

