C/C++ Productivity Tools for 0OS/390

Distributed Debugger

Release 10

Note
Before using this information and the product it supports, be sure to read the

general information under ENatices” on page 6.

First Edition (September 1999)

This edition applies to C/C++ Productivity Tools for OS/390 Release 1.0, program number 5655-B85 and to all
subsequent versions, releases, and modifications until otherwise indicated in new editions. Consult the latest edition
of the applicable system bibliography for current information on these products.

Order publications through your IBM representative or through the IBM branch office serving your locality.

© Copyright International Business Machines Corporation 1999. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this book

Who should read this book
Conventions used in this book .
Related information .

How to send your comments

Chapter 1. Distributed Debugger
Distributed Debugger: Overview
Distributed Debugger: Panes .
Distributed Debugger: Monitors
Distributed Debugger and Debug Tool
Recursion and debugging .
Breakpoints
Mapping Layouts . .
UNIX call handling during debugglng

exec() handling

fork() handling

system() handling

Chapter 2. Preparing a program for
debugging . . .
Setting environment varlables for the
debugger .
Writing a program for debugglng .
Compiling a program for debugging .
Debugging a CICS application
Debugging a DB2 program or stored
procedure .

Debugging a Webserver appllcatlon
Debugging an IMS application .

Preparing your OS/390 C/C++ appllcatlon

for debugging.

Chapter 3. Starting the debugger for
0OS/390 programs

Starting the Distributed Debugger user
interface daemon. .
Starting applications with Debug TooI in
0S/390 batch . .
Starting applications Wlth Debug TooI in
0S/390 UNIX.

Chapter 4. Working with breakpoints
Setting a line breakpoint

Setting a function breakpoint.

© Copyright IBM Corp. 1999

< < < <

<

O O O O NOOOP~WNEP

11
11
11
12
12
14
16
17

19

21

21

22

23

25

25
26

Setting a storage change breakpoint
Setting a load occurrence breakpoint .
Setting a deferred breakpoint.

Setting multiple breakpoints .
Viewing breakpoints .
Enabling and disabling breakpomts
Deleting a breakpoint .

Chapter 5. Controlling program execution 35

Running a program .

Stepping through a program

Skipping over sections of a program
Selecting debugger recognized exceptions
Terminating a debug session without exiting
the debugger .

Chapter 6. Inspecting variables

Adding a variable or expression to the
Monitors pane .
Viewing the contents of a varlable .
Changing the contents of a variable
Enabling hover help for variables .
Changing the representation of monitor
contents.

Chapter 7. Inspecting registers
Viewing the contents of a register .
Changing the contents of a register.
Adding a register to the Monitors pane

Chapter 8. Inspecting storage

Viewing a location in storage.

Changing the representation of storage
contents. .
Changing the contents of a storage Iocatlon
Adding a new Storage Monitor pane for an
expression or register

Chapter 9. Mapping storage . .
Mapping pointers, addresses and reglsters
Defining a mapping layout

Enabling and disabling a monitored
variable, expression .

27
28
29
30
30
31
32

35
36
36
37

38
39
39
39
40
41
41
43
43
43
44

45
45

46
46

46
49
49
49

53

Chapter 10. Reference
idebug command
Step commands . .
C/C++ expressions supported
C/C++ supported data types.
C/C++ supported expression operands
C/C++ supported expression operators
Environment variable

DER_DBG_PATH environment varlable

Troubleshooting . .
Why the Distributed Debugger cannot
find source files on the workstation

55
55
56
57
57
57
58
59
59
60

60

iV Distributed Debugger: C/C++ Productivity Tools

Order of source file searching
Exception levels .
Remote debug limitations .

Optional breakpoint parameters.

Program Profiles .

Notices .

Trademarks and service marks .

61
62
62
63
64

67
69

About this book

Distributed Debugger introduces you to the Distributed Debugger and provides
information about how to debug an OS/390 C and C++ application.

Who should read this book

Distributed Debuggger is intended for application programmers who want to
debug C and C++ applications on OS/390 and want a workstation debugger
to enhance their existing familiar host environment. For these users, this
document introduces the Distributed Debugger and shows how to use it.

Conventions used in this book

The following conventions distinguish different text styles within this book:

plain

monospace

bold

italics

Window titles, folder names, icon names,
and method names.

Programming examples, user input at the
command line prompt or into an entry
field, directory paths.

Menu choices and menu names, labels for
push buttons, check boxes, radio buttons,
group-box controls, drop-down list boxes,
combination-boxes, notebook tabs, and
entry fields.

Programming keywords and variables,
and titles of documents.

Related information

For information on OS/390 C/C++ related features, news and Web sites, add
this Web site to your browser’s bookmark list:

http://www.ibm.com/software/ad/c390

© Copyright IBM Corp. 1999

How to send your comments

Your feedback is important in helping to provide the most accurate and
highest quality information. If you have any comments about this book or any
other C/C++ Productivity Tools documentation, send your comments by
e-mail to torrcf@ca.ibm.com. Be sure to include the name of the book, the
document number of the book, the version of C/C++ Productivity Tools, and,
if applicable, the specific location of the information on which you are
commenting (for example, a page humber or a table number).

Vi Distributed Debugger: C/C++ Productivity Tools

Chapter 1. Distributed Debugger

Distributed Debugger: Overview

The IBM Distributed Debugger is a client/server application that enables you
to detect and diagnose errors in your programs. This client/server design

makes it possible to debug programs running on systems accessible through a
network connection as well as debug programs running on your workstation.

The debugger server, also known as a debug engine, runs on the same system
where the program you want to debug runs. The IBM Debug Tool serves as
the debug engine and is accessible through a network. For more information
on how the Distributed Debugger user interface and Debug Tool work
together, see the related topic below.

The Distributed Debugger client is a graphical user interface where you can
issue commands used by a debug engine to control the execution of your
program. For example, you can set breakpoints, step through your code and
examine the contents of variables. The Distributed Debugger user interface
lets you debug multiple applications, which may be written in different
languages, from a single debugger session. Each program you debug is shown
on a separate program page with a tab on each page displaying program
identification information such as the name of the program being debugged.
The type of information displayed depends on the debug engine that you are
connected to.

Each program page is divided into different sections, called panes. Each pane
displays different information about your program. There are panes to display
your source code, breakpoints, the program’s call stack and various monitors.

For more information on the panes and monitors available in the Distributed
Debugger user interface, see the related topics below.

RELATED CONCEPTS

© Copyright IBM Corp. 1999 1

Distributed Debugger: Panes

2

The following panes are available in the Distributed Debugger user interface:
Stacks pane

The Stacks pane provides a view of the call stack for the current program
thread you are debugging. Each thread in your program appears as a node in
a tree list. Expanding a node will display the names of active functions for
that thread.

When debugging a multithreaded application, the debugger serializes the
events reported by the different active threads. For example, if your program
runs as two tasks (Task A and Task B) and Task A has an event that needs to
be reported (such as a breakpoint is encountered), the debugger will handle
the request and begin operating on behalf of Task A. If, during that period,
Task B has an event that needs to be reported again, the debugger will hold
Task B until the event from Task A is complete (such as you telling the
debugger to run or step after the breakpoint has been reached.) When Task A
is complete the debugger releases its hold on Task B and handles the new
event from Task B. The Distributed Debugger can only provide program state
information and interact with the thread for which it is currently handling an
event.

Breakpoints pane

The Breakpoints pane contains a view of information about the breakpoints
you have set in the program you are debugging. Use the Breakpoints pane to
view breakpoints set in your program, delete them, or add new ones.

Source pane

The Source pane provides a view of the source code for the program you are
debugging. To view source code, the source code must be accessible from
your workstation, either on a local or a network drive or accessible from
0S/390.

Modules pane
The Modules pane displays a list of modules loaded while running your
program. The items in the list can be expanded to show compile units, files

and functions.

The remaining panes are monitor panes. For more information on monitor
panes, see the related topic below.

Distributed Debugger: C/C++ Productivity Tools

RELATED CONCEPTS

FDistibated Dol : —

Distributed Debugger: Monitors

Depending on the language you are debugging, the Distributed Debugger
provides you with monitors to view and modify various aspects of your
program. The following monitors are available in the Distributed Debugger
user interface:

Variables and Expressions (Monitors pane)

The Monitors pane shows variables and expressions that you have selected to
monitor. You can enter the variables or expressions in a dialog box or select
them from the Source pane. Use the Monitors pane to monitor global
variables or variables you want to see at all times during your debugging
session. From the Monitors pane, you can also modify the content of
variables, or change the representation of values.

Tip: Enabling hover help for variables provides a quick way to view the
contents of variables in the Source pane. When you point at a variable, a
pop-up appears displaying the contents of that variable. If hover help for
variables is disabled and you want to enable it, see the related topic below.

Local Variables (Locals pane)

The Locals pane allows you to monitor local variables for the current thread.
The Locals pane is updated after each Step or Run command to show what
variables are currently in scope and the contents of those variables. It is also
used to modify the content of variables or to change the representation of
values.

Registers (Registers pane)

The Registers pane allows you to view and change the contents of registers in
the current thread of your program. The registers are categorized, so you

only need to expand the category of registers that you wish to view.

Storage (Storage pane and Storage Monitors pane)

Chapter 1. Distributed Debugger 3

Storage pane and Storage Monitors pane let you view and change the
contents of storage areas used by your program. You can also change the
address range, view, modify the contents of storage, and change the
representation used to display storage.

The initial Storage pane shows the storage areas used by your program at its
starting address. The starting address is the address at the entry to main() in
the first load module.

You can add additional Storage Monitor panes that start at the address of
storage allocated to a register, variable, array, class object or expression.

Mapping (Mapping pane)

You can display the contents of a selected storage block according to a
user-defined layout specified in an XML file.

RELATED CONCEPTS

RELATED TASKS

Distributed Debugger and Debug Tool

The Distributed Debugger provides the client graphical user interface to the
debug information provided by Debug Tool running on OS/390. The
Distributed Debugger client is invoked on the workstation in a mode which
causes it to wait for a TCP/IP connection from Debug Tool.

Your OS/390 application may be debugged with Debug Tool in any of these
environments:

* TSO

* Batch

* 0S/390 UNIX System Services (formerly known as OpenEdition MVS)
* CICS

* IMS

 DB/2

* Webserver

4 Distributed Debugger: C/C++ Productivity Tools

Debug Tool is the OS/390 engine of the Distributed Debugger. The
Distributed Debugger client makes requests to Debug Tool and the
Distributed Debugger client displays the results in the graphical windows. For
example, to monitor a variable, the Distributed Debugger client asks Debug
Tool for the value; Debug Tool responds with a value and the Distributed
Debugger client displays the value in the Monitors pane.

To invoke Debug Tool on OS/390, you may need to specify the Language
Environment« run-time option, TEST, when starting your application. For
example, in an OS/390 batch environment, you can specify the TEST run-time
option in the PARM parameter on the EXEC statement. For more information
on the TEST run-time option, see Debug Tool User’s Guide and Reference,
SC09-2137.

Debug Tool depends on compiler generated symbol table information and
debug hooks in your code such as:

* Function entry hook

* Function exit hook

* Line hook

« Statement hook

At least one of the compile units of your application must be compiled with
the compile-time TEST option. The units compiled with the TEST option are
the only ones which can be debugged.

For more information on Debug Tool, see Debug Tool User’s Guide and
Reference, SC09-2137.

RELATED TASKS

RELATED REFEREMNCES

Chapter 1. Distributed Debugger 5

Recursion and debugging

Recursion does not have to involve a routine calling itself directly; for
example: FUNCL calls FUNC?2 calls FUNC3 calls FUNCL. After the call to
FUNCS3, each time you step into one of these routines, the entry for that call
shows a recursion count one higher than the previous entry for that call on
the Stacks pane.

You can use the recursion value in the stack frame properties box to detect
unintentionally recursive calls.

Limits to debugging recursive function calls
Only the copy of the variables from the most recent invocation of a function

can be monitored. Variables from previous invocations of the recursive
function cannot be monitored.

Breakpoints

Breakpoints are temporary markers you place in your executable program to
tell the Distributed debugger to stop your program whenever execution
reaches that point. For example, if a particular statement in your program is
causing problems, you could set a breakpoint on the line containing the
statement, then run your program. Execution stops at the breakpoint before
the statement is executed. You can check the contents of variables, registers,
storage, and the stack. You can then step over (execute) the statement to see
how the problem arises or you can choose to skip the execution of the
statement in question.

The Distributed Debugger supports the following types of breakpoints:

» Line breakpoints are triggered before the code at a particular line in a
program is executed.

- C Function breakpoints are triggered when a particular
function is entered.

» Storage change breakpoints are triggered when storage at a specified
address is changed.

* Load occurrence breakpoints are triggered when a specified DLL is loaded.

You can set conditions on line breakpoints. When you run the program,
execution stops at the breakpoint if the specified condition is true.

RELATED TASKS

6 Distributed Debugger: C/C++ Productivity Tools

RELATED REFEREMNCES

Mapping Layouts

You can display the contents of a storage block mapped according to a
user-defined layout.

Selecting a storage block

You specify the starting address of the storage block either by selecting a
pointer from the Monitors pane or the Locals pane, a register from the
Registers pane, or an address from the Storage Pane or the Storage Monitors
pane, or by typing it in an Add Layout dialog entry field. When selecting a
pointer or a register, its current value is used as a base address of the storage
block. This means that if later on the value stored in the pointer variable or in
the register changes, the layout does not change. The size of the storage block
is determined by the size of the selected layout.

Specifying layouts

Each predefined storage layout is stored in one XML file. The XML file format
provides for describing either structures of predefined primitive type elements
or nested layouts where a layout element can actually point to another storage
layout file. The layout file also specifies the length of the storage block to be
laid out. A list of available layout files is contained in a master layout file
named UserViews. XML.

Layout definition and deployment

You need to create the XML layout files and the master layout file using a text
editor. The Distributed Debugger allows for specifying the location of the
master UserViews. XML file and of the layout files.

Mapping pane

When you map storage blocks, a Mapping pane appears. Initially this pane is
empty. The Mapping pane displays a set of layout elements representing pairs

Chapter 1. Distributed Debugger 7

8

(storage block address, user defined layout) each containing a set of
sub-elements representing pairs (Header, Value) according to the description
in a user-defined layout file.

You can add layouts to this pane by either selecting the Map Storage action
that is available for pointers from the Monitors pane or the Locals pane,
registers from the Registers pane, or addresses from the Storage Pane or the
Storage Monitors pane, or by using the Add Layout action from a pop-up
menu on the Mapping Pane. When the Map Storage action is invoked, you
are prompted to select a mapping layout from the list of available layouts
specified in the master layout file: UserViews.XML.

If the specified storage block is protected or cannot be accessed the display
values will be shown as a number of "?"s.

The layout elements may be expanded or contracted by clicking on E or & at
the left of the layout element. Initially the layout element and any
sub-elements representing nested layouts are not populated (no sub-elements
are generated yet). The first time you expand a layout element it is populated
according to the XML layout file. Populating the layout element means
breaking the storage block into fragments corresponding to the layout
elements specified in the XML. The values displayed for the layout
sub-elements are formatted according to a default primitive type specified in
the XML file.

Hover help for the layout sub-elements displays the offset in bytes from the
base address represented as a HEX number.

You can take different actions for different objects from the Mapping pane. On
the Mapping pane you can add a new layout element by specifying both the
base address and the XML layout file. You must enter the base address as a
HEX number and the name of the XML file. You can also expand all the
layout elements and sub-elements. This action does not populate them if they

are empty. You must click on to populate a sub-element. You can
collapse all the layout elements and sub-elements

At the layout element level you can update the mapped storage block’s
contents and refresh the layout element and its sub-elements. You can change
the base address or the XML layout file for the selected layout element (the
address must be specified as a HEX number) and refresh the layout element
and its sub-elements. You can also remove the layout element and its
sub-elements. Finally, you can select a sub-element searching for either the
header of a sub-element or its offset. If an offset is specified and it does not
match the offset of any sub-element the Find action will try to select the
element with the closest starting offset.

Distributed Debugger: C/C++ Productivity Tools

At the layout sub-element level you can select the display value
representation for the selected sub-element. You must select from a list of
available representations which are specific to the type of the selected
element. You can also edit the value of the selected layout sub-element.

UNIX call handling during debugging

exec() handling

When a process calls exec(), a new process is loaded and replaces the original
process. The debugger will discard the original process and starts to debug
the second process created by exec().

RELATED REFERENCES

fork() handling

When a process calls fork(), an exact copy of that process is created. The
process that forked is called the parent, and the new process is called the
child. If a process being debugged forks, the Distributed Debugger stops both
the parent and child processes, and opens a dialog box that lets you choose
whether to continue debugging the parent process or switch to the child
process.

Whichever choice you make (Parent or Child), the Distributed Debugger
ignores the process you did not choose and allows it to continue running.
Breakpoints set in the process you did not choose are ignored, and the page
pertaining to that process is closed. Execution stops at the next source code
statement in the program that contains debugging information.

If the process you did not choose performs an exec(), a new Distributed
Debugger page will open for the new child process.

RELATED REFERENCES

system() handling

When a program starts another program using system() under the debugger
the debugger will switch the debug process to the second program and load it

Chapter 1. Distributed Debugger 9

into another Source pane if it is debuggable. The first program is suspended
and is resumed when the second program is completed.

RELATED REFERENCES

10 Distributed Debugger: C/C++ Productivity Tools

Chapter 2. Preparing a program for debugging

Setting environment variables for the debugger

The Distributed Debugger user interface running on the workstation uses the
DER_DBG_PATH environment variable.

You may want to set this environment variable for the debug engine and
Distributed Debugger. You can set this environment variable based on your
operating system. For instructions on setting an environment variable refer to
your operating system manuals.

If you set the workstation DER_DBG_PATH environment variable, you must
set it before starting the Distributed Debugger user interface daemon. If you
set the OS/390 DER_DBG_PATH environment variable, you must set it before
invoking the OS/390 program you wish to debug.

RELATED REFEREMNCES

Writing a program for debugging

You can make your programs easier to debug by following these simple
guidelines:

* Do not hand-tune your source code for performance until you have fully
debugged and tested the untuned version. Hand-tuning may make the logic
of your code harder to understand.

* Where possible, do not put multiple statements on a single line, because
some Distributed Debugger features operate on a line basis. For example,
you cannot step over or set line breakpoints on more than one statement on
the same line.

* Assign intermediate expression values to temporary variables to make it
easier to verify intermediate results by monitoring the temporary variables.

To debug programs, you must specify the compiler options that generate
debug information. In some cases, you must specify additional options that
enable the debug engine to work properly with your code. For information on
these compiler options and for other information on preparing your
application for debugging, see Debug Tool User’s Guide and Reference,
SC09-2137.

© Copyright IBM Corp. 1999 11

Compiling a program for debugging

In order to debug your program at the source code level, you need to compile
your program with certain compiler options that instruct the compiler to
generate symbolic information and debug hooks in the object file. See your
compiler reference documentation on how to compile your program with
debug information. For information on these compiler options and for other
information on preparing your application for debugging, see Debug Tool
User’s Guide and Reference, SC09-2137.

RELATED TASKS

Debugging a CICS application

Preparing the CICS environment

* Refresh the CICS definitions for Debug Tool. You can find these definitions
in the EQACCSD and EQACDCT members of Debug Tool’s SEQASAMP
data set.

* Update the JCL that starts CICS:

— To include Debug Tool’s SEQAMOD data set and the Language
Environment runtime library (in the DFHRPL concatenation).

— To include EQAO0DYN from Debug Tool’s SEQAMOD data set in the
STEPLIB concatenation by either:

- APF authorizing the SEQAMOD data set and adding the data set to
the STEPLIB concatenation

- Copying the EQAOODYN module from the SEQAMOD data set to a
library already in the STEPLIB concatenation.

— To ensure that no DD cards exist for CINSPIN, CINSPLS, or CINSPOT.
Setting up, configuring, and starting CICS TCP/IP

For details on TCP/IP implementation and configuration in a CICS
subsystem, see IP CICS Sockets Guide, SC31-8518.

Setting compiler and run-time options

* Applications that you want to debug must be compiled with the TEST
option

» To indicate the workstation where the Distributed Debugger client user
interface daemon is running, do one of the following:

— Use Debug Tool transaction DTCN to identify the workstation.

12 Distributed Debugger: C/C++ Productivity Tools

— Include a #pragma runopts directive in your application’s source file. For
example:

#pragma runopts(TEST(,,,VADTCPIP&wkst_id%portid:*))

or
#pragma runopts(TEST(,,,"VADTCPIP&9.11.22.33:x"))

If wkst_id is the numeric IP address, the subparameter must be put in

quotes. %portid defaults to 8000, and if defined, must match the value
that was specified when the Distributed Debugger client user interface
daemon was started on the workstation.

Note: If you identify the workstation in your source file, you will need to
recompile each time you change the workstation location. DTCN allows
you to define the workstation location just prior to invoking the application.
For details on using DTCN to specify debugging requirements, see Debug
Tool User’s Guide and Reference, SC09-2137. Also note that the __ ctest()
function is not supported in CICS.

Initiating a CICS transaction

When you debug your program, the actual program statements are shown in
the Distributed Debugger as they are executing. To accomplish this, the data
set input to the compiler is used. This might not be the original source, for
example, if the program has been prepared by the CICS translator. The data
set input to the compiler must be retained in a permanent data set.

To initiate a CICS transaction program, start the Distributed debugger user
interface in daemon mode, specifying the port to be used in the OS/390 TEST
run-time option. The daemon only needs to be started once. You can then
conduct as many remote debug sessions as needed without having to restart
the daemon. When the daemon dialog displays indicating that it is listening to
a specified port where the daemon was started, run your CICS application.
When Debug Tool establishes a connection with the debug daemon, the user
interface will be started on the workstation, and debugging may proceed.

RELATED TASKS

3 H H H L2

Chapter 2. Preparing a program for debugging 13

Debugging a DB2 program or stored procedure

You can debug programs that perform SQL calls to access DB2 tables or call
DB2 stored procedures. The stored procedures may also be debugged, but
they will appear as a process that is separate from the calling program.

Preparing the DB2 environment

Update the JCL that starts DB2:

* To include Debug Tool’s SEQAMOD data set and the Language
Environment runtime library. This applies to debugging a DB2 program
that accesses tables and programs that call stored procedures.

* To debug stored procedures, the Debug Tool SEQAMOD data set must also
be concatenated to the STEPLIB of the startup JCL for the stored procedure
address space. Read RACF access to the Debug Tool library and the library
that contains the stored procedure source must be given to DB2SYS, which
owns the stored procedure process as it executes in the stored procedure
address space.

Setting compiler and run-time options

» DB2 applications and stored procedures that you want to debug must be
compiled with the TEST option.

» To indicate the workstation where the Distributed Debugger client user
interface daemon is running, do one of the following:

— In the application program or stored procedure source code (C/C++) ,
include a #pragma runopts directive. For example:
#pragma runopts(TEST(,,,VADTCPIP&wkst id:*))
or
#pragma runopts(TEST(,,,"VADTCPIP&9.11.22.33:%"))
If wkst_id is the numeric IP address, the subparameter must be put in
quotes. Since the #pragma runopts directive is imbedded into the source
file, you will need to change the directive and recompile, any time the
Distributed Debugger user interface will be run on a different
workstation.

— When submitting the DB2 program using the TSO RUN command set
the PARMS parameter as follows:
RUN PROG (MYPROG)
PLAN (MYPLAN)
LIB (’MY.TEST.LOAD’)
PARMS ('TEST(,,,VADTCPIP&wkst id:x)/’)
If wkst_id is the numeric IP address, the subparameter must be put in
quotes. The TEST option must be followed by the slash (/), to show that
it is a run-time option and not a program parameter.

14 Distributed Debugger: C/C++ Productivity Tools

— For debugging the stored procedure itself, you may set the RUNOPTS
column in the row for your stored procedure, in the system table
SYSIBM.SYSPROCEDURES, to the following value:
TEST(,,,VADTCPIP&wkst id:*)

If wkst_id is the numeric IP address, the subparameter must be put in
guotes. You must obtain an adequate DB2 priviledge level to update this
table. For more details on this table and stored procedures, see DB2 for
OS/390 Application Programming and SQL Guide, SC26-8958.

For the full syntax of the TEST run-time option for debugging, see Debug
Tool User’s Guide and Reference, SC09-2137.

Debugging a DB2 application program

When you debug your program, the actual program statements are shown in
the Distributed Debugger as they are executing. To accomplish this, the data
set input to the compiler is used. This might not be the original source, for
example, if the program has been prepared by the CICS translator. The data
set input to the compiler must be retained in a permanent data set.

To start debugging a DB2 application program, start the Distributed Debugger
user interface in daemon mode, specifying the port to be used in the OS/390
TEST run-time option. The daemon only needs to be started once. You can
then conduct as many remote debug sessions as needed without having to
restart the daemon. When the daemon dialog displays indicating that it is
listening to a specified port where the daemon was started, run your DB2
application.

When Debug Tool establishes a connection with the Distributed Debugger
daemon, the user interface will be started on the workstation, and debugging
may proceed. If the DB2 program calls a stored procedure, which has been set
up for debugging as outlined above, step into the DB2 function call that
invokes the stored procedure. A second debug program page appears,
allowing you to debug the stored procedure itself. The debug session of the
calling program will be suspended until the session for the stored procedure
is complete.

RELATED TASKS

Chapter 2. Preparing a program for debugging 15

Debugging a Webserver application

16

You can debug Webserver applications as requested through a client Web
browser.

Preparing the Webserver environment

Update the JCL or shell script which starts the Webserver to include Debug
Tool’s SEQAMOD data set in its STEPLIB.

Setting compiler options

Applications that you want to debug must be compiled with the appropriate
TEST compiler option to include symbolic information for source-level
debugging. Your application must be compiled as a dynamic link library
(DLL).

Setting Webserver environment options

To allow Debug Tool to establish a connection with the Distributed Debugger
user interface daemon running on a workstation, the network location of the
workstation must be specified. This location is specified in the Webserver
configuration file, for example, httpd.conf as follows:

debugtooladdr [workstation location] [debug port]

Note: The location of your workstation can be specified as a name for DNS
resolution or as an IP address. The debug port number by default is 8000.

Debugging is done through the GWAPI debug Service directive. Each
application you wish to debug must be specified as a dbgService directive.
This directive has the same syntax as the Service directive. The dbgService
directive specifies the debuggable entry point that the server calls during the
service step. This in turn services the client’s debug request. The syntax of this
directive is as follows:

dbgService [web path]* [real path]:[exported entry point]*

[web path]
defines the virtual location of the application on the server as seen by
the Web browser.

[real path]
is the actual location of the application on your web server.

[exported entry point]
defines the entry function of your debuggable application.

Debugging the Webserver application

Distributed Debugger: C/C++ Productivity Tools

When you debug your program, the actual program statements are shown in
the Distributed Debugger as they are executing. To accomplish this, the data
set input to the compiler is used. This might not be the original source, for
example, if the program has been prepared by the CICS translator. The data
set input to the compiler must be retained in a permanent data set.

To start debugging a Webserver application program, start the Distributed
Debugger user interface in daemon mode on the workstation, specifying the
port to be used in the OS/390 TEST run-time option. The daemon only needs
to be started once. You can then conduct as many remote debug sessions as
needed without having to restart the daemon. When the daemon dialog
displays indicating that it is listening to a specified port where the daemon
was started, run your Web application. When Debug Tool establishes a
connection with the daemon, the user interface will be started on the
workstation, and debugging may proceed.

RELATED TASKS

Debugging an IMS application

You can debug IMS DB programs submitted under MVS batch or IMS
programs run under the control of IMS BTS (Batch Terminal Simulator).

Preparing the IMS environment

To debug IMS DB and TM applications:

1. With BTS, run in TSO in the foreground (IMS TM and DB)

2. With BTS, run BTS as a batch job (IMS TM and DB)

3. Without BTS, run as an IMS batch job (IMS DB only)

For BTS, you need to include the DT SEQAMOD data set in the STEPLIB or
TASKLIB data set concatenations for BTS. For IMS batch, you need to put DT
SEQAMOD in the STEPLIB concatenation, for example, in the STEPLIB
concatenation for DLIBATCH.

Setting compiler and run-time options

Chapter 2. Preparing a program for debugging 17

18

* Applications that you want to debug must be compiled with the TEST
compiler option .

» To indicate the workstation where the Distributed Debugger client user
interface daemon is running, do one of the following:

— include a #pragma runopts directive. For example:

#pragma runopts(TEST(,,,VADTCPIP&wkst id:*))

or

#pragma runopts(TEST(,,,"VADTCPIP&9.11.22.33:%"))

If the wkst_id is numeric, the IP address of the subparameter must be put in
quotes. Since the #pragma runopts directive is imbedded into the source file,
you will need to change the directive and recompile, any time the
Distributed Debugger user interface will be run on a different workstation.
When running BTS or an IMS batch program, you cannot code the TEST
run-time option in the JCL as you would when debugging an OS/390 batch
program. For the full syntax of the TEST run-time option for debugging, see
Debug Tool User’s Guide and Reference, SC09-2137.

— include a run-time options module when linking the program to be
debugged. The run-time options, including the TEST option, must be
coded and assembled in a user-defined run-time option module. For
example:

CEEUOPT CSECT

CEEUOPT AMODE ANY

CEEUOPT RMODE ANY

CEEXOPT TEST=(,,,"VADTCPIP&&9.11.22.33:%")

END

For instructions on how to create the CEEUOPT run-time options module

using the CEEXOPT macro, see Debug Tool User’s Guide and Reference,

SC09-2137.

If you use the run-time options module method and you change the

workstation where the daemon is running, you do not have to recompile

the program (as with #pragma runopts), you need to assemble a new
run-time options module and relink your program with the new run-time
options module.

Debugging an IMS application program

When you debug your program, the actual program statements are shown in
the Distributed Debugger as they are executing. To accomplish this, the data
set input to the compiler is used. This might not be the original source, for
example, if the program has been prepared by the CICS translator. The data
set input to the compiler must be retained in a permanent data set.

To start debugging an IMS application program, start the Distributed

debugger user interface in daemon mode, specifying the port to be used in
the OS/390 TEST run-time option.The daemon only needs to be started once.

Distributed Debugger: C/C++ Productivity Tools

You can then conduct as many remote debug sessions as needed without
having to restart the daemon. When the daemon dialog displays indicating
that it is listening to a specified port where the daemon was started, run BTS
or your IMS DB program. When Debug Tool establishes a connection with the
daemon, the user interface will be started on the workstation, and debugging
may proceed.

RELATED TASKS

Preparing your OS/390 C/C++ application for debugging

To be able to debug your application you must:
» Compile your application program with the TEST option.

* If you intend to specify the Language Environment runtime TEST option
using the #pragma runopts directive in your source code, use the following

syntax:
#pragma runopts("TEST(,,,VADTCPIP&wkst id%portid:*)")
where:
wkst_id

is the symbolic name of the workstation id or the numeric IP
address of the workstation where Distributed Debugger client is
waiting.

%oportid
is the TCP/IP port number which is optional and defaults to 8000;
if specified, the value must match the port number that was entered
when Distributed Debugger client user interface daemon was
started on the workstation.

To begin debugging at a specific location within a program, you can use the
__ctest()or ctest() function. Place one of these functions at the location in the
program where you want to begin debugging. If you use this approach to
debug a program, you need to specify the NOTEST run-time option with the
workstation IP address. For example, you can specify the option as #pragma
runopts ("NOTEST(,,,VADTCPIP&wkst id%portid:*)"). The _ ctest() function is
not supported in CICS. For more information on the ctest()function, see Debug
Tool User’s Guide and Reference, SC09-2137.

Chapter 2. Preparing a program for debugging 19

RELATED TASKS

20 Distributed Debugger: C/C++ Productivity Tools

Chapter 3. Starting the debugger for OS/390 programs

Starting the Distributed Debugger user interface daemon

To debug an application running on OS/390, you must start the Distributed
Debugger user interface daemon first. The daemon only needs to be started
once. You can then conduct as many remote debug sessions as needed
without having to restart the daemon. The Distributed Debugger user
interface will appear only after a remote debug session has connected to it
from OS/390.

The application you want to debug runs on the host and causes Language
Environment to load Debug Tool. Debug Tool connects to the Distributed
Debugger user interface daemon running on your workstation and a program
pane will display. However, although the TCP/IP port number is optional and
defaults to 8000, if specified, the value on the TEST option must match the
port number that was entered when the Distributed Debugger client user
interface daemon was started on the workstation.

You can start the Distributed Debugger daemon in any of the following ways:

* By double-clicking on its icon from a program folder. If you start the
Distributed Debugger from an icon you must make sure the properties for
the icon include the -gdaemon and -quiport options.

* By selecting IBM C and C++ Productivity Tools for OS 390 > IBM
Distributed Debugger from the Windows Start menu. The port number is
set to 8000. Make sure the port parameter of the TEST run-time option
matches this already set port number.

* By entering the Distributed Debugger command idebug -gdaemon
-quiport=<port> on a Productivity Tools command line.

<port> The port number where you want the Distributed Debugger user
interface daemon to listen for Debug Tool. For the port number in
this example, use 8000. This is the port number used by default in
the port parameter of the TEST run-time option which causes the
Language Environment to load Debug Tool. The same port number
must be used by the Distributed Debugger user interface daemon
and Debug Tool.

RELATED CONCEPTS

© Copyright IBM Corp. 1999 21

RELATED TASKS

o TSN i O/ bt

RELATED REFERENCES

Starting applications with Debug Tool in OS/390 batch

22

You must set your STEPLIB to point to Debug Tool SEQAMOD data set, the
Language Environment runtime library, and the library which contains the
application you intend to debug. You also need to specify the runtime TEST
option. If you did not code #pragma runopts in your program, you need to
specify the runtime TEST option through the PARM parameter on the EXEC
JCL statement. One way of doing this is to create a JCL script as shown below.

In the sample JCL below, the following names have been used:
« MYPROG is the executable file for the program to be debugged.

* USERID.PROJ1.LOAD is the load library where the executable file
resides.

* wkst_id is the numeric IP address of your workstation or the TCP/IP
name of your workstation.

* %portid is the TCP/IP port number which is optional and defaults to
8000; if specified, the value must match the port number that was
entered when Distributed Debugger client user interface daemon was
started on the workstation.

The example JCL below illustrates how you can invoke your host application
(MYPROG) so that Debug Tool will connect with your workstation (wkst_id)
for a debug session.

//RUN EXEC PGM=MYPROG,

// PARM='TEST(,,,VADTCPIP&wkst_id%portid:*)/'
//STEPLIB DD DISP=SHR,DSN=USERID.PROJ1.LOAD /*Application executable Tibrary x/

// DD DISP=SHR,DSN=EQAW.V1R2MO.SEQAMOD /*Debug Tool Tlibrary=*/
// DD DISP=SHR,DSN=SYSID.CEE.SCEERUN /*LE runtime Tibrary x/
// DD DISP=SHR,DSN=SYSID.CBC.SCLBDLL /*LE runtime class library */

//SYSTCPD DD DISP=SHR,DSN=TCPIP.PROFILE(TCPDATA) /+TCP/IP data file */

Note: If your OS/390 batch environment is not using the default TCP/IP data
set named TCPIP.TCPIP.DATA, you need to specify the name of your
environment’s TCP/IP data set on the SYSTCPD DD statement. If your
0S/390 batch environment is using the default data set name, you can omit
the SYSTCPD DD statement.

Distributed Debugger: C/C++ Productivity Tools

You can also use the workstation IP address instead of your workstation’s
TCP/IP name, for example:

// PARM="'TEST(,,,VADTCPIP&9.22.34.46:%)/"' /* C/C++ program parm syntax =*/

In this statement, %portid is not specified and the default %portid of 8000 is
used by Debug Tool.

RELATED CONCEPTS

Starting applications with Debug Tool in OS/390 UNIX

You must set your STEPLIB to point to Debug Tool SEQAMOD data set, the
Language Environment runtime library, and the library which contains the
application you intend to debug, if you intend to run the application from
PDS. You also need to specify the runtime TEST option. If you did not code
#pragma runopts in your program, you need to specify the runtime TEST
option through the system variable CEE_RUNOPTS. One way of doing this
is to create a shell script, for example, dbg in OS/390 UNIX System Services
with the following statements:

#dbg - shell script to debug program

export STEPLIB=USERID.PROJ1.LOAD:\

EQAW.V1R2MO.SEQAMOD: \

SYSID.CEE.SCEERUN:\

SYSID.CBC.SCLBDLL

export _CEE_RUNOPTS="TEST(,,,VADTCPIP&wkst_ id%portid:*)";

||$*&

where:

wkst_id
is the numeric IP address of your workstation or the TCP/IP name of
your workstation.

%portid
is the TCP/IP port number which is optional and defaults to 8000; if
specified, the value must match the port number value that was
entered when Distributed Debugger user interface daemon was
started on the workstation.

To set up your environment and debug myprog, use the shell script dbg and
execute as follows:

>dbg myprog

Chapter 3. Starting the debugger for 0S/390 programs 23

The application being debugged (myprog) runs on the host and causes
Language Environment to load Debug Tool. Debug Tool connects to the
Distributed Debugger user interface daemon running on your workstation
and a program pane will display.

If your program is an OS/390 PDS or PDSE member, you need to:

* Create an OS/390 UNIX System Services file which has the same name as
the OS/390 load module (PDS/PDSE member), for example, touch
myprogl0.

* Make the OS/390 UNIX file executable by setting the sticky bit on (for
example, chmod 1700 myprog10.

» Concatenate your load library containing the program by exporting the
STEPLIB environment variable. See the dbg shell script example provided
above.

» Set up the environment and debug the program by using the dbg shell
script. For example, dbg myprog10.

For example, if the program you want to debug is
USERID.PROJ1.LOAD(MYPROG10), use the following commands:
>touch /u/userid/myprogl0

>chmod 1700 /u/userid/myproglQ
>dbg myprogl0

You can export STEPLIB and _CEE_RUNOPTS with the values shown in the
above dbg shell script either by issuing the export command in the current
shell or by setting these environment variables in your .profile file. However,
doing so causes the variable values to be used for all commands and
applications run in the current shell. For example, with the CEE_RUNOPTS
TEST option specified, if you issue an Is command, the system attempts to
debug the Is command itself. To prevent this situation, use a shell script such
as dbg described above. For more information on shell scripts, see OS/390
UNIX System Services User’s Guide, SC28-1891.

RELATED CONCEPTS

24 Distributed Debugger: C/C++ Productivity Tools

Chapter 4. Working with breakpoints

Setting a line breakpoint

You can set line breakpoints from the Source pane, the Source menu and the
Breakpoints menu.

To set a line breakpoint in the Source pane:

1.

Make sure the appropriate line is visible in the Source pane by using the
scroll bar or cursor keys to locate the line.

Do one of the following:
* Double-click on the line number in the prefix area of the line.

* Right-click on the line you want to set a breakpoint on, and select Set
Breakpoint from the pop-up menu.

To set a line breakpoint from a menu:

1.

Select Source > Set Line Breakpoint from the menu bar or Select
Breakpoints > Set Line from the menu bar.

Enter the name of the module or routine in which you want to set a
breakpoint in the Executable entry field in the Line Breakpoint dialog. If
this module or routine is loaded, you can select it from the pulldown list
in the Executable entry field.

In the Source entry field, enter the object, class or source file that is
associated with the module or routine specified in the Executable entry
field and contains the line where the breakpoint is to be set. If the module
or routine specified in the Executable entry field is loaded, you can select
the file from the Source pulldown list.

In the Source entry field, enter the source file containing the code for the
object or class file. If the module or routine specified in the Executable
entry field is loaded, you can select the file from the Include File
pulldown list. (This step is optional if you have not selected to defer the
breakpoint.)

Enter the line number within the source file where you want to place a
breakpoint in the Line entry field.

If the module or routine you entered in the Executable entry field is not
currently loaded, click on the Defer breakpoint check box.

Set any optional parameters that you want for the breakpoint.

© Copyright IBM Corp. 1999 25

8. Click OK to set the breakpoint and close the Line Breakpoint dialog.
Alternatively, use the Set button to set the breakpoint without closing the
Line Breakpoint dialog.

RELATED CONCEPTS

RELATED TASKS

RELATED REFERENCES

Setting a function breakpoint

You can set function breakpoints from the Modules pane, the Source menu
and the Breakpoints menu.

To set a function breakpoint from the Modules pane:
1. Expand the list in the Modules pane until you see the function you want.

2. Right-click on that function and select Set Function Breakpoint from the
pop-up menu.

To set a function breakpoint from a menu:

1. Select Source > Set Function Breakpoint from the menu bar or Select
Breakpoints > Set Function from the menu bar.

2. Enter the name of the executable which contains the function where you
want to set a breakpoint in the Executable entry field in the Function
Breakpoint dialog. If this executable is loaded, you can select it from the
pulldown list in the Executable entry field.

3. In the Source entry field, enter the object, class or source file that is
associated with the module or routine specified in the Executable entry
field and contains the function where the breakpoint is to be set. If the
module or routine specified in the Executable entry field is loaded, you
can select the file from the Source pulldown list.

26 Distributed Debugger: C/C++ Productivity Tools

In the Function entry field, enter the name of function where the

breakpoint is to be set. If the function specified in the Executable entry
field is loaded, you can select the file from the Function pulldown list.
(This step is optional if you have not selected to defer the breakpoint.)

If the executable containing the function you want to debug is not
currently loaded, click on the Defer breakpoint check box.
Set any optional parameters that you want for the breakpoint.

Click OK to set the breakpoint and close the Function Breakpoint dialog.
Alternatively, use the Set button to set the breakpoint without closing the
Function Breakpoint dialog.

RELATED CONCEPTS

RELATED TASKS

RELATED REFEREMNCES

Setting a storage change breakpoint

Storage change breakpoints halt execution of your program whenever storage
at a specific address is changed. For example, if a byte being watched contains
X’40’ and the program writes X’40’ to that byte, the storage change breakpoint
is not triggered. If the program writes X’41’, the storage change breakpoint is
triggered.

To set a storage change breakpoint from the Breakpoints menu:

1.
2.

Select Breakpoints > Set Storage Change from the menu bar.

Enter an address or expression that evaluates to an address in the Address
or Expression field.

- c | Tip: You can enter the address of a variable by specifying
the variable name preceded by an ampersand (&).

Specify the number of bytes to be monitored in the Bytes to Monitor field.

Chapter 4. Working with breakpoints 27

4. Set any optional parameters that you want for the breakpoint.

5. Click OK to set the breakpoint and close the Storage Change Breakpoint
dialog. Alternatively, use the Set button to set the breakpoint without
closing the Storage Change Breakpoint dialog.

Caution: If you set a storage change breakpoint for any address that is on the
call stack, be sure to remove the breakpoint before leaving the routine
associated with it. Otherwise, when you return from the routine, the routine’s
stack frame will be removed from the stack, but the breakpoint will still be
active. Any other routine that gets loaded on the stack will then contain the
breakpoint.

RELATED CONCEPTS

RELATED TASKS

RELATED REFERENCES

Setting a load occurrence breakpoint

28

Load occurrence breakpoints halt execution of your program when the DLL or
dynamically loaded module specified is loaded into memory. You can set load
occurrence breakpoints from the Breakpoints menu.

To set a load occurrence breakpoint from the Breakpoints menu:
1. Select Breakpoints > Set Load Occurrence from the menu bar.

2. Enter the name of the DLL or dynamically loaded module to set the
breakpoint for.

3. Set any optional parameters that you want for the breakpoint.

4. Click OK to set the breakpoint and close the Load Occurrence Breakpoint
dialog. Alternatively, use the Set button to set the breakpoint without
closing the Load Occurrence Breakpoint dialog.

Distributed Debugger: C/C++ Productivity Tools

RELATED CONCEPTS

RELATED TASKS

RELATED REFEREMNCES

Setting a deferred breakpoint

A deferred breakpoint is a breakpoint set in a DLL or executable that is not
currently loaded. You can defer the following types of breakpoints:

* line breakpoints
» function breakpoints

To set a deferred breakpoint, click on the Defer breakpoint check box when
setting one of the above types of breakpoints.

RELATED CONCEPTS

RELATED TASKS

RELATED REFEREMNCES

Chapter 4. Working with breakpoints 29

Setting multiple breakpoints

You can set several breakpoints with the same optional parameters from any
of the breakpoint dialogs.

To set multiple occurrences of a type of breakpoint:

1. Select the type of breakpoints you want to set from either the Source
menu or the Breakpoints menu.

2. From the Breakpoint dialog, enter the required information for the first
breakpoint. Change any fields in the Optional Parameters section of the
dialog, as desired.

3. Click on Set. The settings are saved for the current breakpoint.

4. For each additional breakpoint, change the information for the new
breakpoint (for example, new line number or function) and click on Set.

5. After you have set the last breakpoint, click on Cancel to close the dialog.

RELATED CONCEPTS

RELATED TASKS

RELATED REFERENCES

Viewing breakpoints

A list of breakpoints you have set is kept in the Breakpoints pane for the
process you are debugging. This list is originally collapsed and can be
expanded to show your installed breakpoints. The list of breakpoints is
divided into the types of breakpoints you may have set. Expanding each type
of breakpoint will provide you with a list of breakpoints for that type.

To view the list of breakpoints:

30 Distributed Debugger: C/C++ Productivity Tools

1. Click on the Breakpoints tab for the process or program you are
debugging.

2. Expand or collapse the list of breakpoints to display the breakpoints you
want to see.

To view the properties of a breakpoint, right-click on the desired breakpoint
and select Breakpoint Properties from the pop-up menu.

RELATED CONCEPTS

RELATED TASKS

RELATED REFEREMNCES

Enabling and disabling breakpoints

You can disable a breakpoint so that it does not stop execution and then later
enable it again. Information about the breakpoint (such as type, location,
condition, and frequency) is saved by the Distributed Debugger when the
breakpoint is disabled. When you enable a breakpoint, the Distributed
Debugger restores the saved information. When you delete a breakpoint,
however, the Distributed Debugger does not save any information about the
breakpoint. If you decide to reinstate the breakpoint, you must add the
breakpoint and reenter the information. Enabled breakpoints are indicated

with a red dot (®). Disabled breakpoints are indicated with a gray dot (*#).
You can enable or disable breakpoints from the Breakpoints pane or the

Source pane. Also, you can enable or disable breakpoints from the Source
pane.

To enable or disable a single breakpoint from the Breakpoints pane:

1. Click on the Breakpoints tab to bring the Breakpoints pane to the
foreground.

Chapter 4. Working with breakpoints 31

2. In the Breakpoints pane, expand the list of breakpoints until you see the
breakpoint you want to enable or disable.

3. Right-click on the breakpoint.
4. Select Enable Breakpoint or Disable Breakpoint from the pop-up menu.

To enable or disable a breakpoint from the Source pane:

1. Scroll to the line which contains the breakpoint you want to enable or
disable.

2. Right-click on the line which contains the breakpoint.
3. Select Enable Breakpoint or Disable Breakpoint from the pop-up menu.

To enable all breakpoints, select Breakpoints > Enable All Breakpoints from
the menu bar.

To disable all breakpoints, select Breakpoints > Disable All Breakpoints from
the menu bar.

RELATED TASKS

FDelet] oot

Deleting a breakpoint

32

You can delete single breakpoints from the Source pane and the Breakpoints
pane. All breakpoints can be deleted at once from the Breakpoints menu. If
you delete a breakpoint, all information on it is lost. If you do not want to
lose your breakpoint information, but do not want the breakpoint to stop
execution, disable the breakpoint instead. For information on disabling
breakpoints, see the related topic below.

To delete a single breakpoint in the Source pane:
1. Scroll to the line which contains the breakpoint you want to delete.
2. Do one of the following to delete the breakpoint:

* Double-click on the line number in the prefix area of the line to delete
the breakpoint.

* Right-click on the breakpoint and select Delete Breakpoint from the
pop-up menu.

To delete a single breakpoint in the Breakpoints pane:

1. Click on the Breakpoints tab to bring the Breakpoints pane to the
foreground.

Distributed Debugger: C/C++ Productivity Tools

2. In the Breakpoints pane, expand the list of breakpoints by clicking on the
plus icons (E) until you see the breakpoint you want to delete.

3. Right-click on the breakpoint you want to delete.

4. Select Delete Breakpoint from the pop-up menu.

To delete all breakpoints, select Breakpoints > Delete All Breakpoints from
the menu bar.

If you want to temporarily prevent all breakpoints from stopping execution,
disable them instead by selecting Breakpoints > Disable All Breakpoints.

RELATED TASKS

Chapter 4. Working with breakpoints 33

34 Distributed Debugger: C/C++ Productivity Tools

Chapter 5. Controlling program execution

Running a program

You can have a program run until one of the following occurs:
* end of program is reached

* an active breakpoint is hit

 a specific line number is reached

* an exception occurs.

To run a program until an active breakpoint is encountered, end of program is
reached, or an exception occurs, do one of the following:

* Click the run button (&),
+ Select Debug > Run from the menu bar.
e Press F5.

To run a program until a specific statement is encountered, end of program is
reached, or an exception occurs, do the following:

1. Make sure the line to run to is visible in the Source pane by using the
scroll bar or cursor keys to locate the line.

2. Run the program to the line by doing one of the following:

* Right-click on the line to bring up the pop-up menu, then select Run To
Location.

* Click on the line to select it, then select Debug > Run To Location from
the menu bar.

* Click on the line to select it, then press F10.

Note: A reported exception is determined by the exception level specified in
the Distributed Debugger exception filtering dialog.

RELATED CONCEPTS

RELATED TASKS

© Copyright IBM Corp. 1999 35

RELATED REFERENCES

FEscertion emls 5]

Stepping through a program

You can use step commands to step through your program a single statement
at a time. For an explanation of the step commands, see the related topic
below.

To execute a Step Over command, do one of the following:

* Click the step over button (=) on the toolbar.
» Select Debug > Step Over from the menu bar.
* Press F10.

To execute a Step Into command, do one of the following:

 Click the step into button () on the toolbar.
» Select Debug > Step Into from the menu bar.
* Press F11.

To execute a Step Return command, do one of the following:

* Click the step return button (==) on the toolbar.
» Select Debug > Step Return from the menu bar.
e Press Shift+F11.

RELATED TASKS

RELATED REFERENCES

Skipping over sections of a program

You can skip over sections of code to avoid executing certain statements or to
move to a position so that certain statements can be executed again. If you
attempt to jump to a line which is outside the block containing the current
execution point, a message is displayed and the jump is not permitted.

36 Distributed Debugger: C/C++ Productivity Tools

To skip over a section of code:
1. Scroll to the line after the statements that you want to skip or scroll to the

2.

line of a statement that you want to execute again.
Jump to the line by doing one of the following:

* Right-click on the line and select Jump to Location from the pop-up
menu.

* Click on the line to select it, then select Debug > Jump to Location from

the menu bar.

RELATED TASKS

Selecting debugger recognized exceptions

You can select the level of exceptions the Distributed Debugger recognizes for
processes you are debugging, so that stepping or execution will stop when an
exception occurs that matches the specified level. By default, all unhandled
exceptions are recognized by the Distributed Debugger.

To specify the level of exceptions to be recognized by the Distributed
Debugger:

1.
2.

6.

Select File > Preferences from the menu bar.

Expand the Debug item in the left-hand window of the Application
Preferences dialog.

Locate the process you want to set the exceptions recognized for.
Click on Exception Filter Preferences Settings.

Check the level of exceptions you want the Distributed Debugger to
recognize.

Click OK to close the Application Preferences dialog.

Note: If no level is selected, the Distributed Debugger defaults to the value
specified in the TEST run-time option. If more than one level is selected, the
one with the greater scope is used. For example, if TEST(NONE) and
TEST(ALL) are selected, the TEST(ALL) selection is used.

To cancel your exception filter preferences settings, click Reset.

To set your exception filter preference to the default settings, click Default.

To set your new exception filter preferences as the default, check the
Debugger Defaults box before clicking OK.

Chapter 5. Controlling program execution

37

RELATED REFERENCES

Terminating a debug session without exiting the debugger

To terminate the execution of a program that is currently running in the
debugger and not exit the debugger, do one of the following:

¢ Click on ®
» Select Debug > Terminate from the menu bar.

RELATED TASKS

38 Distributed Debugger: C/C++ Productivity Tools

Chapter 6. Inspecting variables

Adding a variable or expression to the Monitors pane

If you want to keep track of the contents of variables and expressions during
program execution add them to the Monitors pane. You can add variables and
expressions to the Monitors pane from the Monitors menu or the Source pane.

Local variables that are in scope can also be monitored in the Locals pane. By
default, all local variables in scope are added to the Locals pane.

To add a variable or expression to the Monitors pane from the Source pane:
1.
2.

Highlight the variable or expression you want to monitor.

Right-click on the highlighted variable, and select Add to Program
Monitor from the pop-up menu.

To add a variable or expression to the Monitors pane from the Monitors
menu:

1.

2.
3.
4

Select Monitors > Monitor Expression from the menu bar.
In the dialog, enter the variable or expression you want to monitor.
Select the Program monitor radio button.

Click OK to add the variable or expression to the monitor and close the
dialog. Alternatively, use the Monitor button to add the variable or
expression to the monitor without closing the dialog.

RELATED REFEREMNCES

++ ”

++

Viewing the contents of a variable

You can view the contents of a variable or expression in the Locals pane or
the Monitors pane, if you have added the variable there. By default, all local
variables in scope are added to the Locals pane.

To view the contents of a variable or expression in the Locals pane:
1. Expand the thread in the Locals pane where the local variable you want to

view appears.

© Copyright IBM Corp. 1999

39

2. If necessary, scroll the pane until the variable is visible.

3. If your variable is a class, struct or array, it can be expanded to show its
individual elements.

4. If desired, change the representation of the variable: right-click on the
variable and select a representation from the Monitor Representation
menu.

To view the contents of a variable or expression you have already added to
the Monitors pane:

1. If your variable’s type is a class, struct or array, it can be expanded to
show its individual elements.

2. If desired, change the representation of the variable: right-click on the
variable and select a representation from the Monitor Representation
menu.

If a variable or expression is not in scope, a message displays in the Monitors
pane instead of a value.

You can also view the contents of variables in the Source pane with hover
help. To enable hover help, see the related topic below.

RELATED TASKS

Changing the contents of a variable

To change the contents of a variable in a Locals pane or Monitors pane:

1. Expand the monitor containing the variable whose value you want to
modify.

2. If your variable’s type is a class, struct or array, expand it to show its
individual elements.

3. Scroll to the variable you want to change and do one of the following:
* Double-click on the variable or variable element.
* Right-click on the variable and select Edit from the pop-up menu.

4. Enter a value that is valid for the current representation of that variable or
variable element.

5. Press Enter to submit the change.

40 Distributed Debugger: C/C++ Productivity Tools

RELATED TASKS

Enabling hover help for variables

Hover help for variables provides you with a quick way to view the contents
of variables in the Source pane. When you point at a variable, a pop-up
appears displaying the contents of that variable. This feature is disabled by
default when you first start the debugger.

To enable hover help for variables, select Source > Allow Tool Tip Evaluation
from the menu bar.

A check mark will appear next to the Allow Tool Tip Evaluation menu item to
indicate that hover help for variables is enabled.

To enable hover help for variables as the default:

1. Select File > Preferences from the main menu.

2. Select Debug from the list of preferences to set.

3. Select Allow Tool Tip Evaluation from the Debugger Defaults section.
4. Click OK to enable the tool tip monitor and close the dialog.

RELATED CONMCEPTS

Changing the representation of monitor contents

You can change the representation of variables and expressions in the
Monitors pane or Locals pane. You can change the representation for existing
entries or the default representation for future entries in the Applications
Preferences dialog.

To change the representation of a variable or expression:

1. Right-click on the variable or expression you want to change the
representation of.

2. Select Representation from the pop-up menu. The Monitor Representation
dialog appears.

3. Select the representation you want from the list of available
representations.

4. Click OK to change the representation and close the Monitor
Representation dialog.

Chapter 6. Inspecting variables 41

42

To change the default representation of variables or expressions:

1. Select File > Preferences from the main menu bar. The Application
Preferences dialog appears.

2. In the left-hand pane of the Application Preferences dialog, expand Debug
> program > Default Monitor Representation, where program is the name
of a program loaded in the Distributed Debugger you want to change the
default representation for.

3. Change the representations for variable types by clicking on the
representation associated with a variable type and selecting a
representation from the list.

4. If you want these representations to become the default for the Distributed
Debugger, click Debugger Defaults.

5. Click OK to change the default representations and close the Application
Preferences dialog.

The default representations of variables and expressions in programs you
have previously debugged will not be affected by these changes.

Distributed Debugger: C/C++ Productivity Tools

Chapter 7. Inspecting registers

Viewing the contents of a register

You can view the contents of a register from the Registers pane, the Monitors
pane if you have added the register there, or a Storage Monitor pane if you
have added the register there.

To view the contents of a register in the Registers pane:

1. Expand the thread for which you want to view the registers.

2. Expand the register category that contains the register you want to view.
3. If desired, scroll the pane until the register is visible.

To view the contents of a register you have already added to the Monitors
pane:

1. If necessary, scroll the Monitors pane until the register is visible.

2. If desired, change the representation of the register: right-click on the
register and select a representation from the Monitor Representation
menu.

To view the contents of a register you have already added to a Storage pane:
1. If necessary, scroll the Storage pane until the register is visible.

2. If desired, change the representation of the register: right-click on the
register and select a representation from the Monitor Representation
menu.

RELATED TASKS

hage 48

Changing the contents of a register

To change the contents of a register in the Registers pane or Monitors pane:

1. In the Registers pane or Monitors pane, expand the entry which contains
the register whose value you want to modify.

2. Scroll to the register you want to change and do one of the following:

© Copyright IBM Corp. 1999 43

* Double-click on the register.
* Right-click on the register and select Edit from the pop-up menu.

3. Enter a value that is valid for the current representation of that register.
Changes to do not take effect until the application regains control, for
example, if you issue a step or run command. If you change the contents
of a register more than once before returning control to the application, the
last value entered will be used. Also changes to the IAR are ignored. You
can enter a new value but the application will not use it.

4. Press Enter to submit the change.

RELATED TASKS

Fand . ; . 3

Adding a register to the Monitors pane

You can add a register to the Monitors pane if you want to monitor only a
few registers during the execution of your program. Registers can also be
monitored in the Registers pane and Storage Monitor pane. To monitor all
registers during program execution, use the Registers pane.

To add a register to the Monitors pane:
1. Click on the Monitors tab and do one of the following:
» Select Monitors > Monitor Expression from the menu bar.
* Press Shift+F9.
2. In the dialog, enter the name of the register you want to monitor.
3. Select Program Monitor.

4. Click OK to add the register to the Monitors pane and close the dialog.
Alternatively, use the Monitor button to add the register to the monitor
without closing the dialog.

Tip: Check the Registers pane to see the valid registers names.

RELATED TASKS

page 44

44 Distributed Debugger: C/C++ Productivity Tools

Chapter 8. Inspecting storage

Viewing a location in storage

You can view the contents of storage from the Storage pane or from a new
Storage Monitor pane that you have created.

To view the contents of storage from the Storage pane:

1.

If necessary, scroll in the Storage pane to view storage locations above or
below the starting address of the Storage pane.

You can jump directly to an address in the Storage pane by doing the
following:

* Double-click on any address field in the Storage pane.

* Enter the address you want to view. This address can be an expression,
for example &x.

* Press Enter. The storage contents now shown in the Storage pane are
centered around the address you just entered.

If desired, change the representation of the storage contents in the Storage
pane.

To view the contents of storage from a Storage Monitor pane that you have
created:

1.

If necessary, scroll bar in the Storage Monitor pane to view storage
locations above or below the starting address of the Storage Monitor pane.

Use the Go to Address button to return to the starting address of the
Storage Monitor pane.

If desired, change the representation of the storage contents in the Storage
Monitor pane.

- C | To view the contents of a C or C++ variable, such as an
integer, in a Storage monitor precede the variable with an ampersand (&), or
select a pointer that points to that variable. For example, given the following
C or C++ source code:

int i=10;

int* p=&i;

You can monitor the storage for the variable i by entering either &i or p in the
Monitor expression dialog, then selecting the Storage monitor radio button in
that dialog.

© Copyright IBM Corp. 1999 45

RELATED TASKS

Changing the representation of storage contents

You can change the representation of the storage and the number of columns
shown in the Storage monitor or Storage Monitor panes.

These settings affect only the Storage monitor or Storage Monitor pane you
are viewing, so you can have multiple Storage Monitor panes with different
settings.

» Select the representation of storage for the Storage pane or Storage Monitor
pane you are viewing from the Content style pulldown list.

 Select the number of columns shown in a Storage pane or Storage Monitor
pane from the Columns Per Line pulldown list.

Changing the contents of a storage location

To change the contents of a storage location in a Storage pane or Storage
Monitor pane:

1. Select the Storage pane or Storage Monitor pane where you want to make
the change.

2. Scroll down to the storage location you want to change.

3. Double-click on the value you want to change or right-click on the value
and select Edit from the pop-up menu.

4. Enter a valid value for that storage location.

Note: The left most column is not editable. Performing the above steps in the
far left column will cause the Storage pane to scroll and the Storage Monitor
pane to change.

Adding a new Storage Monitor pane for an expression or register

Note: Registers and expressions can also be monitored using the Monitors
pane. If you want to view all registers at once, use the Registers pane.

46 Distributed Debugger: C/C++ Productivity Tools

If you want to monitor specific locations in storage or a few registers during
program execution, you can add a new Storage Monitor pane for an
expression or register.

Warning: If there is a variable in scope which has the same name as the
register that you are trying to use, the variable will be used.

To add a new Storage Monitor pane for a register from the Registers pane:
1. Highlight the register you want to add a new Storage Monitor pane.

2. Right-click on the highlighted register and select Add to Storage Monitor
from the pop-up menu. A new Storage Monitor pane will appear with the
register appearing in the monitor’s tab.

To add a new Storage Monitor pane for an expression or register from the
Monitors pane:

1. Select the variable from the source. Right-click and from the pop-up menu
select Add to Storage Monitor or Click on the Monitors tab and do one of
the following:

» Select Monitors > Monitor Expression from the menu bar.

* Press Shift+F9.
2. In the dialog, enter the expression or register that you want to monitor.
3. Select the Storage Monitor radio button.

4. Click OK to add the new Storage Monitor pane. Alternatively, use the
Monitor button to add the expression or register to the Storage Monitor
pane without close the dialog.

5. A new Storage Monitor pane will appear with the expression or register
appearing in the monitor’s tab.

Tip: Check the Registers pane to see the valid registers names.

RELATED TASKS

Chapter 8. Inspecting storage 47

48 Distributed Debugger: C/C++ Productivity Tools

Chapter 9. Mapping storage

Mapping pointers, addresses and registers

You can map pointers from the Monitors or Locals pane. You can map
addresses from a Storage pane or Storage Monitor pane. You can map
registers from the Registers pane.

These elements are mapped according to user-defined layout. The layouts are
defined in XML. For more information on defining a mapping layout in XML,
see the related topic below.

To map a pointer, address or register:
1. Highlight the pointer, address or register you want to map.

2. Right-click on the highlighted pointer, address or register, and select Map
Storage from the pop-up menu.

3. Select a desired storage mapping from the list.

4. Click OK to add the storage layout of the item you selected to the
Mapping pane and close the dialog.

RELATED CONCEPTS

RELATED TASKS

Foofie o

Defining a mapping layout

Defining a mapping layout is a two step process. In the first step you create
the layout XML file. In the second step you add it to the master
UserViews. XML file.

The example below defines the layout for the following C language structure:

typedef struct {
char char_val;
unsigned short ushort_val;
short short_val;
unsigned long ulong_val;
long long val;
char string_val[32];

} _test;

© Copyright IBM Corp. 1999 49

Creating the layout XML file

The XML file format is defined in the layout.dtd document type definition
(DTD) file as follows:
<?xml version="1.0" encoding="1S0-8859-1"?>
<!ELEMENT LAYOUT (FIELD)+>
<IATTLIST LAYOUT Header CDATA #REQUIRED length CDATA #REQUIRED >
<!ELEMENT FIELD (FIELD)=*>
<IATTLIST FIELD
Header CDATA #REQUIRED

Type
(16_BIT_INT|16_BIT UINT|16_BIT WINT|32_BIT INT|32_BIT_UINT|32_BIT HINT|32_BIT_FLOAT|
64 BIT_INT|64 BIT FLOAT|CHARACTER|HEX|ASCII|EBCDIC|STRUCTURE|PADDING |BIT|BITMASK|MAP)
#REQUIRED

length CDATA #REQUIRED

lTayout CDATA #IMPLIED>

This means the the XML layout file would specify first a header (title) and the
total length of the layout followed by a list of sub-elements (FIELD) described
by a header (name), length and primitive type which is used to determine the
default representation of that sub-element.

There are also special sub-element types:
¢ STRUCTURE introduces a nested structure; the sub-element has no value

* PADDING used to define a block of bytes that does not need to be
specifically laid out

* BITMASK used to define a bitmasked sub-element. Its sub-elements
represent bits or groups or bits defined by the BIT type.

The XML file describing the _test structure and conforming to this format is:

<?xml version="1.0"?>

<IDOCTYPE LAYOUT SYSTEM "Layout.dtd" >
<LAYOUT Header = "A Layout" length="17">
<FIELD Header = "char_val" Type = "CHARACTER" length = "1" > </FIELD>
<FIELD Header = "ushort val" Type = "16 BIT UINT" length = "2" > </FIELD>
<FIELD Header = "short_val" Type = "16_BIT_INT" length = "2" > </FIELD>
<FIELD Header = "ulong_val" Type = "32_BIT_UINT" length = "4" > </FIELD>
<FIELD Header = "long val" Type = "32 _BIT_INT" length = "4" > </FIELD>
<FIELD Header = "string_val" Type = "ASCII" Tength = "32"> </FIELD>

</LAYOUT>

Note: The <IDOCTYPE LAYOUT SYSTEM "Layout.dtd" > line specifies which
DTD file is used to parse the contents of this file. If the Layout.DTD file is
situated in a different location then the full path to that location must be
specified.

Defining padding fields

50 Distributed Debugger: C/C++ Productivity Tools

If you decide to ignore the long_val field but want to show the string_val

type in the layout, the XML file will look like:

<FIELD Header = "short_val" Type = "16_BIT_INT" length = "2" > </FIELD>
<FIELD Header = "ulong_val" Type = "32_BIT_UINT" length = "4" > </FIELD>
"PADDING" length = "4" > </FIELD>

<FIELD Header = "string_val" Type = "ASCII" length = "32"> </FIELD>

<FIELD Header

nn Type

The initial purpose for defining of the PADDING sub-elements is to deal with

byte aligned structures but it can also be used to skip a data area that does

not need to be detailed in the layout.

Defining structures

The following piece of XML shows the usage of STRUCTURE fields for
mapping nested structures. A structure top element does not have an

associated value and it can be expanded to show its sub-elements. While the
length of the STRUCTURE field is added to the total size of the XML layout,

the included field sizes are intended for display only. For example, the
following structure would only mean 344 bytes out of the total layout size.

<FIELD Header = "MACHINE CHECK LOG OUT AREA" Type = "STRUCTURE" length = "344"

<FIELD Header="reserved" Type="HEX" length="16"></FIELD>
<FIELD Header="FLCSID" Type="HEX" length="4"></FIELD>
<FIELD Header="FLCIOFP" Type="HEX" length="4"></FIELD>

<FIELD Header="reserved" Type="HEX" length="20"></FIELD>

<FIELD Head
<FIELD Head
<FIELD Head
<FIELD Head

er="FLCESAR"
er="FLCCTSA"
er="FLCCCSA"
er="FLCMCIC"

Type="HEX"
Type="HEX"
Type="HEX"
Type="HEX"

length="4"></FIELD>
length="8"></FIELD>
length="8"></FIELD>
length="8"></FIELD>

<FIELD Header="reserved" Type="HEX" length="8"></FIELD>
<FIELD Header="FLCFSA" Type="HEX" length="4"></FIELD>

<FIELD Header="reserved" Type="HEX" Tength="4"></FIELD>
<FIELD Header="FLCFLA" Type="HEX" length="16"></FIELD>

<FIELD Header="FLCRV110" Type="HEX" length="16"></FIELD>

<FIELD Header="FLCARSAV" Type="STRUCTURE"length="64">

<FIELD
<FIELD
<FIELD
<FIELD
<FIELD
<FIELD
<FIELD
<FIELD
<FIELD
<FIELD
<FIELD
<FIELD
<FIELD
<FIELD
<FIELD
<FIELD
</FIELD>

Header="AR0O"
Header="AR1"
Header="AR2"
Header="AR3"
Header="AR4"
Header="AR5"
Header="AR6"
Header="AR7"
Header="AR8"
Header="AR9"
Header="AR10"
Header="AR11"
Header="AR12"
Header="AR13"
Header="AR14"
Header="AR15"

Type="HEX"
Type="HEX"
Type="HEX"
Type="HEX"
Type="HEX"
Type="HEX"
Type="HEX"
Type="HEX"
Type="HEX"
Type="HEX"
Type="HEX"
Type="HEX"
Type="HEX"
Type="HEX"
Type="HEX"
Type="HEX"

length="4"></FIELD>
length="4"></FIELD>
length="4"></FIELD>
length="4"></FIELD>
length="4"></FIELD>
length="4"></FIELD>
length="4"></FIELD>
length="4"></FIELD>
length="4"></FIELD>
length="4"></FIELD>
length="4"></FIELD>
length="4"></FIELD>
Tength="4"></FIELD>
length="4"></FIELD>
length="4"></FIELD>
length="4"></FIELD>

Chapter 9. Mapping storage

51

52

<FIELD Header="FLCFPSAV" Type="HEX" length="32"></FIELD>

<FIELD Header="" Type="PADDING" length="64"></FIELD>

<FIELD Header="" Type="PADDING" Tength="64"></FIELD>
</FIELD>

Defining bitmask fields

The following XML piece is a sample for describing BITMASK fields. The
length of the BITMASK is specified in bytes and it contains a set of BIT fields
for which the length is specified in bits. The offset shown for the BIT fields is
a bit offset within the BITMASK field. While the length of the bitmask field is
added to the total size of the XML layout, the individual BIT field sizes are
intended for display only.

<FIELD Header="byte field" Type="BITMASK"Tength="2">
<FIELD Header="hi_byte" Type="BIT" length="8"></FIELD>
<FIELD Header="lo_byte" Type="BIT" length="8"></FIELD>
</FIELD>

Defining nested layouts

The MAP field type together with the optional layout field, let you describe
nested layouts as in the following OS/390 DSA layout example:

<?xml version="1.0"?>

<IDOCTYPE LAYOUT SYSTEM "Layout.dtd" >

<LAYOUT Header = "DSA" length="72">

<FIELD Header = "FLAGS" Type = "HEX" length = "2"></FIELD>

<FIELD Header = "junk" Type = "HEX" length = "2"></FIELD>

<FIELD Header = "Back Chain" Type = "MAP" length = "4"layout="dsa.xml" ></FIELD>
<FIELD Header = "Forward Chain" Type = "MAP" length ="4" layout="dsa.xml" ></FIELD>
<FIELD Header = "R14" Type = "HEX" length = "4"></FIELD>

<FIELD Header = "R15" Type = "HEX" length = "4"></FIELD>

<FIELD Header = "RO" Type = "HEX" length = "4"></FIELD>
<FIELD Header = "R1" Type = "HEX" length = "4"></FIELD>
<FIELD Header = "R2" Type = "HEX" length = "4"></FIELD>
<FIELD Header = "R3" Type = "HEX" length = "4"></FIELD>
<FIELD Header = "R4" Type = "HEX" length = "4"></FIELD>
<FIELD Header = "R5" Type = "HEX" length = "4"></FIELD>
<FIELD Header = "R6" Type = "HEX" length = "4"></FIELD>
<FIELD Header = "R7" Type = "HEX" length = "4"></FIELD>
<FIELD Header = "R8" Type = "HEX" length = "4"></FIELD>
<FIELD Header = "R9" Type = "HEX" length = "4"></FIELD>
<FIELD Header = "R10" Type = "HEX" length = "4"></FIELD>
<FIELD Header = "R11" Type = "HEX" length = "4"></FIELD>
<FIELD Header = "R12" Type = "HEX" length = "4"></FIELD>

</LAYOUT>

This well-formed XML layout is stored in a file called DSA.XML. Since you
know that fields 3 and 4 contain pointers to different DSA structures you add
two nested layout definitions.

Distributed Debugger: C/C++ Productivity Tools

Note: The actual storage mapping for that layout is actually executed when
you expand the layout element for the first time in order to prevent recursive
layout expansions.

Adding the new layout file to the list of available layouts

Once the XML layout file is ready it must be made visible to Distributed
Debugger through the UserViews. XML file. The DTD for this file follows:
<?xml version="1.0" encoding="1S0-8859-1"?>

<!ELEMENT CLASSES (CLASS)+>

<IATTLIST CLASSES Total CDATA #REQUIRED>

<!ELEMENT CLASS EMPTY >

<IATTLIST CLASS Name CDATA #REQUIRED ActionLabel CDATA #REQUIRED>

It defines a list of XML layout file and label pairs. The XML layout file is the
full path to the required layout file while the label is used when you select a
storage mapping.

If you want to add the TestLayout.XML file to the UserViews. XML file, the
final result looks like:

<?xml version="1.0"?>

<!IDOCTYPE CLASSES SYSTEM "Classes.dtd" >

<CLASSES Total="2">

<CLASS Name = "OtherLayout.XML" ActionLabel = "other Tlayout"></CLASS>
<CLASS Name = "TestlLayout.XML" ActionLabel = " test C structure"></CLASS>
</CLASSES>

Note: Specifying the . XML at the end of the XML layout file name is required.

Once the XML file is added to the UserViews. XML it will be available from
the Map Storage dialog.

Enabling and disabling a monitored variable, expression

You can disable the monitoring of a variable, expression or register. The
advantage of disabling a monitored expression, instead of deleting it, is that it
is easier to enable a monitored expression than to recreate it.

You can enable or disable monitored variables, expressions or registers from
either the Monitor pane or Locals pane.

To enable or disable a monitored expression, variable or register:

1. Locate the variable, expression or register you want to disable or enable in
the Monitors pane or Locals pane.

2. Right-click on the variable, expression or register you want to enable or
disable.

Chapter 9. Mapping storage 53

3. Select Enable or Disable from the pop-up menu.

54 Distributed Debugger: C/C++ Productivity Tools

Chapter 10. Reference

idebug command

The idebug command starts the Distributed Debugger user interface daemon
which waits for Debug Tool on OS/390 to connect to it. The idebug command
has the following syntax:

idebug [ui_daemon_parameters]

The ui_daemon_parameters are used when starting the Distributed Debugger
user interface as a daemon. When running as a daemon, the Distributed
Debugger user interface listens on a specific port number for a debug engine.
Once a connection is made, the Distributed Debugger user interface appears
and you can begin debugging your program. The ui_daemon_parameters are:

Parameter Description

-qdaemon Tells the Distributed Debugger user interface to run as a
daemon. You must use the -quiport option when
specifying -gdaemon.

This is a required parameter.

-quiport=<port> Specifies the port numbers where the Distributed
Debugger user interface daemon should listen for a
debug engine. You can specify a single port or mulitple
ports. When specifying multiple ports use a comma to
delimit the port numbers.

This option is required when using the -qdaemon option.

One of the port numbers specified here must be used as
the port number in the port parameter of the TEST
run-time option.

-qterminate Closes the Distributed Debugger user interface daemon.

-gqremotesource=<path> Specifies the location of source files on the OS/390
system where the OS/390 application will be running
and debugged. Locations can include PDS names,
sequential file names, HFS path names or both sequential
file names and HFS path names.

If more than one name is specified, the names must be
separated by a semicolon. For example,
-qremotesource=USER1.PROJ.C;/u/userl/dir2;

© Copyright IBM Corp. 1999 55

Step commands

You can use step commands to step through your program

The following types of step commands are available:

a single line.

Step Command

Button

Shortcut

Description

Step Over

0

F10

Executes the current
statement, without
stopping in any
functions or
routines called
within the
statement.

Step Into

F11

Executes the current
statement.
Execution stops at
the next statement
encountered for
which debug
information is
available. This
could be in the
current function or
routine, in the
called function or
routine, or in a
function or routine
called within the
called function or
routine.

Step Return

Shi

ft+F11

Executes from the
current execution
point up to the
statement
immediately
following the line
that called this
function or routine.
If you issue a Step
Return command
from the main entry
point (in C++, the
main() program),
the program runs to
completion.

56 Distributed Debugger: C/C++ Productivity Tools

Execution of your program may stop earlier than indicated in the step
command descriptions, if the Distributed Debugger encounters an active
breakpoint or an exception occurs.

You can use combinations of step commands to step through multiple calls on
a single line.

RELATED TASKS

C/C++ expressions supported

C/C++ supported data types

You can monitor an expression that includes a cast to any of the following
types:

+ 8-bit signed char

+ 8-bit unsigned char

» 16-bit signed integer

» 16-bit unsigned integer
* 32-bit signed integer

» 32-bit unsigned integer
* 64-bit signed integer

* 64-bit unsigned integer
» 32-bit floating-point

* 64-bit floating-point

» 80-bit floating-point

* Pointers

These data types include int, short, char and so on.

C/C++ supported expression operands

You can monitor an expression that uses the following types of operands only:

Operand Definition

Variable A variable used in your program.

Chapter 10. Reference 57

58

Operand Definition

Constant The constant can be one of the following

types:

» Fixed-point or floating-point constant
within the ranges supported by the
system the program you are debugging
is running on.

» A string constant, enclosed in double
quotation marks (for example,
"mystring")

* A character constant, enclosed in single

quote marks (for example, 'x’)

If you monitor an enumerated variable, a comment appears to the right of the
value. If the value of the variable matches one of the enumerated types, the
comment contains the name of the first enumerated type that matches the
value of the variable. If the length of the enumerated name does not fit in the
monitor, the contents appear as an empty entry field.

The comment (empty or not) lets you distinguish between a valid enumerated
value and an invalid value. An invalid value does not have a comment to its
right.

You cannot update an enumerated variable by entering an enumerated type.
You must enter a value or expression. If the value is a valid enumerated
value, the comment to the right of it is updated.

You cannot look at variables that have been defined using the #define
preprocessor directive.

C/C++ supported expression operators

You can monitor an expression that uses the following operators only:

Operator Coded as

Global scope resolution ~a

Class or namespace scope resolution a:b

Subscripting a[b]

Member selection a.b or a->b

Size sizeof a or sizeof (type)
Logical not la

Ones complement “a

Distributed Debugger: C/C++ Productivity Tools

Operator Coded as
Unary minus -a
Unary plus +a
Dereference *a
Type cast (type) a
Multiply a*b
Divide a’/b
Modulo a%b
Add a+b
Subtract a-b
Left shift a<<bh
Right shift a>>h
Less than a<b
Greater than a>bh
Less than or equal to a<=b
Greater than or equal to a>=bhb
Equal a==b
Not equal al=b
Bitwise AND a&b
Bitwise OR alb
Bitwise exclusive OR a b
Logical AND a&&b
Logical OR allb

Environment variable
DER_DBG_PATH environment variable

The DER_DBG_PATH workstation environment variable is used to locate
debug source files on your client workstation. If your source code is stored in
F:ASOURCE and F:\SOURCE\INCLUDE, you should set your
DER_DBG_PATH variable as follows:

set DER_DBG_PATH=F:\SOURCE;F:\SOURCE\INCLUDE

There is also an OS/390 DER_DBG_PATH environment variable which you
can set to locate source files on your OS/390 system. If your source code is
stored in Zu/userid/source and /u/userid/source/include, you should set
your OS/390 DER_DBG_PATH variable as follows:

Chapter 10. Reference 59

set DER_DBG_PATH=/u/userid/source:/u/userid/source/include

If the source file is a PDS member, you may specify a PDS name in the
0S/390 DER_DBG_PATH variable and the member will be searched for in
that PDS.

Note: If you set the workstation DER_DBG_PATH environment variable, you
must set it before starting the Distributed Debugger user interface daemon. If
you set the OS/390 DER_DBG_PATH environment variable, you must set it
before invoking the OS/390 program you wish to debug.

RELATED TASKS

RELATED REFERENCES

Troubleshooting

Why the Distributed Debugger cannot find source files on the workstation

You may not be able to open the source for an object, even though the code
was compiled with debug information, if the Distributed Debugger cannot
find the source code for it. When you start debugging such a program, or
when execution lands in a part of the program that was compiled with debug
information but the Distributed Debugger cannot find the source code for it,
the Distributed Debugger opens a Source Filename dialog. In this dialog you
can enter the name of the file (HFS file, sequential data set, or PDS and
member name) containing the source code.

Another reason the source code might not display at your workstation is that
you expected the Distributed Debugger to look for source files on the
workstation, but have not downloaded the required source files, or have not
told the Distributed Debugger where to find them.

If you want the Distributed Debugger to search for source files on the
workstation, make sure that:

* You have downloaded the necessary source files or mounted the necessary
file system as a Windows NT drive using a remote file system such as NFS.

* The DER_DBG_PATH environment variable on the workstation contains the
paths of all directories where such source files are stored. Ensure that you
have separated entries with semicolons. For example, if you have files in
F:\PRIVATE\SOURCE and G:\BUILD\SRC on your workstation, you

60 Distributed Debugger: C/C++ Productivity Tools

should set DER_DBG_PATH to:
F:\PRIVATE\SOURCE;G:\BUILD\SRC

Note: If you set the workstation DER_DBG_PATH environment variable, you
must set it before starting the Distributed Debugger user interface daemon. If
you set the OS/390 DER_DBG_PATH environment variable, you must set it
before invoking the OS/390 program you wish to debug.

RELATED REFEREMNCES

Forder of o o]

Order of source file searching

Debug Tool searches for C and C++ source files in the following locations:

1. Debug Tool will look for the source in the location specified at compile
time which is in the object code.

2. If not found, Debug Tool will use the path set by the DER_DBG_PATH
environment variable on OS/390.

3. If still not found, Debug Tool will use the locations specified by the
Distributed Debugger -gremotesource option.

4. |If still not found, Debug Tool will request that the Distributed Debugger
look in the path set by the DER_DBG_PATH environment variable on the
workstation.

5. Finally, if still not found, the Distributed Debugger will look in any paths
previously set by you in this debug session through the Source Search
Path dialog.

Note: If the source file cannot be located in any of the OS/390 locations, the
0S/390 file name is mapped as follows before proceeding with a search on
the workstation:

* A sequential data set name such as USER.PROJECT.SRC1.C is mapped to
A\user\project\srcl.c

* A PDS member name such as USER.PROJECT.CPP(PART1) is mapped to
A\user\project\partl.cpp

* A UNIX name is mapped such as Zuser/Project/Partl.cpp is mapped to
\user\Project\Partl.cpp

If the source file cannot be found on the workstation a Source Filename dialog

opens requesting the path name for the source file. The path name you enter
is searched following the order described above.

Chapter 10. Reference 61

RELATED REFERENCES

Exception levels

The following OS/390 exception levels can be selected:

Test Level Description

ALL (or blank) Specifies that the occurrence of an
attention interrupt, termination of your
program (either normally or through an
ABEND), or any program or Language
Environment condition of Severity 1 and
above causes the Distributed Debugger to
gain control.

ERROR Specifies that only the following
conditions cause the Distributed
Debugger to gain control.

For C/C++:

* An attention interrupt

* Program termination

* A predefined Language Environment
condition of Severity 2 or above

* Any C/C++ condition other than
SIGUSR1, SIGUSR2, SIGINT or
SIGTERM.

Language Environment conditions are
described in the OS/390 Language
Environment Debugging Guide and
Run-Time Messages, SC28-1942.

NONE Specifies that no condition causes
Distributed Debugger to gain control.

RELATED TASKS

Remote debug limitations
Remote debugging imposes the following limitations:

* Browse only displays the file system on the local system. The file system on
the remote system cannot be displayed.

62 Distributed Debugger: C/C++ Productivity Tools

RELATED CONCEPTS

Optional breakpoint parameters

Optional breakpoint parameters are used to control the behavior of
breakpoints. You can set the following parameters when you set a breakpoint:

Optional
breakpoint
parameter

Description

Type of
breakpoint
supported

Threads

This selection list lets you choose what threads to
set the breakpoint in. To select a thread ID from
the list, highlight the thread where you want to
set the breakpoint. This list is available only on
platforms that support multithreaded programs.

This parameter is
supported by all
breakpoint types.

Frequency

Use the Frequency controls to tell the debugger
when to stop on a breakpoint and when to skip
it. The debugger keeps track of how many times
each breakpoint is encountered. The fields in this
section tell the debugger on which encounter of a
breakpoint the debugger should first stop, how
often it should stop, and on which encounter the
debugger should no longer stop.

The following parameters are used to set the
breakpoint frequency:

From Enter the first breakpoint encounter you
want the debugger to stop on. For
example, if you want the debugger to
skip over the breakpoint the first five
times it is encountered, enter "6".

To Enter the last breakpoint encounter you
want the debugger to stop on. For
example, if you want it to start ignoring
the breakpoint after the 20th encounter,
enter "20". To have it always stop on the
breakpoint, enter "Infinity".

Every Enter the frequency with which you
want the debugger to stop on this
breakpoint. For example, if you want it
to stop on only one out of every four it
encounters, enter "4".

This parameter is
supported by all
breakpoint types.

Chapter 10. Reference 63

Optional Description Type of

breakpoint breakpoint
parameter supported
Expression You can enter an expression into this field. The Line, function or

execution of the program stops at the breakpoint | method
only if the condition specified in this field tests
true.

For example, if you are debugging a C++
program you could type the following:

(i==1) || (3==k) && (k!=5)

Defer Select this check box if you want to set a Line, function or
breakpoint in a program module that is not method
currently loaded.

If you enter an incorrect source, file, function, or
program unit, the debugger will not be able to
activate the breakpoint when the program is
loaded, and the breakpoint will remain in the
deferred state.

Restriction: You cannot set a deferred breakpoint
in a preloaded DLL, but you can set one in a
program that has some preloaded DLLs and
some dynamically loaded ones.

RELATED REFERENCES

€ ++ 7

€ ++ H 7
[++ H 7

Program Profiles

Using program profiles means that the Distributed Debugger will restore
window sizes, positions, fonts, and breakpoints for your program from the
last time you debugged the program. If you are debugging the program for
the first time, the debugger windows start up with their default appearance,
and no breakpoints are set.

When you use program profiles any changes you make to the windows and
breakpoints are saved. Program profiles are the default setting for the
Distributed Debugger. To delete them you can use the Application Preferences
dialog.

64 Distributed Debugger: C/C++ Productivity Tools

Note: If you add or delete lines in your source file, recompile it, and then
debug the program again with a saved program profile, line breakpoints may
no longer match the code they were initially set for because line breakpoint
information is saved by line number, not by the content of the line.

If the debugger has saved a profile containing information on window,

breakpoint, and monitor settings from a previous debug session for this
program, the profile is used to restore those settings.

Chapter 10. Reference 65

66 Distributed Debugger: C/C++ Productivity Tools

Notices

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
Intellectual Property and Licensing
IBM Corporation

North Castle Drive, MD-NC 119
Armonk, NY 10504-1785

US.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
DOCUMENT “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OR CONDITIONS OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will

© Copyright IBM Corp. 1999 67

68

be incorporated in new editions of the document. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

Lab Director

IBM Canada Ltd.

1150 Eglinton Ave E
Toronto, Ontario, M3C 1H7
Canada

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement or any equivalent
agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-1IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

Distributed Debugger: C/C++ Productivity Tools

All statements regarding IBM’s future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may
include the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses used
by an actual business enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks and service marks

The following terms are trademarks or registered trademarks of the IBM
Corporation in the United States, other countries, or both:

CICS IMS

CICS/ESA Language Environment
CICS/MVS MVS/ESA

CICS/VSE 0S/390

DB2 S/390

IBM

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks
of Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark of The Open Group in the United States
and/or other countries licensed exclusively through X/Open Company
Limited.

Sun, SunLink, Solaris, SunQS, Java, all Java-based trademarks and logos, NFS,
and Sun Microsystems are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and/or other countries.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE
ACCURATE, THE OBJECT MANAGEMENT GROUP, AND THE
COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND WITH
REGARDS TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE.

Other company, product, and service names may be trademarks or service
marks of others.

Notices 69

	Contents
	About this book
	Who should read this book
	Conventions used in this book
	Related information
	How to send your comments

	Chapter 1. Distributed Debugger
	Distributed Debugger: Overview
	Distributed Debugger: Panes
	Distributed Debugger: Monitors
	Distributed Debugger and Debug Tool
	Recursion and debugging
	Breakpoints
	Mapping Layouts
	UNIX call handling during debugging
	exec() handling
	fork() handling
	system() handling

	Chapter 2. Preparing a program for debugging
	Setting environment variables for the debugger
	Writing a program for debugging
	Compiling a program for debugging
	Debugging a CICS application
	Debugging a DB2 program or stored procedure
	Debugging a Webserver application
	Debugging an IMS application
	Preparing your OS/390 C/C++ application for debugging

	Chapter 3. Starting the debugger for OS/390 programs
	Starting the Distributed Debugger user interface daemon
	Starting applications with Debug Tool in OS/390 batch
	Starting applications with Debug Tool in OS/390 UNIX

	Chapter 4. Working with breakpoints
	Setting a line breakpoint
	Setting a function breakpoint
	Setting a storage change breakpoint
	Setting a load occurrence breakpoint
	Setting a deferred breakpoint
	Setting multiple breakpoints
	Viewing breakpoints
	Enabling and disabling breakpoints
	Deleting a breakpoint

	Chapter 5. Controlling program execution
	Running a program
	Stepping through a program
	Skipping over sections of a program
	Selecting debugger recognized exceptions
	Terminating a debug session without exiting the debugger

	Chapter 6. Inspecting variables
	Adding a variable or expression to the Monitors pane
	Viewing the contents of a variable
	Changing the contents of a variable
	Enabling hover help for variables
	Changing the representation of monitor contents

	Chapter 7. Inspecting registers
	Viewing the contents of a register
	Changing the contents of a register
	Adding a register to the Monitors pane

	Chapter 8. Inspecting storage
	Viewing a location in storage
	Changing the representation of storage contents
	Changing the contents of a storage location
	Adding a new Storage Monitor pane for an expression or register

	Chapter 9. Mapping storage
	Mapping pointers, addresses and registers
	Defining a mapping layout
	Enabling and disabling a monitored variable, expression

	Chapter 10. Reference
	idebug command
	Step commands
	C/C++ expressions supported
	C/C++ supported data types
	C/C++ supported expression operands
	C/C++ supported expression operators

	Environment variable
	DER_DBG_PATH environment variable

	Troubleshooting
	Why the Distributed Debugger cannot find source files on the workstation
	Order of source file searching
	Exception levels

	Remote debug limitations
	Optional breakpoint parameters
	Program Profiles

	Notices
	Trademarks and service marks

