C/C++ Productivity Tools for 0OS/390

Getting Started with C/C++
Productivity ‘lools tor O5/390

Release 10

GC09-2918-00

C/C++ Productivity Tools for 0OS/390

Getting Started with C/C++
Productivity ‘lools tor O5/390

Release 10

GC09-2918-00

Note
Before using this information and the product it supports, be sure to read the

general information under ENatices” on page 24,

First Edition (September 1999)

This edition applies to C/C++ Productivity Tools for OS/390 Release 1.0, program number 5655-B85 and to all
subsequent versions, releases, and modifications until otherwise indicated in new editions. Consult the latest edition
of the applicable system bibliography for current information on these products.

Order publications through your IBM representative or through the IBM branch office serving your locality.

© Copyright International Business Machines Corporation 1999. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this book

Who should read this book
Conventions used in this book .
Related information .

How to send your comments

Chapter 1. Introducing the Tools
Introducing the Editor .

Introducing the Distributed Debugger
Introducing the Performance Analyzer

Chapter 2. Editing programs

Editing source.

Starting the Editor .
Creating a new file and enterlng source
Marking and copying a block of code .
Finding and replacing a class name
Setting and finding quick marks

Fixing compile-time errors

Chapter 3. Debugging programs
Debugging a program . .

Starting the Distributed Debugger user
interface daemon.

Starting a program with Debug TooI in
0S/390 UNIX.

Setting a breakpoint to halt before a certaln

function is entered .
Displaying and modifying the value of a
variable .

© Copyright IBM Corp. 1999

Vi
Vi

WN -

15

16

17

18

Stopping on a line only if a condition is
true .

Viewing and modlfylng data members of
the this pointer

Debugging when only a feW parts are
compiled with TEST

Displaying storage . .

Finding unexpected storage overwrlte errors
Finding uninitialized storage errors

Getting a function traceback .

Chapter 4. Analyzing program
performance

Analyzing a program’s performance
Creating a trace file .

Starting the Performance Analyzer
Analyzing a trace file .
Searching for trace data in a dlagram .
Controlling what data is shown in a
diagram. .
Navigating the trace flle views .

Appendix. Sample Program
Sample CALC Program

Notices . .
Trademarks and service marks .

19
20

21
21

23
24

25
25
25
26
26
27

29
30

33
33

39
41

iv Getting Started: C/C++ Productivity Tools

About this book

Getting Started introduces you to C/C++ Productivity Tools for OS/390 and
provides information about how to edit, debug and analyze the performance
of an OS/390 C and C++ application.

Who should read this book

Getting Started is intended for application programmers who want to maintain
and develop C and C++ applications on OS/390 and want workstation
development tools to enhance their existing familiar host environment. For
these users, this document introduces the tools and shows how to use them.

This document does not cover installation and configuration information for
C/C++ Productivity Tools workstation components or host components
Performance Analyzer and Debug Tool. See the Readme file for installation
information for C/C++ Productivity Tools workstation components. See the
Program Directory and Memo to Users for information on the C/C++
Productivity Tools host components.

This document also does not cover installation and configuration information
for C/C++ Productivity Tools prerequisite products OS/390 and OS/390
C/C++ with Debug Tool. See the documentation with these products for this
information.

Conventions used in this book

The following conventions distinguish different text styles within this book:

plain Window titles, folder names, icon names,
and method names.
monospace Programming examples, user input at the

command line prompt or into an entry
field, directory paths.

bold Menu choices and menu names, labels for
push buttons, check boxes, radio buttons,
group-box controls, drop-down list boxes,
combination-boxes, notebook tabs, and
entry fields.

italics Programming keywords and variables,
and titles of documents.

© Copyright IBM Corp. 1999 \'%

Related information

For information on OS/390 C/C++ related features, news and Web sites, add
this Web site to your browser’s bookmark list:

http://www.ibm.com/software/ad/c390

How to send your comments

Your feedback is important in helping to provide the most accurate and
highest quality information. If you have any comments about this book or any
other C/C++ Productivity Tools documentation, send your comments by
e-mail to torrcf@ca.ibm.com. Be sure to include the name of the book, the
document number of the book, the version of C/C++ Productivity Tools, and,
if applicable, the specific location of the information on which you are
commenting (for example, a page humber or a table number).

Vi Getting Started: C/C++ Productivity Tools

Chapter 1. Introducing the Tools

Introducing the Editor

C/C++ Productivity Tools provides a simple to use, yet powerful, Editor that
you can use to edit host C and C++ source files that are available on a local
workstation drive. The features provided by this workstation Editor include:

Insert, delete, split and join line, and find

Line, character, stream, and rectangular (block) selection modes

Ability to edit and browse multiple files simultaneously

Multiple views of the same file

Full clipboard support for cut and paste

Unlimited Undo and Redo actions

Bookmark settings to allow for quick returns to specific places in the file
History of recently opened files for quick reloading

Capability to import or get files

A keystroke recorder for automating repetitive editing tasks

A compare function for graphically highlighting the differences between
two selected files

Hex editing capability
Various Editor personalities (configurations) to support line command and
function key settings including ISPF

Completely tailorable key assignments and line commands to customize the
Editor’s look and feel

Language unique and product unique features include:

— Syntax checking for C, C++, and High Level Assembler for early
identification for lexical errors

— Parsed source showing each language construct in various colors and
fonts

— Online language-sensitive reference help for C, C++, and High Level
Assembler which is a single press of a key (F1) away

— View subsetting by function, comment lines, or flow-of-control
statements

© Copyright IBM Corp. 1999 1

Introducing the Distributed Debugger

With C/C++ Productivity Tools’ Distributed Debugger, you can debug your C
and C++ applications that are running in your host OS/390 environment from
the workstation. Distributed Debugger works with the IBM Debug Tool to
allow for the source-level debugging of your host C and C++ applications.

The Distributed Debugger’s intuitive graphical user interface brings
debugging to a new level of ease. With a click of your mouse, you can add
and delete both simple and complex breakpoints. You can set these
breakpoints so that program execution halts when a specific line number is
reached, upon entry to a specific function, when a specific module is loaded,
or when a particular location in storage is changed. You can display and edit
the values of variables, registers, and storage. You can also monitor the call
stack.

All of these actions, and more, can be accomplished from the convenience of
your workstation. Distributed Debugger allows you to view storage areas in a
number of useful formats. Default views are provided for OS/390 control
blocks such as the Dynamic Storage Area (DSA) and Prefixed Save Area
(PSA). Control blocks are represented as a tree structure with storage
displayed as floats, integers and longs. This facility makes reading storage
much more intuitive and errors easier to spot.

Distributed Debugger supports debugging of C and C++ applications in any
of these environments:

* TSO

* Batch

« CICS

* IMS

« DB2

* 0OS/390 UNIX System Services (OS/390 UNIX)
* Webserver

You can debug both multi threaded and multi process applications with the
choice of following either the parent or the child processes. You can debug
multiple applications from the same user interface. Each new application
becomes a new tab.

The efficiency of debugging is one of the more important aspects of
application development. Distributed Debugger in combination with Debug
Tool makes that aspect of application development and maintenance much
more productive and easier than ever before.

2 Getting Started: C/C++ Productivity Tools

Introducing the Performance Analyzer

You can use C/C++ Productivity Tools’ Performance Analyzer on your
workstation to graphically display a trace of the execution of your host
0S/390 C and C++ application. Using this understanding of your program,
you can tune your code for increased performance.

Analyzing the performance of your application with the Performance
Analyzer is a two-stage process. First, you use the host Performance Analyzer
component included with C/C++ Productivity Tools to create a
function-by-function trace of an execution of your host application. Then, you
make the trace data available to the workstation through a file transfer facility
such as FTP or NFS. You then use the Performance Analyzer to graphically
display the execution trace file.

During the function tracing of your program, the host component of the
Performance Analyzer collects and records all trace data including:

* The functions that each function calls to identify who calls whom

* A count of the number of times each function is called to indicate which
functions are being called most frequently

* The time spent to execute each function to identify costly or time
consuming functions.

You can use the Performance Analyzer to:

Diagnose program abends
When performing a function trace, the Performance Analyzer provides
a complete history of events leading up to the point where a program
abends.

Trace multithreaded programs
After tracing a multi threaded program, you can examine the
individual threads to identify their function usage and compare the
execution of different threads.

Trace multiple processes
When your POSIX program uses the fork() or spawn() functions to
create new processes, separate trace files are created for each process
allowing you to view the events in the different processes.

Performance Analyzer allows you to display the information gathered in the
trace file through several diagrams on your workstation. Each diagram
presents a different view to give you an overall idea of how your program
performs:

Chapter 1. Introducing the Tools 3

The Call Nesting diagram shows the execution of your program as a series
of function calls and returns. All threads can be shown at once or you can
select the threads to be shown.

The Dynamic Call Graph diagram is a two-dimensional graphical
representation of your program’s execution. It shows the relative
importance (in terms of execution time) of program components and the
call hierarchy.

The Execution Density diagram shows trace data chronologically from top
to bottom as colored horizontal lines in columns assigned to each traced
function.

The Statistics diagram is a textual report of cumulative information about
your program’s execution. It provides summary and detailed statistics on
execution time and events for each component type: function, class and
executable. In addition to time statistics, information about the number of
calls is also provided.

The Time Line diagram shows function calls and returns in chronological
order along a vertical line. A function call is represented by a short
horizontal line to the right, and a function return is represented by a short
horizontal line to the left. The horizontal lines are connected by vertical
lines whose length is proportional to the amount of time that elapsed
between the respective events.

Performance Analyzer helps you gain an understanding of your program’s
behavior. With this knowledge, you can not only tune your code for increased
performance but also accomplish the following:

Show logic flow (useful for C++ constructors and destructors)
Identify potential functions to make inline

Determine which functions of a DLL are being called

Track library calls

Verify built-in function usage

Track function calls among threads

Track class interaction

Track module interaction.

4 Getting Started: C/C++ Productivity Tools

Chapter 2. Editing programs

Editing source

The following sections identify typical tasks you might want to perform while
using the Editor with a C and C++ program and explains how to accomplish
these tasks. The ESample CALC Program” an page 33 is used to demonstrate
these actions. Follow the tasks in sequence as the tasks are often related to
each other.

For explanation of a pane or dialog box, click the pane or dialog box and
press F1.

ook whPRE

Starting the Editor

In this section, you learn how to start the Editor. You can start the Editor in
any of the following ways:

* By double-clicking on its icon from a program folder

* By selecting IBM C and C++ Productivity Tools for OS 390 > Editor from
the Windows Start menu

* By entering the Editor command iedit on a Productivity Tools command
line.

Creating a new file and entering source

In this section, you learn how to create a new file for the CALC program. The
first new file you create is calc.hpp. Once you learn how to create an empty
file with the type .hpp, you then learn how to enter the source for this new
file including how to undo typing and check each line you enter.

1. Select File > New file from the Editor menu bar. An untitled document
appears in the Editor Pane. You need to save this untitled document with
the .hpp extension to indicate that the file has the type .hpp.

© Copyright IBM Corp. 1999 5

2. Select File > Save file. Type calc.hpp in the File name field and click
Save. The File Selector refreshes to show the file calc.hpp on a local drive.

M| | FiL. | O
Open Files ;l
_4 Open Files
R0l b

3. To enter code, position the cursor on the Editor pane and begin
typing. Type in the source for calc.hpp. When you have completed a line
of code, press the Enter key. The line of code is parsed by the C/C++
parser. A blank line is inserted after the current line. The cursor moves to
the first column position of this new line.

4. If you make a typing error, use the Backspace key to go back and correct
the error. If you type over, for example, a variable name but decide that
you want to use the first variable name that you entered, select Undo from
the Edit menu. When you are done, the top of your Editing pane will look
as follows:

j,1'1?
/% Header file for CALC.CPP PUSHPOP.CPP FEADTOEMN.CPP
/% a simple calculator

typedef enum toks
T_INTEGER,
T_PLU3,
T_TIMES,
T_MINTS,
T_DIVILE,
T_EQUALS,
T_STOF
1 Token;
extern "C" Token read token(char buf[]):

5. To save calc.hpp, select File > Save file.

Marking and copying a block of code

In this section, you learn how to mark and copy a block of code. To do so,
you will create another new file for the CALC program, calc.cpp. Instead of
entering all the source for calc.cpp, you will avoid rekeying similar code by
marking, copying and pasting multiple blocks of code from calc.hpp into new
locations in the file calc.cpp.

1. Select File > New file from the Editor menu bar. An untitled document
appears in the Editor Pane. You need to save this untitled document with
the .cpp extension to indicate that the file has the type .cpp.

2. Select File > Save file. Type calc.cpp in the File name field and click
Save. The File Selector refreshes to show the file calc.cpp on a local drive.

6 Getting Started: C/C++ Productivity Tools

Select the file calc.hpp from the File Selector list to open this file. The
Editor pane refreshes to show the contents of the file calc.hpp.

In calc.hpp, left-click at the start of the header comment block, hold the
mouse button down and drag to the end of the header comment block.
Release the mouse button and the header comment block is selected.

Token read_token(char buf[]):
ok {

Right-click and from the pop-up menu select Copy. Select calc.cpp in the
list of open files.

Position the cursor to row 1 column 1 in this file. Right-click and select
Paste from the pop-up menu. Change the comments to reflect the
calc.cpp header comments.

Begin entering code for calc.cpp. Note that syntax errors are flagged as
you enter the code.

% A gimple calculator that does operations on integers
* that are pushed and popped on a stack

Binclude <stdio.h>
include <stdlib.hc
Binclude NN gRs
Lyntax error.

After coding the second case statement, stop entering code.

Move the cursor to the top left corner of the block case T_INTEGER,
right-click and select Selection > Select rectangle from the pop-up menu.

Move the cursor to the lower right corner of this case statement. Position
the cursor at the location that represents the longest statement length in
the block of code. Right-click and select Selection > Select rectangle from
the pop-up menu. The entire block between corner points is selected.

Chapter 2. Editing programs 7

Token tok:

char word[l00];

char buf_ out[l00]:

int num;

fori::)

{
tok=read_token(word):
switch(tok)

{
case T_3TOP:
hreak:

10. Right-click and select Copy from the pop-up menu. Position the cursor in
the column directly below the case statement. Right-click and select Paste
from the pop-up menu.

11. Repeat the previous step three more times. The result is five identical
case statements.

rum = atoi (word) ;
stack.pushi(num) ; AFCALCL statement */
hreak:
caze T INTEGER:
rum = atoi (word) ;
stack.pushi(num) ; AFCALCL statement */
hreak:
caze T INTEGER:
rum = atoi (word) ;
stack.pushi(num) ; AFCALCL statement */
hreak:
caze T INTEGER:
rum = atoi (word) ;
stack.pushi(num) ; AFCALCL statement */
hreak:
caze T_INTEGER:
num = atoi(word)
stack.push (rum) ; A*CALC] statement */
break:

12. Edit the case statements to reflect the correct coding. Some changes
require statements to be deleted as well as new statements to be
added. To insert lines, press Enter. To delete lines, click at the start of the
line and drag the mouse to the end of the line, right-click and from the
pop-up menu select Cut. Complete the remaining code for calc.cpp.

13. To save calc.cpp, select File > Save file.

8 Getting Started: C/C++ Productivity Tools

Finding and replacing a class name

In this section, you learn how to find and replace a class name. To do so, you
will create another new file for the CALC program, pushpop.cpp. As you
enter the source for pushpop.cpp, you will intentionally enter IntStac as the
class name for the class IntStack. This class is referenced in several files:
calc.cpp, calc.hpp, and pushpop.cpp. You will use the Editor to find all
occurrences of IntStac and replace them with the correct name, IntStack.

1. Select File > New file from the Editor menu bar. An untitled document
appears in the Editor Pane. You need to save this untitled document with
the .cpp extension to indicate that the file has the type .cpp.

2. Select File > Save file. Type pushpop.cpp in the File name field and click
Save. The File Selector refreshes to show the file pushpop.cpp on a local
drive.

3. Position the cursor in the Editor pane at row 1 column 1 and begin
entering the code. Remember to enter Instac instead of Instack. You can
copy blocks of text or code to avoid rekeying. See a previous section on
marking and copying text.

,-'"*

A7 oinput: nun - walue to push on the stack

S* action: get a link to hold the pushed walue, push link on
/% stack

oid Intitac::pushiint num) |
IntLink * ptr:
ptr = new IntLink:
prtr-raet_i (num) ;
ptr-raet_nextitop):
top = pLE;

,-'"*

A7 oinput: nun - walue to push on the stack

S* action: get a link to hold the pushed walue, push link on
/% stack

4. Complete the code for pushpop.cpp.

Chapter 2. Editing programs 9

10

10.

11.

while (top)
pop():
+
Mrntlink: :Intlink () { /% constructor leaves elements unassigned
+
Mntlink::-IntLink() {
+
froid Intlink::set_ifint j) {
i=173:
+
int IntlLink::get i{) {
return i;
+
froid Intlink::set next{IntLink * p) {
next = p;
+
Intlink * IntlLink::get nexti() {
TETUrn next;

B

From the Edit menu, select Find > Find/replace.

Enter the name of the function to find, in this case IntStac, the name
with which to replace it, in this case IntStack and click All. All
occurrences of IntStac appear.

vold IntStac: :push(int mm) {
int Intitac::popi) |
Intitac::Instac() {
Intitac::~Intitac() |

Click Replace all. All occurrences of IntStac are replaced with IntStack.

To check that IntStack is named correctly in other modules that make up
the CALC program, select the other modules by holding the Shift key
and left-clicking on each module name. Then select All.

ﬂ class IntStack |

Notice that the first occurrence of IntStack is in calc.hpp and the name is
correct.

Select calc.cpp. IntStack is present in this module.

Select pushpop.cpp. IntStack is present in this module as these are the
occurrences that you have just changed.

To save pushpop.cpp, select File > Save file.

Getting Started: C/C++ Productivity Tools

Setting and finding quick marks

In this section, you learn how to set and find quick marks to quickly locate
code within a file. To do so, you will create another new file for the CALC
program, readtokn.cpp. As you enter the source for readtokn.cpp, you will set
a quick mark to go to the top of the source file.

1. Select File > New file from the Editor menu bar. An untitled document
appears in the Editor Pane. You need to save this untitled document with
the .cpp extension to indicate that the file has the type .cpp.

2. Select File > Save file. Type readtokn.cpp in the File name field and click
Save. The File Selector refreshes to show the file readtokn.cpp on a local
drive.

3. Position the cursor in the Editor pane at row 1 column 1. Right-click and
select Edit > Set quick mark from the pop-up menu. Setting this mark at
the top of the file allows you to quickly move to this location. You can
have only one quick mark in a file. Setting another quick mark replaces
the previous quick mark, if one exists.

4. Begin entering code. You can copy blocks of text or code to avoid
rekeying. See a previous section on marking and copying text.

case '+' @ return T=PLUS:

case '-' @ return T_MINITA:
case '*!' 1 return T=TIMES:
case '/' @ return T_DIVIDE:
case '=' : return T=EQUALS:
default:

i=0;

while [(isdigit{c)) {
buf[i+] = c;
c = nextchar();
}
buf[i] = 0;:
if [i==0]
return T _STOP:
else
return T INTEGEER:
}

'

5. Right-click on the Editor pane and select Find > Find quick mark from
the pop-up menu. The cursor moves to the position marked by the quick
mark located at the top of the file.

Chapter 2. Editing programs 11

ginclude <ctype.l>
include <stdio.hs
ginclude "calc.hpp™

ptatic char nextchar (woid)

i

¥ input action

2 push 2 on stack
15 push 18

6. To save readtokn.cpp, select File > Save file.

Fixing compile-time errors

In this section, you learn how to fix compile-time errors using the Editor on
your workstation.

You send the completed source files calc.cpp, readtokn.cpp, calc.hpp and
pushpop.cpp to the OS/390 system. There are many ways to transfer files
from the workstation local file system to the host file system. For example,
you can use FTP to send the files to the host system or you can mount your
host file system as a Windows NT drive using a remote file system such as
NFS. Once the host file system is mounted as a Windows NT drive, you can
then copy the workstation files to this Windows NT drive.

When the files are on OS/390, you then compile these files. The compile
process results in several compile-time errors for the file pushpop.cpp. You fix
these errors using the workstation Editor. After you fix pushpop.cpp, you
resend the file to the OS/390 system where you recompile the updated source.

1. Select File > Open file from the Editor menu bar.

2. Type pushpop.cpp in the File name field and click Open. The File Selector
refreshes to show the file pushpop.cpp on a local drive.

3. Right-click on the Editor pane and select Preferences from the pop-up
menu. The Editor Preferences dialog opens. Select Controls from the list
and then check the Line numbers check box. Click Apply. Click OK. Line
numbers appear on the Editor pane.

12 Getting Started: C/C++ Productivity Tools

O0000L A * - File pushpop.cpp-----—------—----—
00000z /+

000003 /% Push and pop functions for a stack of integers
ooooad/+
L
ooo0006#include <stdio.hs-

000007#include <stdlib.

000008#include "calc.hpp™

MOAEES /& == == == == m e e e e e
ooooLos+

000011/% input: num - walue to push on the stack

000012 /% action: get a link to hold the pushed walue, push
000013 /% stack

L
DDDDlSvoiﬁ Intitack: :pushiint num) {

Use the line numbers in the compiler error listing to locate each error. For

example, several errors are caused by an incorrect function name for

IntStack on line 37.

D000 2T e
000028int Intitack::pop()

000029 Intlink * ptr:

000030 int num;

000031 ptr = top;

000032 1num = prr-»get_i();

000033 top = ptr-»get next():

000034 delete ptr;

000035 return num;

000036}
00003 7
000038 top = 0;

000039}
0o00d0Intstack: : ~Intitack() |
000041 whileitop)

Other errors are the result

of incorrect names in calc.hpp. For example,

T-EQUALS and T-STOP should be T_EQUALS and T_STOP.

L
00000z /+

000003 /% Header £ile for CAL
000004/ * a simple calculator
L
nooonstypedef enum toks |
000007 T _INTEGER,

ooooos T PLUS,

000008 T _TIMES,

oooolo T _MINDS,

ooooll T DIVIDE,

oooolz

000013

000014} Token;

O00015extern "C" Token read

C.CPP PUSHFOFP.CPF READTOEIN.CPF

token (char buf[]);

Fix the errors. Then, send the files to the host and recompile. Repeat the
above steps until all errors are fixed.

Chapter 2. Editing programs 13

14 Getting Started: C/C++ Productivity Tools

Chapter 3. Debugging programs

Debugging a program

The following sections identify typical tasks you might want to perform while
using the debugger with a C and C++ program and explains how to
accomplish these tasks. The E 2 is used to
demonstrate some of these actions. Follow the tasks in sequence as the tasks
are often related to each other.

For explanation of a pane or dialog box, click the pane or dialog box and
press F1.

Starting the Distributed Debugger user interface daemon

In this section, you learn how to start the Distributed Debugger user interface
daemon. To debug the CALC program, you need to first start the Distributed
Debugger user interface in daemon mode. After you start the daemon, you
then go to an OS/390 session and run your program with the appropriate
runtime option to cause the Language Environment runtime library to load
Debug Tool. The next section describes how to define the script to start a
debug session.

The Distributed Debugger client is invoked on the workstation in a mode

which causes it to wait for a TCP/IP connection from Debug Tool running on
0S/390. The Distributed Debugger provides the client graphical user interface

© Copyright IBM Corp. 1999 15

to the debug information provided by Debug Tool. For example, to monitor a
variable, the Distributed Debugger client asks Debug Tool for the value;
Debug Tool responds with a value and the Distributed Debugger client
displays the value in the Monitors pane.

You can start the Distributed Debugger daemon in any of the following ways:

By double-clicking on its icon from a program folder. If you start the
Distributed Debugger from an icon you must make sure the properties for
the icon include the -qdaemon and -quiport options.

By selecting IBM C and C++ Productivity Tools for OS 390 > IBM
Distributed Debugger from the Windows Start menu.

By entering the Distributed Debugger command idebug -gdaemon
-quiport=<port> on a Productivity Tools command line.

<port> The port number where you want the Distributed Debugger user
interface daemon to listen for Debug Tool. For the port number in
this example, use 8000. This is the port number used by default in
the port parameter of the TEST runtime option which causes the
Language Environment to load Debug Tool. The same port number
must be used by the Distributed Debugger user interface daemon
and Debug Tool.

Starting a program with Debug Tool in OS/390 UNIX

In this section, you learn how to start the CALC program with Debug Tool.

Complete the following steps to compile the CALC program, set up the
environment for debugging with Debug Tool, and debug CALC:

1.

2.

16 Getting Started:

Compile and bind your program with the -g debug option, for example,
c++ -+ -g calccpp calc.cpp readtokn.cpp pushpop.cpp

Create a script file that will set up the environment for debugging and run
your program. Create a file called dbg and do the following in the file:

» Set your STEPLIB to point to the Debug Tool SEQAMOD data set, the
Language Environment runtime library, and the library which contains
the application you intend to debug, if you intend to run the application
from a PDS.

» Specify the runtime TEST option. If you did not code #pragma runopts in
your program, you need to specify the runtime TEST option through the
system variable CEE_RUNOPTS.

Here is a sample script you can use:

C/C++ Productivity Tools

#DBG - SHELL SCRIPT TO DEBUG PROGRAM

export STEPLIB=EQAW.V1R2MO.SEQAMOD:\
SYSID.CEE.SCEERUN:\
SYSID.CBC.SCLBDLL:\USERID.PROJ1.LOAD:$STEPLIB

export _CEE_RUNOPTS="TEST(,,,VADTCPIP&wkst_id%portid:*)"
$x&

wkst_id
The numeric IP address of your workstation or the TCP/IP name
of your workstation.

%portid
The TCP/IP port number (this is optional and defaults to 8000); if
specified, the value must match the port number value that was
entered when the Distributed Debugger user interface daemon was
started.

4. To set up your environment and debug calccpp, use the shell script dbg
and execute as follows: >dbg calccpp

The application being debugged, calccpp, runs on the host and causes the
Language Environment to load Debug Tool. Debug Tool will connect to the
Distributed Debugger daemon running on the workstation and a Distributed
Debugger program pane will display.

Setting a breakpoint to halt before a certain function is entered

In this section, you learn how to set a function breakpoint. When the CALC
program is run, the program stops at that function before it is entered. To set
the breakpoint you need to include a C++ signature along with the function
name.

Note: For the Distributed Debugger to be able to halt the program, the file
with the called code must be compiled with the compile-time TEST option.

To set a function breakpoint from the Modules pane:

1. Click the Monitors tab. Expand the list under pushpop.cpp in the Modules
pane. You see all the names of all the functions and methods defined in
the compile unit. Look for the function IntStack::push(int).

2. To halt just after the function IntStack::push(int) is called, right-click on
that function to open a pop-up menu.

3. Choose Set Function Breakpoint from the pop-up menu. The breakpoint
is set.

Chapter 3. Debugging programs 17

hread 1:.fpushpop.cpp
1 #include <ztdio.h>
2 #include <ztdlib.h>
3 #include "cale.hpp™
4 @ | vold Intitack::pushiir
5 Intlink * ptr:
& ptr = new IntLink:
7 ptr-Fset_iinum):
g ptr-Fset_nextitop):
] top = ptr:
10 '

4. Select Debug > Run to run the CALC program until the breakpoint is hit.

hread 1:fpushpop.cpp
1 #include <stdio.h>
2 #include <ztdlib.h>
3 #include "calec.hpp™
4 o | woid IntStack: :pushiir
5 Intlink * ptr:
[ptr = new IntlLink:
7 prr-»set_i(numj;
i prr-»3et_next(top);
Q top = ptr;
10 1

Displaying and modifying the value of a variable

In this section, you learn how to display and change the value of the variable
num in the pushpop.cpp module. To do this you use the Monitors pane.

1.

Select Debug > Step Into from the Debug menu. The CALC program
runs and steps into the first call of function IntStack::push(int).

Select Debug > Step Over until just after IntLink has been allocated,
which will be the statement ptr->set_i(num);.

hread 1. fpushpop.cpp
#include <stdio.h>
#include <stdlib.lc
#include "calc.hpp™
@ wvoid Intitack::push(in
Intlink * ptr;
ptr = new Intlink:
-+ | prr-»set_i(num);
prr-»3et_next(ton);
top = ptr;
}

Highlight the variable num and right-click. Select Add to Program
Monitor from the pop-up menu.

Click the Monitors tab to display the Monitors pane. The value for
variable num is shown.

Lo R w R O AT S

=

18 Getting Started: C/C++ Productivity Tools

[. |

5. To modify the value of num to 22, double-click on the variable num.
a. Enter the value 22 for the num variable.

b. Press Enter to submit the change.
6. Select Debug > Step Over to execute the current line.

7. Click the Monitors tab then select Monitor Expression from the Monitors
menu.

8. Enter the expression *ptr, click on the Program monitor radio button and
then click OK.

9. Expand the *ptr expression in the Monitors pane. A list of the data
members of the object pointed to displays in the Monitors pane.

=& *pir
=22
- next= 0x00000000

10. To modify the value of i to 33, double-click i.
a. Enter the value 33 for i.
b. Press Enter to submit the change.

El-# ptr

w2 next= 0x00000000

Alternatively, instead of monitoring all values of *ptr, you can monitor the
expression (*ptr).i directly. You can then modify the value for this expression
by adding this expression to the Monitor Expressions dialog and from the
Monitors pane, edit the value of i such that the expression on the Monitors
pane reads (*ptr).i=33.

Stopping on a line only if a condition is true

In this section, you learn how to set a conditional breakpoint in main()of
calc.cpp. Often a particular part of your program works fine for the first few
thousand times, but fails under certain conditions. You do not want to set a
simple line breakpoint because you do not want to stop on the line every
time. Instead, you want to stop in T_DIVIDE only if the divisor is 0 (before
the exception occurs).

1. Move the cursor to the location to set the line breakpoint, in this case the
statement stack.push(num/numz2).

2. Select Source > Set Line Breakpoint from the menu bar.

Chapter 3. Debugging programs 19

Enter the expression num==2 in the Expression field.
Click OK to set the breakpoint and dismiss the Line Breakpoint dialog.

Select Debug > Run from the Debug menu. The CALC program runs and
then stops at the line breakpoint only if num2=0. If the value of num2 is
not 0, the program will continue.

Viewing and modifying data members of the this pointer

In this section, you learn how to modify the data members of the this pointer,
and step into a class method, for example, one from class IntLink. To do this
you set another line breakpoint in the module pushpop.cpp and monitor the
values of the this pointer.

1.

20 Getting Started

Set a line breakpoint in the method IntLink::set_i in pushpop.cpp. The
breakpoint should be set at line 32 where i = j;

31 wold IntlLink::set i(in
3z @] i=3:

Select Debug > Run from the Debug menu. The CALC program runs and
then stops at the breakpoints set in earlier sections. Continue to select
Debug > Run until you reach the line breakpoint that you just set.

31 wold IntLink::set_ifint 1) |
32 i=73:

33 i

34 int Intlink::get_i{) {

Click the Monitors tab. From the Monitors menu, select Monitor
Expression.

Enter *this as the expression to be evaluated. Select the Program monitor
radio button. Click OK.

Expand the *this expression in the Monitors pane. A list of the data
members of the object pointed to displays in the Monitors pane.

E‘. *Hhis
..... i=n
e 3 nest= 0x00000000

To modify element i, double-click on i.
Enter the value 2001 for i.
Press Enter to submit the change.

. C/C++ Productivity Tools

Instead of monitoring all values of *this, you can monitor the element i
directly. You can then modify the value for i by adding i to the Monitor
Expressions dialog and changing the value of i to 2001 from the Monitors
pane. Similarly, if there were ambiguity (for example, if you also had an auto
variable named i), you could monitor the expression(* this).i through the
Monitor Expressions dialog and, from the Monitors pane edit the value of i so
that the expression in the Monitors pane would read (*this).i=2001.

Debugging when only a few parts are compiled with TEST

In this section, you learn how to debug only one part in a multiple-part
program. To do this you compile that one part with debug information, and
then set breakpoints in this one part to debug. For example, you only compile
pushpop.cpp with the TEST option. All other files are compiled without this
option. Then you set a breakpoint after the call to the function
IntStack::push(int) in the file pushpop.cpp. The Distributed Debugger will
show module display trees for only those components containing debug
information.

Since the pushpop.cpp part displays, you can set a breakpoint after the call to

the function IntStack::push(int) as follows:

1. In the Modules pane, expand the list under pushpop.cpp. You see all the
names of all the functions and methods defined in the compile unit. Look
for the function IntStack::push(int).

2. To halt just after the function IntStack::push(int) is called, right-click on
that function.

3. Choose Set Function Breakpoint from the pop-up menu. The breakpoint
is set.

4. Select Debug > Run from the Debug menu. The CALC program runs and
execution stops after the function call.

Displaying storage

In this section, you learn how to display the content of a variable in storage.
To do this you monitor the IntLink * variable ptr which can point to a location
in storage. To display the storage:

1. Set a line breakpoint at line 7 where the statement reads ptr->set_(num); in

pushpop.cpp.

[ptr = new Intlink;
T @ prr-»aet_i{num);
i prr-»3et_next(top);

Chapter 3. Debugging programs 21

Select Debug > Run from the Debug menu. The CALC program runs and
then stops at the breakpoints set in earlier sections. Continue to select
Debug > Run until you reach the line breakpoint that you just set.

T oo prr-»aet_i(numj;
i prr-»3et_nextitop);
Q top = ptr:

Click the Monitors tab. From the Monitors menu, select Monitor
Expression.

Enter ptr as the expression to be evaluated. Select the Storage monitor
radio button. Click OK. A new Storage Monitor pane appears as a tab.

Select Debug > Step Over to step over line 7.

Click the ptr monitor tab to return to the ptr Storage Monitor pane. The
memory value of num displays in the ptr Storage Monitor pane.

Finding unexpected storage overwrite errors

In this section, you learn how to set a storage change breakpoint to cause the
program execution to halt when the 4 bytes of storage pointed to by the
variable abcd is changed. During program execution, some storage might
unexpectedly change its value. The Distributed Debugger allows you to find
out when and where this happened. Consider this simple example where
function set_i changes more than the caller expects it to change.

22 Getting Started

struct s { int i; int j;};
struct s abcd = { 0, 0 };
/* function sets only field i %/
void set_i(struct s * p, int k)

{

ks
ks /* error, it unexpectedly sets field j also */

p->i
p->J
}

main() {
set_i(&abcd,123);
}
Select the Breakpoints pane then select Breakpoints > Set Storage Change
from the menu bar.
Enter the expression &(abcd.j) in the Address or Expression field. This
expression evaluates to an address.

Enter 4 as the number of bytes to monitor in the Bytes to Monitor field.
Click OK to set the breakpoint and dismiss the Storage Change Breakpoint
dialog.

Select Debug > Run from the Debug menu. The program runs until the
contents of any of these 4 bytes of storage change value.

. C/C++ Productivity Tools

Finding uninitialized storage errors

In this section, you learn how to find uninitialized heap storage. To do this
you debug the program CALC, setting the run-time STORAGE option as
STORAGE(FD,FB,F9). You then set a function breakpoint for the
IntStack::push(int) function which is before the ptr variable declaration in
pushpop.cpp. You then run the program to the breakpoint and then monitor
the * ptr expression.

The Language Environment run-time TEST and STORAGE options are coded
as follows:

'TEST (,,,VADTCPIP&wkst_id %portid:*) STORAGE(FD,FB,F9)"

The first subparameter of STORAGE is the fill byte for storage allocated from
the heap. For example, storage allocated through operator new is filled with
the byte OxFD. If you see this byte repeated throughout storage, it is likely
uninitialized heap storage.

The second subparameter of STORAGE is the fill byte for storage allocated
from the heap but then freed. For example, storage freed by the operator
delete will be filled with the byte OxFB. If you see this byte repeated
throughout storage, it is likely storage that was allocated on the heap but has
been freed.

The third subparameter of STORAGE is the fill byte for auto storage variables
in a new stack frame. If you see this byte repeated throughout storage, it is
likely that it is uninitialized auto storage.

The values chosen here are odd and large, to maximize early problem
detection. For example, if you attempt to branch to an odd address, you will
get an exception immediately.

1. Set a function breakpoint for the IntStack::push(int) function in
pushpop.cpp. If you have set this breakpoint from a previous section,
ignore this step.

2. Select Debug > Run from the Debug menu. The CALC program runs and
then stops at the breakpoints set in earlier sections. Continue to select
Debug > Run until you reach the function breakpoint that you just set.

3. Highlight the variable * ptr in pushpop.cpp you want to monitor.

4. Right-click on the highlighted variable, and select Add to Program
Monitor from the pop-up menu. Click the Monitors tab. Expand the
variable *ptr.

E‘. = ptr
- i= EQA2302E Mot allocat
s ¥ next= EQAZI0JE Mot g

Chapter 3. Debugging programs 23

5. Select Debug > Step Over to step over the current line. Continue to step
over until you step to the statement ptr-> set_i (num);. You will see the
byte fill for uninitialized heap storage.

E-# *ptr

6. To change the representation of the i value to hexidecimal, right click on i
and from the pop-up menu select Representation.
7. On the Monitor Representation dialog, click on the Hexadecimal radio

button. The value of i changes from a decimal value to a hexadecimal
value.

E!----f * ptr
----- i = 0xFDFDFDFD
o 3 next= OXFDFDFDFD

Getting a function traceback

In this section, you learn how to use the Stacks pane to view the traceback of
calling functions. Often when you get close to a programming error, you want
to know how you got into that situation, especially what the traceback of
calling functions is. To get this information, you use the Stacks pane to view
program call stack information. Initially, the stack display trees are collapsed
so only thread names and thread numbers are shown. Each stack display tree
can be expanded so the names of all functions in the stack are displayed.

1. Set a line breakpoint at line 14 where the statement reads read_token() in
readtokn.cpp.

2. Select Debug > Run from the Debug menu. The CALC program runs and
then stops at the breakpoints set in earlier sections. Continue to select
Debug > Run until you reach the function breakpoint that you just set.

hread 1:ireadtokn.cpp
11 return ret;
12 }
13 extern "C”
14 & |Token read toketi(char b
15 {

3. Click the Stacks tab.

4. Expand the thread to view the program call stack information. The Stacks
pane shows the traceback of callers.

@ rnain
el read_token

24 Getting Started: C/C++ Productivity Tools

Chapter 4. Analyzing program performance

Analyzing a program’s performance

The following sections identify typical tasks you might want to perform while
using the Performance Analyzer with a C and C++ program and explains how
to accomplish these tasks. The ESample CALC Program” on page 33 is used to
demonstrate these actions. Follow the tasks in sequence as the tasks are often
related to each other.

For explanation of a pane or dialog box, click the pane or dialog box and
press F1.

ook whPRE

Creating a trace file

In this section, you use the CALC program to learn how to build and trace a
program in OS/390 UNIX.

To trace a program with the Performance Analyzer, it must be compiled with
the correct options and then executed with the run-time option
PROFILE(ON,’string’) set in order to start the Performance Analyzer.

Complete the following steps to build your program, set up the environment

for tracing with the Performance Analyzer, and perform the trace:

1. Compile and bind your program with TEST(HOOK) and NOGONUMBER,
for example, c++ -+ -0 calccpp -0 -Wc,"TEST(HOOK) ,NOGONUMBER"
calc.cpp readtokn.cpp pushpop.cpp

2. Create a script file that will set up the environment for tracing and run
your program. Create a file called trc and do the following in the file:

* Set the _ PROF_FILE_NAME=filename environment variable to specify
the name of the trace file to be generated.

* Add SCTVMOD load module data set to the STEPLIB of the program if
it has not been installed in the link pack area (LPA).

© Copyright IBM Corp. 1999 25

» Set the run-time option, PROFILE(ON,’string’)
* Enter the name of the program.

Here is a sample script you can use:

#PA - SHELL SCRIPT TO ANALYZE PROGRAM PERFORMANCE

#CBC is determined by the location of the C++ compiler.
export STEPLIB=CBC.SCTVMOD:$STEPLIB

export _CEE_RUNOPTS="PROFILE(ON,'FUNCTION=ALL,REAL")"
export _ PROF_FILE_NAME=calccpp.trc

calccpp

3. Run the script file to trace the program and create a trace file.

Starting the Performance Analyzer

In this section, you learn how to start the Performance Analyzer.

You can start the Performance Analyzer in any of the following ways:
* By double-clicking on its icon from a program folder

* By selecting IBM C and C++ Productivity Tools for OS 390 > Performance
Analyzer from the Windows Start menu

* By entering the following Performance Analyzer command on a
Productivity Tools command line:

ianalyze [/x]

Where /x represents any number of Performance Analyzer invocation
parameters.

Analyzing a trace file

In this section, you learn how to use the Performance Analyzer on the
workstation to analyze the trace file that you have just created on the host.
After you create a trace file on the host, you download it as a binary file to
the workstation so you can use the Performance Analyzer. For example, you
can use FTP to send the files to the workstation or you can mount your host
file system as a Windows NT drive using a remote file system such as NFS.
Once you have downloaded the trace file, you can use the Performance
Analyzer on your workstation to create diagrams to analyze your trace file.

Analyzing time events in the Time Line diagram

1. In the Performance Analyzer - Window Manager window, select Analyze
Trace.

2. In the Analyze Trace window, specify the trace file name calccpp.trcin
the dialog box; or search for the trace file by clicking the Find button.

26 Getting Started: C/C++ Productivity Tools

o 0k~ w

Select the Time Line diagram to view the data.
Click the OK button.
Highlight the entire time range, in this example, 0 to 307.

Check the status area of the Time Line diagram for the elapsed time
between all events.

0 ms

Finding the functions that take the most time to execute

1.

In the Performance Analyzer - Window Manager window, select Analyze
Trace.

In the Analyze Trace window, specify the trace file name calccpp.trc in
the dialog box; or search for the trace file by clicking the Find button.

Select the Statistics diagram to view the data.

Click the OK button.

Select View > Details on > Functions to see a list of functions in the
Statistics diagram.

Locate the functions that take the most time to execute. The functions that
take the most time to execute will be at the top of the list by default
because the list is sorted by execution time. In this example, the
IntStack::push(int) function takes the most time to execute (22%).

Searching for trace data in a diagram

In this section, you learn how to find the call to function IntStack::push(int) in
several Performance Analyzer diagrams.

Finding a specific function call or return
To search for the function call IntStack::push(int) using the Time Line diagram:

1.

In the Performance Analyzer - Window Manager window, select Analyze
Trace.

In the Analyze Trace window, specify the trace file name calccpp.trc in
the dialog box; or search for the trace file by clicking the Find button.

Select the Time Line diagram to view the data.
Click the OK button.

Open the Find Function window in the Time Line diagram, select Edit >
Find > Function.

Enter the function name IntStack::push(int) in the Find entry field.
Check the Case sensitive check box to enable case-sensitive searching.

Chapter 4. Analyzing program performance 27

10.

11.

Select 1 from the list in the Thread field.

Click the Call or Return radio button to search for occurrences of when
the function was either called or returned.

Click OK to continue. The first occurrence of the call to the function
IntStack::push(int) is located.

Select Edit > Find next to find the next occurrence of the function call or
return.

0 ms

The search for the function begins at the currently selected function. The
search continues until the function is found or the end of the diagram is
reached. If the function is found, it is highlighted,; if it is not found, a message
box to that effect appears.

Finding trace data for the IntStack::push(int) function
To search for the function IntStack::push(int) in the Statistics diagram,
complete the following steps:

1.

In the Performance Analyzer - Window Manager window, select Analyze
Trace.

In the Analyze Trace window, specify the trace file name calccpp.trc in
the dialog box; or search for the trace file by clicking the Find button.

Select the Statistics diagram to view the data. Click OK.

Make sure trace data for functions is shown in the diagram. Select View >
Details on > Functions in the Statistics diagram.

Open the Find Function window in the Statistics diagram, by selecting
Options > Find.
Enter the function name IntStack::push(int) in the Find entry field.

Select the Case sensitive check box if you want to enable case-sensitive
searching.

Click OK to continue.

If more than one function matches your search criteria, select the desired
function in the list box and click OK. The function is highlighted when
found.

28 Getting Started: C/C++ Productivity Tools

Controlling what data is shown in a diagram

In this section, you learn how to filter the trace data. Filters allow you to
temporarily reduce the amount of trace data shown in a diagram or to isolate
interesting or problematic areas. There are several techniques for filtering the
trace data.

Showing trace data for a specific component type
To show trace data for a specific component type in the Statistics diagram and
the Dynamic Call Graph diagram, complete the following steps:

1. In the Performance Analyzer - Window Manager window, select Analyze
Trace.

2. In the Analyze Trace window, specify the trace file name calccpp.trcin
the dialog box; or search for the trace file by clicking the Find button.

3. Select the Dynamic Call Graph diagram and the Statistics diagram to
view the data. Click OK.

4. Select View > Details on > Functions in the Statistics diagram or View >
Nodes of > Functions in the Dynamic Call Graph diagram.

Function Compile Unit
T 0000 calc g P
ATOl CEEEYOO3
IntStack:: ~IntStack(] /puzhpop.cpp
IntStack:: popl] Apushpop.cpp
IntStack:: puszh(int] /puzhpop.cpp
main oalc.cpp
operator delete(void®) Jcalcocpp
operator new{unzigned int) ealcopp
read_token readiokn, cpp
sprintf CEEEWOO3

To filter specific functions from the Call Nesting diagram, complete these
steps:

1. In the Performance Analyzer - Window Manager window, select Analyze
Trace.

2. In the Analyze Trace window, specify the trace file name calccpp.trc in
the dialog box; or search for the trace file by clicking the Find button.

3. Select the Call Nesting diagram to view the data.
4. Select View > Include functions. The Include Functions window appears.

Chapter 4. Analyzing program performance 29

Click Deselect all.

Scroll the list to find the function IntStack:: IntStack() to include in the
diagram’s display.

Select this function.

Click OK. The selected function displays.

’j IntStack:"IntStack()

Filtering nodes in the Dynamic Call Graph
To define a specific cross section of nodes that you want shown in the
Dynamic Call Graph diagram, complete these steps:

1.

In the Performance Analyzer - Window Manager window, select Analyze
Trace.

In the Analyze Trace window, specify the trace file name calccpp.trc in
the dialog box; or search for the trace file by clicking the Find button.

Select the Dynamic Call Graph diagram to view the data.
Select View > Filters > Nodes. The Nodes Filter window appears.

Select the check boxes for the desired filter criteria such as Execution Time
and Number of Calls, and fill in the corresponding values by which you
want to filter the nodes.

Click the And radio button to show the nodes that meet the values for all
the selected criteria. Alternatively, click the Or radio button to show the
nodes that meet the values of at least one of the selected criteria.

Select one or more compile units in which you want to search for nodes
that meet the filter criteria.

Click OK to apply the filters and close the Nodes Filter window.

Navigating the trace file views

In this section, you learn how to correlate events between diagrams and
enlarge or reduce diagram details.

Correlating events between Call Nesting, Execution Density and Time Line
diagrams

To correlate events between the Call Nesting, Execution Density, and Time
Line diagrams, complete these steps:

30 Getting Started: C/C++ Productivity Tools

In the Performance Analyzer - Window Manager window, select Analyze
Trace.

In the Analyze Trace window, specify the trace file name calccpp.trc in
the dialog box; or search for the trace file by clicking the Find button.

Select the Call Nesting, Execution Density and Time Line diagrams to
correlate events.

Highlight the event range of interest in any of the three diagrams by
taking these steps:

a. Left-click on the first event.
b. Drag the pointer to the last event.
c. Release the mouse button.

Select Options > Correlation in the diagram where you highlighted the
event range. The Correlation window appears.

Click Select all to correlate to all of the diagrams listed.

Click OK. All three diagrams correlate to show the same event range in
each diagram.

Correlating the IntStack::push(int) function

To correlate from the IntStack::push(int) function in the Statistics diagram to
the instance of the call to that same function in the Call Nesting diagram that
used the most time of all calls to that function, complete these steps:

1.

In the Performance Analyzer - Window Manager window, select Analyze
Trace.

In the Analyze Trace window, specify the trace file name calccpp.trc in
the dialog box; or search for the trace file by clicking the Find button.

Select the Statistics and Call Nesting diagrams to view the data.
Open the trace file in the Statistics and Call Nesting Diagrams.

Select View > Details on > Functions in the Statistics diagram to show
functions in the diagram.

Highlight a single function called IntStack::push(int)in the Statistics
diagram.

Select Options > Correlation in the Statistics diagram. The Correlation
window appears.

Click the Call Nesting diagram.
Click OK. The Call Nesting diagram shows the corresponding function.

IntStack::push(int]
operator new[unsigned int]

read_token

Chapter 4. Analyzing program performance 31

Enlarging and reducing diagram details
To enlarge a region of a the Time Line diagram, Execution Density diagram or
Dynamic Call Graph diagram that is of most interest, follow these steps:

1.

2.

3.

4.
5.
6.

7.

In the Performance Analyzer - Window Manager window, select Analyze
Trace.

In the Analyze Trace window, specify the trace file name calccpp.trc in
the dialog box; or search for the trace file by clicking the Find button.

Select any one of the above three diagrams to view the data. For example,
select the Dynamic Call Graph diagram.

Select View > Zoom in.
Scroll until you see the area you selected.

Continue alternately selecting Zoom in and scrolling to the selected area
until the diagram is enlarged to the degree you want.

If you zoom in too far, select View > Zoom out to quickly back out one
step.

1=

Unknown_Clazz . /calcopp]

Z_Function

32 Getting Started: C/C++ Productivity Tools

Appendix. Sample Program

Sample CALC Program

The CALC program is a simple calculator that reads its input from a character
buffer. If integers are read, they are pushed on a stack. If one of the operators
(+ - * /) is read, the top two elements are popped off the stack, the operation
is performed on them, and the result is pushed on the stack. The = operator

writes out the value of the top element of the stack to a buffer.

/* FILE CALC.HPP
/*
/* Header file for CALC.CPP PUSHPOP.CPP READTOKN.CPP
/* a simple calculator
/*
typedef enum toks {
T_INTEGER,
T_PLUS,
T_TIMES,
T_MINUS,
T_DIVIDE,
T_EQUALS,
T_STOP
} Token;
extern "C" Token read_token(char buf[]);
class IntLink {
private:
int i;
IntLink * next;
public:
IntLink();
IntLink();
int get_i();
void set_i(int j);
IntLink * get_next();
void set_next(IntLink * d);
1
class IntStack {
private:
IntLink * top;
public:
IntStack();
IntStack();
void push(int);
int pop();

/* FILE CALC.CPP

/*

/* A simple calculator that does operations on integers that
/* are pushed and popped on a stack

© Copyright IBM Corp. 1999

*/
*/
*/
*/
*/

*/
*/
*/
*/

33

/*

#include <stdio.h>
#include <stdlib.h>
#include "calc.hpp"
IntStack stack;

int main()

{

1

/*
/*
/*
/*

Token tok;

char word[100];
char buf_out[100];
int num,num2;
for(ss)

{

tok=read_token(word);
switch(tok)

{

case T_STOP:
break;
case T_INTEGER:
num = atoi(word);

stack.push(num); /* CALC1 statement =/
break;

case T_PLUS:
stack.push(stack.pop()+stack.pop());
break;

case T_MINUS:
num = stack.pop();
stack.push(num-stack.pop());
break;

case T_TIMES:
stack.push(stack.pop()*stack.pop());
break;

case T_DIVIDE:
num = stack.pop();
num2 = stack.pop();
stack.push(num/num2); /+* CALC2 statement
break;

case T_EQUALS:
num = stack.pop();
sprintf(buf_out,"= %d ",num);
stack.push(num);
break;

}
if (tok==T_STOP)

}

break;

return 0;

FILE: PUSHPOP.CPP

Push and pop functions for a stack of integers

#include <stdio.h>
#include <stdlib.h>
#include "calc.hpp"

34 Getting Started: C/C++ Productivity Tools

*/
*/
*/
*/

/% */

/* input: num - value to push on the stack */
/* action: get a link to hold the pushed value, push Tink on stack */
/* */

void IntStack::push(int num) {
IntLink * ptr;
ptr = new Intlink;
ptr->set_i(num);
ptr->set _next(top);

top = ptr;
}
/* */
/* return: int value popped from stack (0 if stack is empty) */
/* action: pops top element from stack and get return value from it =/
/* */

int IntStack::pop() {
IntLink * ptr;
int num;
ptr = top;
num = ptr->get_i();
top = ptr->get_next();
delete ptr;
return num;

1
IntStack::IntStack() {
top = 0;
} 3
IntStack:: IntStack() {
while(top)
pop();
IntLink::IntLink() { /* constructor leaves elements unassigned =*/
1 .
IntLink:: IntLink() {
1
void IntLink::set_i(int j) {
i=3;
1
int IntLink::get_i() {
return 1i;
}
void IntLink::set _next(IntLink * p) {
next = p;
}

IntLink * IntLink::get_next() {
return next;

}

/* FILE READTOKN.CPP %/
/* */
/* A function to read input and tokenize it for a simple calculator =/
/* */

#include <ctype.h>
#include <stdio.h>
#include "calc.hpp"
/* */

Appendix. Sample Program 35

/* action: get next input char, update index for next call
/* return: next input char

/*

static char nextchar(void)

{

/* input action
* — R—
* 2 push 2 on stack
* 18 push 18
* + pop 2, pop 18, add, push result (20)
* = output value on the top of the stack (20)
* 5 push 5
* / pop 5, pop 20, divide, push result (4)
* = output value on the top of the stack (4)
*
/
char * buf in ="2 18+ =5/ =";
static int index; /* starts at 0 */
char ret;
ret = buf_in[index];
++index;
return ret;
1
/*

/* output: buf - null terminated token
/* return: token type
/* action: reads chars through nextchar() and tokenizes them
/*
extern "C"
Token read_token(char buf[])
{
int i;
char c;
/* skip leading white space */
for(c=nextchar();
isspace(c);
c=nextchar())

buf[0] = c;
/* get ready to return single char e.g. "+" %/
buf[1] = 0;
switch(c)
{
case '+' : return T_PLUS;
case '-' : return T_MINUS;
case '#' : return T_TIMES;
case '/' : return T_DIVIDE;
case '=' : return T_EQUALS;
default:
i=0;
while (isdigit(c)) {
buf[i++] = c;
¢ = nextchar();
}
buf[i] = 0;
if (i==0)

36 Getting Started: C/C++ Productivity Tools

*/
*/
*/

*/
*/
*/
*/
*/

return T_STOP;
else
return T_INTEGER;

Appendix. Sample Program 37

38 Getting Started: C/C++ Productivity Tools

Notices

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
Intellectual Property and Licensing
IBM Corporation

North Castle Drive, MD-NC 119
Armonk, NY 10504-1785

US.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
DOCUMENT “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OR CONDITIONS OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will

© Copyright IBM Corp. 1999 39

be incorporated in new editions of the document. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

Lab Director

IBM Canada Ltd.

1150 Eglinton Ave E
Toronto, Ontario, M3C 1H7
Canada

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement or any equivalent
agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-1IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

40 Getting Started: C/C++ Productivity Tools

All statements regarding IBM’s future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may
include the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses used
by an actual business enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks and service marks

The following terms are trademarks or registered trademarks of the IBM
Corporation in the United States, other countries, or both:

CICS IMS

CICS/ESA Language Environment
CICS/MVS MVS/ESA

CICS/VSE 0S/390

DB2 S/390

IBM

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks
of Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark of The Open Group in the United States
and/or other countries licensed exclusively through X/Open Company
Limited.

Sun, SunLink, Solaris, SunQS, Java, all Java-based trademarks and logos, NFS,
and Sun Microsystems are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and/or other countries.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE
ACCURATE, THE OBJECT MANAGEMENT GROUP, AND THE
COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND WITH
REGARDS TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE.

Other company, product, and service names may be trademarks or service
marks of others.

Notices 41

42 Getting Started: C/C++ Productivity Tools

on recycled paper containing 10%

@ Printed in the United States of America
recovered post-consumer fiber.

GC09-2918-00

Spine information:

Getting Started C/C++ PI‘OduCtiVity Tools Release 1.0

	Contents
	About this book
	Who should read this book
	Conventions used in this book
	Related information
	How to send your comments

	Chapter 1. Introducing the Tools
	Introducing the Editor
	Introducing the Distributed Debugger
	Introducing the Performance Analyzer

	Chapter 2. Editing programs
	Editing source
	Starting the Editor
	Creating a new file and entering source
	Marking and copying a block of code
	Finding and replacing a class name
	Setting and finding quick marks
	Fixing compile-time errors

	Chapter 3. Debugging programs
	Debugging a program
	Starting the Distributed Debugger user interface daemon
	Starting a program with Debug Tool in OS/390 UNIX
	Setting a breakpoint to halt before a certain function is entered
	Displaying and modifying the value of a variable
	Stopping on a line only if a condition is true
	Viewing and modifying data members of the this pointer
	Debugging when only a few parts are compiled with TEST
	Displaying storage
	Finding unexpected storage overwrite errors
	Finding uninitialized storage errors
	Getting a function traceback

	Chapter 4. Analyzing program performance
	Analyzing a program's performance
	Creating a trace file
	Starting the Performance Analyzer
	Analyzing a trace file
	Searching for trace data in a diagram
	Controlling what data is shown in a diagram
	Navigating the trace file views

	Appendix. Sample Program
	Sample CALC Program

	Notices
	Trademarks and service marks

