
C/C++ Productivity Tools for OS/390

Performance Analyzer
Release 1.0

IBM

First Edition (September 1999)

This edition applies to C/C++ Productivity Tools for OS/390 Release 1.0, program number 5655–B85 and to all
subsequent versions, releases, and modifications until otherwise indicated in new editions. Consult the latest edition
of the applicable system bibliography for current information on these products.

Order publications through your IBM representative or through the IBM branch office serving your locality.

© Copyright International Business Machines Corporation 1999. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Note
Before using this information and the product it supports, be sure to read the
general information under “Notices” on page 87.

Contents

About this book v
Who should read this book v
Conventions used in this book v
Related information v
How to send your comments. vi

Chapter 1. Introducing the Performance
Analyzer 1
The Performance Analyzer for OS/390 . . 1
Performance Analyzer product files . . . 2

Chapter 2. Diagrams for analyzing a trace
file 5
Diagrams for analyzing a trace file 5
Call Nesting diagram 6
Dynamic Call Graph diagram 7
Execution Density diagram 8
Statistics diagram 10
Time Line diagram 12

Chapter 3. Trace file generation 13
Call frequency counting 13
Time stamps 14
Trace events 14
Function trace 15
Overhead time 16
Multiple process support 17

Chapter 4. Trace file viewing and analysis 19
Function groups 19
Pattern recognition 20
Diagram filters 20
Correlation 22

Chapter 5. Tips for Using the
Performance Analyzer to understand
your program 25
Use a combination of diagrams to
understand your program 25
Annotate your trace file 25

Chapter 6. Preparing your program for
analysis 27
Compiling your program 27

Setting environment variables for
Performance Analyzer 28
Setting run-time option PROFILE for
Performance Analyzer 29
Creating a trace file 30

Chapter 7. Starting and exiting the
Performance Analyzer 33
Starting the Performance Analyzer 33
Starting the Performance Analyzer from a
command line. 33
Exiting the Performance Analyzer 34

Chapter 8. Controlling what data is
collected in the trace file 35
Collecting call frequency data 35
Tracing a specific DLL 36
Tracing a Webserver application. 36
Specifying trace file name 37

Chapter 9. Viewing your trace file in a
diagram 39
Downloading the trace file from the host 39
Starting the Performance Analyzer to
analyze a trace file 40
Opening a trace file in a diagram 40

Chapter 10. Navigating the trace file view 43
Correlating events between diagrams . . . 43
Enlarging or reducing a diagram 44
Seeing details by combining the zoom and
correlation features 45
Viewing a specific time or range of time 45

Chapter 11. Searching for trace data in a
diagram 47
Finding a specific annotation 47
Finding a specific function call or return 48
Finding trace data for a specific function 49
Finding trace data for a specific class . . . 50
Finding trace data for a specific executable 51

Chapter 12. Controlling what data is
shown in the diagrams 53

© Copyright IBM Corp. 1999 iii

Filtering events by component type . . . 53
Filtering events by function 53
Filtering events by thread 54
Filtering events by group 55
Filtering nodes and arcs in the Dynamic
Call Graph diagram 57
Recognizing call sequence patterns 58
Viewing class activity 59

Chapter 13. Analyzing Your Trace File 61
Adding, changing, or deleting annotations 61
Determining the elapsed time between two
events 61
Selecting functions to inline 62
Viewing thread interactions in a
multithreaded program 62

Chapter 14. Reference 65
Limitations when analyzing trace data . . 65
Limitations when creating a trace 65
Performance Analyzer invocation
parameters 67

Tracing programs that have interlanguage
calls 68
Run-time option for program tracing . . . 68
Run-time environment variables for
program tracing 72
Troubleshooting Performance Analyzer
problems 74
Performance Analyzer error messages on
the host 76
Sample Unix system service commands for
creating trace files 80
Sample TSO commands for creating trace
files 82
Sample JCL for creating trace files 83
Sample trace file names from tracing a
multiprocess program 85

Notices 87
Trademarks and service marks 89

iv Performance Analyzer: C/C++ Productivity Tools

About this book

Performance Analyzer introduces you to the Performance Analyzer and
provides information about how to understand and improve the performance
an OS/390 C and C++ application.

Who should read this book

Performance Analzyer is intended for application programmers who want to
understand aspects of the C and C++ program on OS/390 that would
otherwise be difficult to visualize and want a workstation performance
analyzer to enhance their existing familiar host environment. For these users,
this document introduces the Performance Analyzer and shows how to use it.

Conventions used in this book

The following conventions distinguish different text styles within this book:

plain Window titles, folder names, icon names,
and method names.

monospace Programming examples, user input at the
command line prompt or into an entry
field, directory paths.

bold Menu choices and menu names, labels for
push buttons, check boxes, radio buttons,
group-box controls, drop-down list boxes,
combination-boxes, notebook tabs, and
entry fields.

italics Programming keywords and variables,
and titles of documents.

Related information

For information on OS/390 C/C++ related features, news and Web sites, add
this Web site to your browser’s bookmark list:

http://www.ibm.com/software/ad/c390

© Copyright IBM Corp. 1999 v

How to send your comments

Your feedback is important in helping to provide the most accurate and
highest quality information. If you have any comments about this book or any
other C/C++ Productivity Tools documentation, send your comments by
e-mail to torrcf@ca.ibm.com. Be sure to include the name of the book, the
document number of the book, the version of C/C++ Productivity Tools, and,
if applicable, the specific location of the information on which you are
commenting (for example, a page number or a table number).

vi Performance Analyzer: C/C++ Productivity Tools

Chapter 1. Introducing the Performance Analyzer

The Performance Analyzer for OS/390

The Performance Analyzer helps you understand and improve the
performance of your C/C++ programs. It traces the execution of a program
and creates a trace file which contains data that can be examined in several
diagrams at the workstation. Sometimes this tracing is also referred to as
profiling. With the trace information, you can improve the performance of a
program, examine a sequence of calls leading up to an exception, and
understand the execution flow when a program runs.

The Performance Analyzer can complement other application development
tools by helping you understand aspects of the program that would otherwise
be difficult to visualize. For instance, with the Performance Analyzer you can:
v Time and tune programs

The Performance Analyzer records the time stamp of each trace event. As a
result, the trace file contains a detailed record of when your program called
and exited each traced function. The trace data also shows how long each
function ran, which helps you identify code that you may want to tune.

v Diagnose program abends
The Performance Analyzer provides a complete history of events leading up
to the point where a program abends.

v Trace multithreaded programs
After tracing a multithreaded program, you can examine the individual
threads to identify their function usage.

v Trace multiple processes
When your POSIX programs use the fork and spawn functions to create
new processes, you can still view the events in the different processes
because a separate trace file is created for each process.

The Performance Analzyer performs function tracing on a program. Function
tracing records information about each function call and return made during
the execution of the program.

Performance Analyzer components
The Performance Analyzer has two components:
v Host component

Traces your host program’s execution and creates a binary trace file
containing the trace data that was collected. You then download this file to
the workstation for analysis.

© Copyright IBM Corp. 1999 1

v Workstation component
Allows you to analyze the trace file that you have created on the host. You
can take advantage of graphical and textual diagrams to assist you with the
analysis of the trace data.

“Performance Analyzer product files”
“Function trace” on page 15
“Call frequency counting” on page 13
“Multiple process support” on page 17

“Creating a trace file” on page 30
“Starting the Performance Analyzer to analyze a trace file” on page 40
“Collecting call frequency data” on page 35
“Downloading the trace file from the host” on page 39

“Run-time option for program tracing” on page 68
“Run-time environment variables for program tracing” on page 72
“Limitations when creating a trace” on page 65

Performance Analyzer product files

Host Data Sets
The host component runs from a data set, CBC.SCTVMOD, which contains
the following members:
v CEEEVPRF

Alias for the Performance Analyzer module
v CTVMSGE

English messages
v CTVMSGK

Kanji messages
v CTVMSGT

Message table
v CTVPFILE

Performance Analyzer module
v ICTVMSGT

Alias for the message table

OS/390 Version 2 Release 4 and subsequent releases ship the dataset. To use
the Performance Analyzer product dataset you must purchase and enable the

2 Performance Analyzer: C/C++ Productivity Tools

OS/390 C/C++ Compiler with Debug feature in OS/390.The installation
program adds an entry to the IFAPRDxx parmlib member with the feature
name "C/C++/DEBUG" to enable this feature in OS/390. You must also apply
the latest service to FMIDs, H24P111 and J24P112. See OS/390 Planning for
Installation and OS/390 MVS Initialization and Tuning Guide or contact your
system programmer for more information about enabling OS/390 features and
applying service to this data set.

To run the Performance Analyzer on the host system, the CBC.SCTVMOD
data set must be included in the OS/390 modules’ search path. To do this,
your system programmer can add it to the Link Pack Area, you can add it to
your STEPLIB DD statement in your JCL, or you can use the export command
in the OS/390 shell to add it to your STEPLIB before you run your program.

“The Performance Analyzer for OS/390” on page 1

“Creating a trace file” on page 30
“Starting the Performance Analyzer to analyze a trace file” on page 40

Chapter 1. Introducing the Performance Analyzer 3

4 Performance Analyzer: C/C++ Productivity Tools

Chapter 2. Diagrams for analyzing a trace file

Diagrams for analyzing a trace file

The Performance Analyzer provides several diagrams in which you can view
and analyze the data contained in your trace file. Each diagram presents a
different view of the trace data to give you an overall idea of how your
program performs. The following list contains the names of the diagrams, the
icons used to represent them, and a brief description of each; more detailed
introductions to the diagrams and their uses are included in the related topics
below.

Call Nesting
The Call Nesting diagram shows the trace file as a sequential series of
function calls and returns. This diagram helps in diagnosing problems
with critical sections, sequencing protocols, thread delays, and crashes.

Dynamic Call Graph
The Dynamic Call Graph diagram is a two-dimensional graphical
representation of your program’s execution. It shows the relative
importance (in terms of execution time) of program components, and
the call hierarchy.

Execution Density
The Execution Density diagram shows your program in terms of
execution time. It shows trace data chronologically from top to bottom
as thin horizontal lines of various colors in columns assigned to each
traced function.

Statistics
The Statistics diagram is a textual report of cumulative information
about your program’s execution. It provides summary and detailed
statistics on execution time and event generation for each component
type: function, class, and executable.

Time Line
The Time Line diagram shows function calls and returns in
chronological order along a vertical line. A function call is represented

© Copyright IBM Corp. 1999 5

by a short horizontal line to the right, and a function return is
represented by a short horizontal line to the left. The horizontal lines
are connected by vertical lines whose length is proportional to the
amount of time that elapsed between the respective events.

“Call Nesting diagram”
“Dynamic Call Graph diagram” on page 7
“Execution Density diagram” on page 8
“Statistics diagram” on page 10“Time Line diagram” on page 12

“Opening a trace file in a diagram” on page 40

Call Nesting diagram

The Call Nesting diagram shows the trace file as a series of function calls and
returns, arranged vertically. Use this diagram to diagnose problems with
critical sections, sequencing protocols, program crashes, or thread delays.

Trace Data

The trace data shown by the Call Nesting diagram includes the following
elements:
v The functions that were called during program execution
v The order in which the functions were called and in which they returned
v The nesting of function calls (the call stack) at any point during program

execution
v The points at which control switched from one thread to another during

program execution

Uses

Use the Call Nesting diagram to perform the following tasks:
v Examine the specific elements of trace data listed above.
v See the interactions among the threads.
v Get a better understanding of the program’s flow.
v View and create annotations of trace file events.

“Diagrams for analyzing a trace file” on page 5

6 Performance Analyzer: C/C++ Productivity Tools

“Opening a trace file in a diagram” on page 40
“Filtering events by function” on page 53
“Filtering events by thread” on page 54
“Correlating events between diagrams” on page 43
“Recognizing call sequence patterns” on page 58
“Viewing thread interactions in a multithreaded program” on page 62

Dynamic Call Graph diagram

The Dynamic Call Graph diagram is a two-dimensional graphical
representation of your program’s execution. It shows the relative importance
in terms of execution time of the different components, and the call hierarchy.

Trace Data

The trace data shown by the Dynamic Call Graph diagram includes the
following elements:
v The functions, classes, or executables (components) that ran during program

execution
v The calls that were made from one component to another
v The call hierarchy
v The caller, the callee, and the number of times a call was made between

each pair of components
v The relative importance of each call between components in terms of the

number of calls made between components
v The relative importance of each component in terms of execution time and

time on stack

You can show trace data for one type of component at a time:
v When you choose to show information on functions, the following trace

data is available for each function that ran:
– Function name
– Compile unit
– Object file (workstation programs) or Compile unit (host programs)
– Executable name
– Execution time
– Number of calls
– Time on stack

Chapter 2. Diagrams for analyzing a trace file 7

v When you choose to show information on classes (possible only if your
trace file contains class information), the following trace data is available
for each class whose code was executed:
– Class name
– Names of member functions and their associated statistics
– Execution time
– Number of calls to the member functions in the class

v When you choose to show information on executables, the following trace
data is available for each executable that ran:
– Executable name
– Functions in the executable, and their associated statistics
– Execution time
– Number of calls

Uses

Use the Dynamic Call Graph diagram to perform the following tasks:
v Examine the specific types of trace data listed above.
v Get an overall view of your program and its flow.
v See the relative importance in terms of execution time of program

components.
v See where time is spent in your program.
v See your program’s call hierarchy.

“Diagrams for analyzing a trace file” on page 5

“Opening a trace file in a diagram” on page 40
“Filtering events by thread” on page 54
“Filtering nodes and arcs in the Dynamic Call Graph diagram” on page 57
“Enlarging or reducing a diagram” on page 44

Execution Density diagram

The Execution Density diagram shows the trace data chronologically from top
to bottom, as follows:
v Each vertical column represents a function (or collapsed group of functions

if you have included group information in the diagram).
v Each horizontal line represents a time slice.

8 Performance Analyzer: C/C++ Productivity Tools

v The color of each horizontal line represents the percentage of execution
time spent in the given function for that time slice. (Only included threads,
functions, and groups are used in calculating this percentage.)
For instance, in the default setting, functions executing more than 50% of a
given time slice are represented by a red horizontal line drawn in the
appropriate column at the vertical location corresponding to that time slice.

Trace Data

The trace data shown by the Execution Density diagram includes the
following elements:
v The percentage of execution time spent in every traced function or group of

functions for each time slice
v The total time, start time, and end time for a selected range of time

You can also show information on collections of functions, called groups. That
is, you can define groups of functions that are meaningful to you using the
Options > Work with groups... dialog, and can then optionally select a subset
of the groups to include in the diagram using the View > Include groups...
dialog. You can toggle the showing of group information on or off by
repeatedly selecting the View > Group filter option.

Uses

Use the Execution Density diagram to perform the following tasks:
v Get an overview of what functions were the most active at various stages of

your program’s execution.
v Spot execution trends.

“Diagrams for analyzing a trace file” on page 5
“Function groups” on page 19

“Opening a trace file in a diagram” on page 40
“Filtering events by function” on page 53
“Filtering events by thread” on page 54
“Filtering events by group” on page 55
“Correlating events between diagrams” on page 43
“Enlarging or reducing a diagram” on page 44

Chapter 2. Diagrams for analyzing a trace file 9

Statistics diagram

The Statistics diagram gives you a textual report of execution time by function
(or group of functions, if you include group information in the diagram), class
(if your trace file contains class information), or executable. Use this
information to find hot spots in the overall program execution.

Trace Data

The trace data shown by the Statistics diagram consists of summary and
detailed information.

The summary information shown by the Statistics diagram can include the
following elements:
v Executable name
v Trace file description (if a description was entered when the file was

created)
v Execution date
v Execution time
v Number of executables generating events
v Number of classes generating events
v Number of functions generating events
v Number of threads generating events
v Total number of events
v Total number of annotations
v Number of user events
v Maximum call nest depth
v Number of trace buffer flushes
v Total trace time excluding overhead
v Trace overhead
v Indication of whether time is task (CPU) time, or real (clock) time

Note: Data for classes is shown only if your trace file contains class
information. The default class C_Function always exists, however.

Detailed information is shown for each component traced. Depending upon
whether you are viewing information on functions, classes, or executables, the
information shown by the Statistics diagram can include the following
elements:
v Percent of total execution time spent in the component
v Percent of the total execution time that the component was on the call stack
v Number of times the component was called

10 Performance Analyzer: C/C++ Productivity Tools

v Cumulative execution time spent in the component
v Cumulative execution time that the component was on the call stack
v Execution time for the shortest call to the component
v Execution time for the longest call to the component
v Average execution time for a call to the component

You can also show information on collections of functions, called groups. That
is, you can define groups of functions that are meaningful to you using the
Options > Work with groups... dialog, and can then optionally select a subset
of the groups to include in the diagram using the View > Include groups...
dialog. If View > Details on is set to Functions, you can toggle the showing
of group information on or off by repeatedly selecting the View > Group
filter option.

Uses

Use the Statistics diagram to perform the following tasks:
v Quickly determine which components are consuming the largest amount of

execution time. These components are likely to be ones for which
performance tuning would prove most beneficial.

v Determine which of your functions are good candidates for inlining. If a
function has a small average execution time and is called often, it is a good
candidate for inlining.

v Analyze your algorithms by comparing the number of calls that were made
to a particular component with the number of calls that you expected, in
order to isolate possible inefficiencies.

v Determine which of several algorithms performs better by comparing the
statistics recorded in a trace file generated separately for each different
version of the algorithm.

“Diagrams for analyzing a trace file” on page 5
“Function groups” on page 19

“Opening a trace file in a diagram” on page 40
“Filtering events by group” on page 55
“Correlating events between diagrams” on page 43
“Viewing class activity” on page 59
“Selecting functions to inline” on page 62

Chapter 2. Diagrams for analyzing a trace file 11

Time Line diagram

The Time Line diagram shows the sequence of nested function calls and
returns, with a vertical distance between events that is proportional to the
amount of time that elapsed between the respective events. It provides a
direct and natural presentation of the chronological relationships of events.
The Time Line diagram also shows when the flow of execution switches from
one thread to another by means of a dashed horizontal line.

Trace Data

The trace data shown by the Time Line diagram includes the following
elements:
v The functions that were called during program execution
v The order in which the functions were called and in which they returned
v The time at which the functions were called and at which they returned,

and the time that elapsed between events
v The nesting of function calls (the call stack) at any point during program

execution
v The points at which control switched from one thread to another during

program execution

Uses

Use the Time Line diagram to perform the following tasks:
v Examine the specific elements of trace data listed above.
v See the interactions among various threads.
v Get a better understanding of a program’s flow.
v Determine the elapsed time between two events.

“Diagrams for analyzing a trace file” on page 5

“Opening a trace file in a diagram” on page 40
“Enlarging or reducing a diagram” on page 44
“Correlating events between diagrams” on page 43
“Determining the elapsed time between two events” on page 61
“Viewing thread interactions in a multithreaded program” on page 62

12 Performance Analyzer: C/C++ Productivity Tools

Chapter 3. Trace file generation

Call frequency counting

During function tracing, instead of collecting all tracing data, you can limit
the information collected by the Performance Analyzer to the following:
v The functions that each function calls and how many times it calls them
v A count of the number of times each function is called

This data provides information about the call relationships between functions
and indicates which functions are being called most frequently. You can use
this information to analyze your program and to fine tune its performance.

When you specify FUNCTION=COUNTS as a suboption of the PROFILE
run-time option, call frequency data is written to a trace file. After you
download this file to the workstation, you can display the file graphically
using the Dynamic Call Graph diagram and the Statistics diagram. No other
diagrams display call frequency information.

Note: Call Frequency Counting does not provide call timing information nor
does it include a chronological list of events that occur during the execution of
the program (function calls, function returns, thread creation, thread switches).
This reduces the size of the trace file, making it more manageable and easier
to analyze.

A sample call frequency counting trace file called CallFrequency.trc is
available in the 390ProductivityTools\samples directory.

“Time stamps” on page 14
“Trace events” on page 14
“Overhead time” on page 16

“Collecting call frequency data” on page 35
“Downloading the trace file from the host” on page 39

“Limitations when creating a trace” on page 65
“Run-time option for program tracing” on page 68
“Run-time environment variables for program tracing” on page 72

© Copyright IBM Corp. 1999 13

Time stamps

During function tracing, the Performance Analyzer collects time stamp data. A
time stamp is a number representing a point in time. At each trace event
during the execution of a program, the Performance Analyzer records a time
stamp, representing the precise time that the trace event occurred. By
comparing the time stamps of two trace events, the elapsed time between the
two trace events can be determined. Use the time stamp data associated with
the trace events to analyze your program’s performance, such as identifying
performance bottlenecks.

Note: Time stamps are not collected when Call Frequency Counting is
specified.

“Trace events”
“Function trace” on page 15
“Overhead time” on page 16
“Call frequency counting” on page 13

Trace events

To enable your program to be traced, compile it using the TEST(HOOK) and
NOGONUMBER compile options. NOGONUMBER is optional, however it
will significantly reduce the load module size. If the module is going to be
both traced and debugged then do not specify NOGONUMBER. The
Test(HOOK) option enables the compiler to generate hooks in the code at the
following points:
v Function entry
v Function exit
v Before a function call
v After a function call

The Performance Analyzer uses these points in the code as trace events. A
hook in the code enables the Performance Analyzer to get control and record
various information about the event such as the time of the event and the
thread and function associated with the event. By default, each event is
recorded in chronological order.

The first event in the trace will be a call to a dummy function called
__PROGRAM__. This event represents the program start time. The last event
in the trace will be the return from the __PROGRAM__ function and
represents the program end time.

14 Performance Analyzer: C/C++ Productivity Tools

Note: When Call Frequency Counting is specified, the events are not recorded.
The only processing that is done for a trace event in this case is incrementing
the call counter for the function and recording call frequency data.

“Time stamps” on page 14
“Function trace”
“Overhead time” on page 16
“Call frequency counting” on page 13

Function trace

The Performance Analzyer performs function tracing, during which
information is recorded about the function calls and returns made during the
execution of the program.

To enable your program to be traced, compile it using the TEST(HOOK) and
NOGONUMBER compile options. These options enable the compiler to
generate hooks in the code at the following points:
v Function entry
v Function exit
v Before a function call
v After a function call

The Performance Analyzer uses these points in the code as trace events. A
hook in the code enables the Performance Analyzer to get control and record
the time of the event. These hooks call a small monitoring function that
creates a time stamp on each event. The monitoring function also determines
which function the trace event is for and the module that the function is in.
By comparing the time stamps of the function entry and the function exit
events, the Performance Analyzer determines the time taken to execute the
function.

The first event in the trace will be a call to a dummy function called
__PROGRAM__. This event represents the program start time, which may be
different than the time that the first hook is encountered in the program.
There is a corresponding function call return event at the end of the trace that
represents the program end time. The execution time of the __PROGRAM__
function and module represents the time spent during the execution of the
program when there are no functions containing hooks on the stack. The
__PROGRAM__ execution time will be more significant when not all of the
program source files are compiled with TEST(HOOK).

Chapter 3. Trace file generation 15

Use Function trace files to accomplish the following objectives:
v Identify costly or time-consuming functions
v Show logic flow (useful for constructors and destructors)
v Identify potential inline functions
v Determine which functions of a DLL are being called
v Track library calls
v Verify all built-in functions are used
v Track function calls among threads
v Track class interaction
v Track module interaction

“Time stamps” on page 14
“Trace events” on page 14
“Overhead time”
“Call frequency counting” on page 13

“Creating a trace file” on page 30

“Limitations when creating a trace” on page 65
“Run-time option for program tracing” on page 68
“Run-time environment variables for program tracing” on page 72
“Call Nesting diagram” on page 6
“Dynamic Call Graph diagram” on page 7
“Execution Density diagram” on page 8
“Statistics diagram” on page 10
“Time Line diagram” on page 12

Overhead time

Function Tracing
Whenever the Performance Analyzer logs an event for function tracing, it
adds overhead to the normal execution time of your program. This increases
the overall execution time of your program. The monitoring function
calculates the overhead time on each event. The Performance Analyzer
compensates for this overhead time by adjusting the timestamp for the event.
It subtracts the overhead time from the event’s timestamp. This adjustment
ensures that your program’s true execution performance is reported as
accurately as possible.

16 Performance Analyzer: C/C++ Productivity Tools

When tracing is turned off, the monitoring function will not be executed, even
if the code contains hooks. However, when hooks are placed in the code, the
code size increases. This, along with the small amount of time to execute the
hook instructions, may affect the performance of your program, even when
tracing is turned off. When you have finished using the Performance Analyzer
to tune your program, rebuild it without generating hooks by compiling it
without the TEST(HOOK) option. This will improve the execution
performance of your program.

“Trace events” on page 14
“Function trace” on page 15
“Time stamps” on page 14

Multiple process support

Use the Performance Analyzer to trace a single-process program or to trace a
program that uses the fork or spawn function to create new processes. A
separate trace file with a unique name is generated for each process created
by the program. If the process is the result of a fork or spawn call, the name
of the trace file for the process has the ID of the process (PID) appended to it.

The names of process and program trace files are based on the value of the
__PROF_FILE_NAME environment variable.

“Function trace” on page 15

“Creating a trace file” on page 30

“Sample trace file names from tracing a multiprocess program” on page 85
“Run-time environment variables for program tracing” on page 72

Chapter 3. Trace file generation 17

18 Performance Analyzer: C/C++ Productivity Tools

Chapter 4. Trace file viewing and analysis

Function groups

You can create arbitrary collections of functions, called groups, and then
analyze performance data for one or more selected groups only, instead of
analyzing data for all of the functions in your program.

For example, you could create a group called storage, assign all storage-related
functions to that group, and then analyze only the storage group to
understand how much time your program is spending in storage-management
activities.

You can create multiple group definitions and save them in a grouping file for
later recall, and can create multiple grouping files.

You can view performance information by groups in several diagrams.

In any diagram that supports grouping, select Collapse group to combine all
of the functions in a group into a single entry. This option is available from
the View,Selected, or selected item pop-up menu when the diagram is
showing group information and a function in one of the groups shown is
selected.

You can likewise select Expand group to restore a collapsed group to its
component entries, one per function. This option is available from the View,
Selected, or selected item pop-up menu when the diagram is showing group
information and a collapsed group is selected.

“Execution Density diagram” on page 8
“Statistics diagram” on page 10

“Filtering events by group” on page 55

© Copyright IBM Corp. 1999 19

Pattern recognition

Loops in your program cause the same sequence of calls and returns to be
repeated in the trace. The Performance Analyzer lets you combine like
sequences in the Call Nesting diagram by using pattern recognition. The
pattern recognition facility looks at a single thread and indicates patterns of
calls and returns using curved arcs that show the number of repetitions of
each pattern to the right.

This technique reduces the amount of screen space the diagram uses, and
therefore shortens the number of pages you must scroll through to look at
your trace file.

If you see a pattern repeated numerous times, for workstation programs you
can group the functions in the pattern together with pragma alloc_text
statements to limit the number of page swaps between calls, and thus
improve performance. For host programs, group all of the functions in the
pattern in one source file, close to each other, to limit the number of page
swaps.

Pattern recognition can only be used when you include a single thread for
analysis, and there are no collapsed functions in the diagram.

“Call Nesting diagram” on page 6

“Recognizing call sequence patterns” on page 58
“Filtering events by thread” on page 54

Diagram filters

There are several techniques for filtering the trace file to reduce the amount of
trace data shown in a diagram, or for isolating interesting or problematic
areas in a diagram.

Some techniques have associated tasks that need to be performed in order to
apply a filter; such tasks are indicated in the related topics below. Other
techniques involve a straightforward manipulation of the objects shown in a
diagram’s display. The following list contains filtering techniques that you can
use in each of the diagrams.

Call Nesting diagram
In this diagram, you can filter data in the following ways:

20 Performance Analyzer: C/C++ Productivity Tools

v Selecting specific functions or specific threads to include. The
Performance Analyzer shows trace information only for those
functions or threads selected.

v Selecting a time or time range to view.
v Collapsing calls so that all calls and returns subordinate to a calling

function are hidden.

Dynamic Call Graph diagram
In this diagram, you can filter data in the following ways:
v Selecting specific threads to include. The Performance Analyzer

shows trace information only for those threads selected.
v Removing nodes in the call path to or from a selected node.
v Hiding arcs.
v Hiding selected nodes.
v Creating a subgraph to work with. Doing so cleans up the diagram

by deleting hidden nodes, repositioning remaining nodes, and
centering the diagram.

v Zooming in.
v Showing data by function, class (only if your trace file contains

class information), or executable by selecting from the
View > Nodes of menu.

v Specifying that only nodes meeting selected criteria of number of
calls, percent of execution time, percent of time on stack, execution
time, or time on stack are shown.

v Specifying that only arcs meeting a criterion of number of calls are
shown.

Execution Density diagram
In this diagram, you can filter data in the following ways:
v Selecting specific functions or threads to include. The Performance

Analyzer shows trace information only for those functions or
threads selected.

v Selecting specific groups of functions to include. The Performance
Analyzer shows trace information only for those groups selected.

v Scaling the diagram to increase the number of pages shown.
v Zooming in.
v Selecting a time or time range to view.

Statistics diagram
In this diagram, you can filter data in the following ways:
v Selecting specific threads to include. The Performance Analyzer

shows trace information only for those threads selected.

Chapter 4. Trace file viewing and analysis 21

v Selecting specific groups of functions to include. The Performance
Analyzer shows trace information only for those groups selected.

v Showing data by function, class (only if your trace file contains
class information), or executable by selecting from the
View > Details on menu.

Time Line diagram
In this diagram, you can filter data in the following ways:
v Scaling the diagram to increase the number of pages shown.
v Zooming in.
v Selecting a time or time range to view.

“Diagrams for analyzing a trace file” on page 5
“Function groups” on page 19

“Filtering events by function” on page 53
“Filtering events by thread” on page 54
“Filtering events by group” on page 55
“Filtering events by component type” on page 53

Correlation

One diagram cannot show everything of interest within a trace file. Some
events are easier to find in one diagram, but the information in another is
more meaningful; in such cases it is helpful to find the event in one diagram
and then locate that same event in one or more of the other open diagrams.
Correlation allows you to do so.

The Performance Analyzer provides three diagrams whose events can be
correlated between any two of them, or between all three: Call Nesting,
Execution Density, and Time Line. You can correlate the diagrams based on a
specific time or event, or on a range of time or events. You can also correlate
(in one direction) from a function in the Statistics diagram to a call to that
same function in the Call Nesting diagram; the call located is the one that
used the most time of all calls to the function.

For example, use the Call Nesting diagram to identify the order and names of
functions called, and then correlate to the Time Line diagram to find out how
long the functions took to run. Or you can use the Execution Density diagram
to see general patterns that lead up to a certain point, and then correlate to
the Call Nesting diagram to see the exact order of the function calls.

22 Performance Analyzer: C/C++ Productivity Tools

Note that it is possible to correlate events between two instances of the same
diagram, which could prove useful, for example, if each is scaled differently.

“Call Nesting diagram” on page 6
“Execution Density diagram” on page 8
“Statistics diagram” on page 10
“Time Line diagram” on page 12

“Correlating events between diagrams” on page 43

Chapter 4. Trace file viewing and analysis 23

24 Performance Analyzer: C/C++ Productivity Tools

Chapter 5. Tips for Using the Performance Analyzer to
understand your program

Use a combination of diagrams to understand your program

The Performance Analyzer allows you to open a trace file in several diagrams,
and to open multiple views of the same diagram simultaneously. Sometimes
opening a trace file in two or more diagrams can help you understand a
program better.

For instance, if you do not want to wade through code listings to determine
how the code works, use the Dynamic Call Graph diagram, and the Call
Nesting and Time Line diagrams in conjunction with each another to get a
better understanding of the program’s flow.

In the Call Nesting diagram you can see the order in which functions are
called and return, and in the Time Line diagram you can see the timing of the
calls and returns.

The Dynamic Call Graph diagram shows all of the program’s threads, the
relative consumption of execution time by the different functions, and the call
hierarchy.

“Diagrams for analyzing a trace file” on page 5

“Opening a trace file in a diagram” on page 40
“Correlating events between diagrams” on page 43
“Seeing details by combining the zoom and correlation features” on page 45

Annotate your trace file

An annotation is a bookmark or reminder that you can place in the trace file
after it is created. In the Call Nesting diagram, select Edit > Annotate... to
insert notes or reminders next to any function you highlight.

Workstation Programs Only: The following information is applicable to
workstation programs only.

© Copyright IBM Corp. 1999 25

26 Performance Analyzer: C/C++ Productivity Tools

Chapter 6. Preparing your program for analysis

Compiling your program

Specify the following compile options:
v TEST(HOOK)

Generates the following hooks in your code:
– Function entry and exit
– Before function call and after function call

v NOGONUMBER
NOGONUMBER is optional. However, if it is specified, NOGONUMBER
significantly reduces the size of the load module produced because no line
number tables are generated in the code. Line number tables are required
debugging, not for tracing. If the module is going to be both traced and
debugged do not specify NOGONUMBER.

v OPT(1) or OPT(2)
Optimization will improve the performance of the application.

Note: For C programs compiled with NOOPT, specify the TEST option as
TEST(HOOK,PATH,NOLINE,NOBLOCK,NOSYM).

You can build executables and DLLs from multiple compilation units (object
files). You can specify the TEST(HOOK) compile option for only those
compilation units that you want to trace. When your executable or DLL is
running, the Performance Analyzer only captures trace information for those
compilation units built with TEST(HOOK).

For example, if you use the TEST(HOOK) option when compiling both the
caller function A and the called function B, the Performance Analyzer sees
hooks in the following order:
1. Function A entry hook
2. Before function B call hook
3. Function B entry hook
4. Function B exit hook
5. After function B call hook
6. Function A exit hook

In the example, if function B calls a third function C in another DLL which
was compiled with NOTEST, then the Performance Analyzer sees hooks in the
following order:

© Copyright IBM Corp. 1999 27

1. Function A entry hook
2. Before function B call hook
3. Function B entry hook
4. Before function C call hook
5. After function C call hook
6. Function B exit hook
7. After function B call hook
8. Function A exit hook

Note that no hooks are available for entry and exit of function C.

Although the hooks exist, you can reduce the overhead time of tracing and,
therefore, the overall program execution time by setting the environment
variable __PROF_HOOKS to BEFORE_AFTER or to ENTRY_EXIT. This
reduces the number of hooks that Performance Analyzer processes. If you set
__PROF_HOOKS to ALL, the Performance Analyzer processes all hooks.

Refer to the OS/390 C/C++ User’s Guide for more information on compiling
programs.

“Function trace” on page 15

“Setting environment variables for Performance Analyzer”
“Setting run-time option PROFILE for Performance Analyzer” on page 29
“Creating a trace file” on page 30

“Run-time option for program tracing” on page 68
“Run-time environment variables for program tracing” on page 72
“Sample JCL for creating trace files” on page 83
“Sample TSO commands for creating trace files” on page 82
“Sample Unix system service commands for creating trace files” on page 80

Setting environment variables for Performance Analyzer

The following environment variables allow you to control the trace data that
is created by the Performance Analyzer.

You can set these environment variables before executing your program for
tracing:

28 Performance Analyzer: C/C++ Productivity Tools

v __PROF_FILE_NAME=filename
To specify the name of the trace file to be generated.

v __PROF_HOOKS = ALL|ENTRY_EXIT|BEFORE_AFTER
To identify the type of hooks that are to be processed.

v __PROF_WEBSERVER=NO|YES
To indicate whether tracing is to be performed in a Lotus Domino Go
Webserver environment.

The following samples are available for setting the environment variables:
v “Sample JCL for creating trace files” on page 83
v “Sample Unix system service commands for creating trace files” on page 80
v “Sample TSO commands for creating trace files” on page 82

Refer to the OS/390 C/C++ Programming Guide and OS/390 UNIX System
Services User’s Guide for more information on environment variables. These
books are available through the OS/390 C/C++ Library page.

“Function trace” on page 15

“Compiling your program” on page 27
“Setting run-time option PROFILE for Performance Analyzer”
“Creating a trace file” on page 30

“Run-time environment variables for program tracing” on page 72

Setting run-time option PROFILE for Performance Analyzer

To enable the tracing of a program during its execution, set the Language
Environment run-time option, PROFILE, using the following syntax:
PROFile(ON,'string')

You specify tracing details with the string suboption.

The following samples are available for setting the Language Environment
run-time option, PROFILE:
v “Sample JCL for creating trace files” on page 83
v “Sample Unix system service commands for creating trace files” on page 80
v “Sample TSO commands for creating trace files” on page 82

Chapter 6. Preparing your program for analysis 29

Refer to the Language Environment for OS/390 and VM Programming Reference
for more information on run-time options.

“Function trace” on page 15

“Compiling your program” on page 27
“Setting environment variables for Performance Analyzer” on page 28
“Creating a trace file”
“Specifying trace file name” on page 37

“Run-time option for program tracing” on page 68
“Run-time environment variables for program tracing” on page 72

Creating a trace file

When you run a program, the Performance Analyzer is started by setting the
run-time option, PROFILE(ON,’string’). You must complete the following
steps before running your program:
1. Compile your program with TEST(HOOK), NOGONUMBER.
2. Set the Performance Analyzer environment variables __PROF_FILE_NAME

and __PROF_HOOKS if values other than the
defaults are desired.

3. Add the Performance Analzyer product dataset called CBC.SCTVMOD to
the STEPLIB of the program if it has not been installed in the link pack
area (LPA).

4. Set the run-time option, PROFILE(ON,’string’).

The program can run under any of the following environments:
v OS/390 batch
v TSO
v OS/390 UNIX shell

Refer to the OS/390 C/C++ User’s Guide for more information on compiling
and running your applications.

“Function trace” on page 15
“Performance Analyzer product files” on page 2

30 Performance Analyzer: C/C++ Productivity Tools

“Compiling your program” on page 27
“Setting environment variables for Performance Analyzer” on page 28
“Setting run-time option PROFILE for Performance Analyzer” on page 29

“Run-time option for program tracing” on page 68
“Run-time environment variables for program tracing” on page 72
“Sample JCL for creating trace files” on page 83
“Sample Unix system service commands for creating trace files” on page 80
“Sample TSO commands for creating trace files” on page 82

Chapter 6. Preparing your program for analysis 31

32 Performance Analyzer: C/C++ Productivity Tools

Chapter 7. Starting and exiting the Performance Analyzer

Starting the Performance Analyzer

You can start the Performance Analyzer in any of the following ways:
v By double-clicking on its icon
v By entering the Performance Analyzer command on a command line

“Starting the Performance Analyzer from a command line”
“Exiting the Performance Analyzer” on page 34

Starting the Performance Analyzer from a command line

You can start the Performance Analyzer from a command line, a command
(CMD) file, or a batch (BAT) file.

To start the Performance Analyzer use the following command:
ianalyze [/x]

Where /x represents any number of Performance Analyzer invocation
parameters documented in the related reference material indicated below.

You can invoke the Performance Analyzer with the Performance Analyzer -
Window Manager window shown by issuing the command without
invocation parameters. By issuing the command with the appropriate
invocation parameters, you can invoke the Performance Analyzer so that it
immediately begins to trace an executable or opens an existing trace file in
one or more trace file analysis diagrams.

“Diagrams for analyzing a trace file” on page 5

“Opening a trace file in a diagram” on page 40

“Performance Analyzer invocation parameters” on page 67

© Copyright IBM Corp. 1999 33

Exiting the Performance Analyzer

To exit the Performance Analyzer, do the following:
1. Select Exit the Performance Analyzer from one of the following menus:
v File menu in the Performance Analyzer - Window Manager window
v Trace file menu in any of the diagrams

2. Select Yes if necessary.

Select Options > Quick exit in the Performance Analyzer - Window Manager
window to cause the application to exit immediately without confirmation
each time you select Exit the Performance Analyzer.

34 Performance Analyzer: C/C++ Productivity Tools

Chapter 8. Controlling what data is collected in the trace
file

Collecting call frequency data

By default, the Performance Analyzer collects and records all tracing data,
including timing, call count, and call relationship information for each
function traced. It also records a chronological list of the events that occur
during the trace. To collect only a count of the number of times each function
is called and the functions each function calls, you must specify the following
suboption in the PROFILE run-time option:

FUNCTION=COUNTS

For example:

PROFILE (ON, ’FUNCTION=COUNTS’)

This capability of the Performance Analyzer is called call frequency counting.

To view the call frequency information collected with this suboption, make the
trace file generated as a result of this suboption accessible on the workstation
by using NFS or by downloading it. You can then display the file graphically
on the workstation with the following diagrams:

Diagram Information available Information not available

Dynamic Call Graph v Call counts on arcs and
information windows

v Call Frequency Data

v Colour-coded arcs

v Execution time and Time
on Stack values and
percentages on
information windows

v Scaled node sizes

v Colour-coded nodes

Statistics v Number of calls column

v Partial summary section,
which includes the
number of executables,
classes, functions, and
threads plus call depth
for each thread

The following columns:

v % of Execution

v % on Stack

v Execution time

v Time on stack

v Minimum Call

v Maximum Call

v Average Call

© Copyright IBM Corp. 1999 35

Note: Call Frequency Counting does not provide call timing information nor
does it include a chronological list of events that occur during the execution of
the program (function calls, function returns, thread creation, thread switches).
This reduces the size of the trace file, making it more manageable and easier
to analyze.

A sample call frequency counting trace file called CallFrequency.trc is
available in the 390ProductivityTools\samples directory.

“Function trace” on page 15
“Call frequency counting” on page 13

“Compiling your program” on page 27
“Creating a trace file” on page 30

“Run-time option for program tracing” on page 68

Tracing a specific DLL

To trace a specific DLL, compile the files that make up the DLL with the
TEST(HOOK) and NOGONUMBER options. Do not use the TEST(HOOK)
option when compiling any other code that calls the DLL; otherwise, when
you perform the trace, you would get trace data for the other code. Perform
the trace as you would do normally by setting the PROFILE run-time option
and executing the program that calls the DLL.

“Function trace” on page 15

“Compiling your program” on page 27
“Creating a trace file” on page 30

Tracing a Webserver application

To trace a Lotus Domino Go Webserver application, do the following:

36 Performance Analyzer: C/C++ Productivity Tools

1. Compile the application code using the TEST(HOOK) and
NOGONUMBER compile options. NOGONUMBER is optional and will
significantly reduce the load module size. If the module is going to be
both traced and debugged, do not specify NOGONUMBER.

2. Start the Lotus Domino Go Webserver with tracing turned on by doing the
following:

1. Set the Performance Analyzer environment variable
__PROF_WEBSERVER=YES

2. Set the Performance Analyzer environment variable
__PROF_FILE_NAME to the desired name for the trace file.

3. Set the Performance Analyzer environment variable __PROF_HOOKS
if desired.

4. Add the Performance Analyzer product dataset called
CBC.SCTVMOD to the STEPLIB.

5. Set the run-time option, PROFILE(ON,’string’)
6. Start the Lotus Domino Go Webserver in the environment where the

previous steps were done.
1. Run the Webserver application.
2. Stop tracing and create a trace file by sending the SIGPROF signal to the

Lotus Domino Go Webserver with the OS/390 Unix System Services kill
command. For example, issue the following command from another
OS/390 Unix System Services shell session:

kill -s PROF webspid where webspid is the process ID of the Lotus Domino
Go Webserver.

Note: To trace another Webserver application, you must stop then restart the
Lotus Domino Go Webserver with tracing turned on again.

“Function trace” on page 15

“Compiling your program” on page 27
“Creating a trace file” on page 30

Specifying trace file name

Use the __PROF_FILE_NAME environment variable to name a trace file. Set
this environment variable before you run your program for tracing.

Chapter 8. Controlling what data is collected in the trace file 37

If you do not set the __PROF_FILE_NAME environment variable, the
Performance Analyzer generates a default name for the trace file. Default trace
file names are explained in Run-Time Environment Variables for Program
Trace.

The PID will be appended to the file name if the program is running in the
OS/390 UNIX shell or running with the POSIX(ON) run-time option provided
the program has more than one process; for example, name.trc.21425534.

“Function trace” on page 15

“Setting environment variables for Performance Analyzer” on page 28

“Run-time environment variables for program tracing” on page 72

38 Performance Analyzer: C/C++ Productivity Tools

Chapter 9. Viewing your trace file in a diagram

Downloading the trace file from the host

After creating a trace file, you can view the data contained in it by using the
workstation component of Performance Analyzer. However, the trace file
created on the host must be accessible on the workstation to view the data.
You can use a remote file access program like Network File System (NFS) to
access the binary trace file on the host, or you can physically download the
file to the workstation as a binary file.

Example
The following example shows you how to use FTP to download a trace file
userid/sample.trc to a file called newsamp.trc in the directory c:\pa\traces.
1. Create this directory on your workstation:

[C:\]md pa
[C:\]md pa\traces

2. Make that your current directory:
[C:\]cd pa\traces

3. Logon to FTP:
[C:\pa\traces]ftp system
Name (system):userid
Password: **********

This message appears:
230 userid is logged on. Working directory is "userid".

4. Transfer the file in binary:
ftp>binary
ftp>get sample.trc newsamp.trc

Note: You may need to change the trace file names due to differences in
host and workstation file naming conventions. To rename files when
transferring them from the host, specify the new file name in the get
command. In the example, sample.trc is transferred and renamed to
newsamp.trc at the workstation.

5. Logoff from FTP:
ftp>bye

“Function trace” on page 15

© Copyright IBM Corp. 1999 39

“Compiling your program” on page 27
“Setting environment variables for Performance Analyzer” on page 28
“Setting run-time option PROFILE for Performance Analyzer” on page 29
“Creating a trace file” on page 30

Starting the Performance Analyzer to analyze a trace file

Once you have downloaded the trace file, you can analyze your data from
your workstation. After you start the Performance Analyzer on your
workstation, follow these steps:
1. In the Performance Analyzer Window Manager window, select Analyze

Trace.
2. In the Analyze Trace window, specify the trace file name in the dialog box;

or search for the trace file by clicking the Find button.
3. Select the appropriate diagrams to view the data.
4. Click the OK button.

“Function trace” on page 15

“Creating a trace file” on page 30
“Downloading the trace file from the host” on page 39

Opening a trace file in a diagram

To open a trace file in a Performance Analyzer diagram when the Performance
Analyzer is already running, use one of the following methods:
v Click the Analyze Trace... push button in the Performance Analyzer -

Window Manager window, and then, in the Analyze Trace window, enter a
trace file name and select one or more of the diagram check boxes.

v Double-click the file name or icon of a trace file in the Performance
Analyzer - Window Manager window, then select one of the diagram check
boxes in the Analyze Trace window and click OK.

v Click mouse button 2 on the file name or icon of a trace file in the
Performance Analyzer - Window Manager window, then select a diagram
from the trace file pop-up menu.

v From the Trace file menu of an open diagram, select Open as and then
select a diagram from the cascaded menu.

40 Performance Analyzer: C/C++ Productivity Tools

v From any open diagram, click the appropriate button in the tool bar.

To immediately open a trace file in one or more Performance Analyzer
diagrams when starting the Performance Analyzer from the command line,
see the related procedure indicated below.

“Starting the Performance Analyzer from a command line” on page 33

Chapter 9. Viewing your trace file in a diagram 41

42 Performance Analyzer: C/C++ Productivity Tools

Chapter 10. Navigating the trace file view

Correlating events between diagrams

To correlate events between the Call Nesting, Execution Density, or Time Line
diagrams, complete these steps:
1. Open the trace file in the diagrams between which you want to correlate

events.
2. Highlight the event range of interest in one of the diagrams by taking

these steps:
a. Click and hold mouse button 1 on the first event.
b. Drag the pointer to the last event.
c. Release the mouse button.

3. Select Options > Correlation... in the highlighted diagram. The Correlation
window appears.

4. In the Correlation window, click the names of one or more diagrams to
which you want to correlate, or click the Select all push button to
correlate to all of the diagrams listed.

5. Click OK.

To correlate from a function in the Statistics diagram to the instance of the call
to that same function in the Call Nesting diagram that used the most time of
all calls to that function, complete these steps:
1. Open the trace file in the Statistics and Call Nesting Diagrams.
2. Highlight a single function in the Statistics diagram.
3. Select Options > Correlation... in the Statistics diagram. The Correlation

window appears.
4. In the Correlation window, click the names of one or more diagrams to

which you want to correlate, or click the Select all push button to
correlate to all of the diagrams listed.

5. Click OK.

“Correlation” on page 22

“Opening a trace file in a diagram” on page 40
“Seeing details by combining the zoom and correlation features” on page 45

© Copyright IBM Corp. 1999 43

Enlarging or reducing a diagram

The Dynamic Call Graph, Execution Density, and Time Line diagrams have
zooming capabilities that allow you to enlarge (Zoom in) or reduce (Zoom
out) the size of the diagram in order to focus on the area that is of most
interest.

To enlarge the region of a diagram that is of most interest, follow these steps:
1. Highlight the area that you want to enlarge.
2. Select View > Zoom in.
3. Scroll until you see the area you highlighted.
4. Continue alternately selecting Zoom in and scrolling to the highlighted

area until the diagram is enlarged to the degree you want.
5. If you zoom in too far, select View > Zoom out to quickly back out one

step.

A quick way to zoom in on an area of interest in the Execution Density or
Time Line diagram is to use the Zoom to selected range option in the View
menu. It also provides an easy way to restore the diagram to full scale. To
quickly restore the diagram to full scale after it has been reduced, follow these
steps:
1. Select Edit > Select all.
2. Select View > Zoom to selected range.

A quick way to navigate and to zoom in or out in the Dynamic Call Graph
diagram is to use the Overview feature. When you select View > Overview, a
miniature version of the Dynamic Call Graph diagram appears in the
Overview window, and a small gray box in the window highlights the area of
the diagram that is currently in view. Use the gray box as follows:
v To change the area of the diagram that is currently in view, click and hold

mouse button 1 inside the gray box, and then move the box until the
desired area is in view.

v To resize the area shown in the diagram, grab and move the sides of the
gray box with the mouse until the area shown has the desired size.

To restore the Dynamic Call Graph diagram to the original view and size,
selectView > Re-lay graph.

“Diagrams for analyzing a trace file” on page 5

44 Performance Analyzer: C/C++ Productivity Tools

“Opening a trace file in a diagram” on page 40
“Seeing details by combining the zoom and correlation features”

Seeing details by combining the zoom and correlation features

A useful technique for examining specific areas of the Execution Density and
Time Line diagrams is to use the zoom and correlation features together.
Zooming sometimes forces the highlighted region off the page; correlation can
help you quickly find it again.

To use this technique, complete these steps:
1. Open your trace file in the Execution Density or Time Line diagram.
2. Open another diagram that allows correlation (Call Nesting, Execution

Density, or Time Line).
3. Highlight the area that you want to zoom in on (enlarge) in the first

diagram.
4. Correlate the first diagram to the second.
5. In the first diagram, select View > Zoom in as many times as you want.

If you zoom in too far, select View > Zoom out to quickly back out one
step.

6. Correlate the second diagram to the first.
The region you originally highlighted is now back in view.

“Diagrams for analyzing a trace file” on page 5
“Correlation” on page 22

“Opening a trace file in a diagram” on page 40
“Correlating events between diagrams” on page 43
“Enlarging or reducing a diagram” on page 44

Viewing a specific time or range of time

You can view trace data for a specific time or range of time in the following
diagrams:
v Call Nesting
v Execution Density
v Time Line

Chapter 10. Navigating the trace file view 45

To view a specific time in one of these diagrams, complete these steps:
1. Select Edit > Select Time.... The Select Time window appears.
2. Click the appropriate radio button to select the desired unit of time.
3. Use the arrows in the spin button if you want to change the time already

shown.
4. Click the appropriate push button to continue.

To view a specific range of time in one of these diagrams, complete these
steps:
1. Select Edit > Select Time Range.... The Select Time Range window

appears.
2. Select the start time:

a. Click the appropriate radio button to select the desired unit of time.
b. In the Start Time group box, use the spin button arrows to select the

time at which you want the highlight to start.
3. Select the end time:

a. Click the appropriate radio button to select the desired unit of time.
b. In the End Time group box, use the spin button arrows to select the

time at which you want the highlight to end.
4. Click the appropriate push button to continue.

46 Performance Analyzer: C/C++ Productivity Tools

Chapter 11. Searching for trace data in a diagram

Finding a specific annotation

An annotation is a bookmark or comment that you can place in the trace file
after the trace file is created. Annotations are saved to the trace file so that
you can see them at a later time. You can search for an annotation in the Call
Nesting diagram.

To search for an annotation, complete these steps:
1. Select Edit > Find.

2. Select Annotation... from the cascaded menu. The Find Annotation
window appears.

3. Follow the directions in the dialog window to get a list of all annotations.
You can enter an asterisk (*) with a few characters of the annotation in the
Find entry field, as follows:
v Use an asterisk (*) to represent zero or more arbitrary characters. For

example, enter:
– * to show a list of all annotations
– b* to show all annotations, regardless of length, that begin with the

character b

– *b to show all annotations that end with the character b

v Use a question mark (?) to represent a single arbitrary character. For
example, enter ?b* to show all annotations that start with any character
and have the character b as their second character.

4. Click the appropriate push button to continue.
5. If more than one annotation matches your search criteria, select the desired

annotation in the list box, and click OK.

The search for the annotation begins at the currently selected annotation, user
event, or function (or the first such instance in the currently selected range).
The search continues until the annotation is found or the end of the diagram
is reached. If the annotation is found, it is highlighted; if it is not found, a
message box to that effect appears.

“Adding, changing, or deleting annotations” on page 61

© Copyright IBM Corp. 1999 47

Finding a specific function call or return

You can search for a function call or return in the following diagrams:
v Call Nesting
v Execution Density
v Time Line

To search for a function call or return in one of these diagrams, complete the
following steps:
1. Open the Find Function window:
v In the Call Nesting or Time Line diagrams, select Edit > Find >

Function....
v In the Execution Density diagram, select Edit > Find function....

2. Enter the function name in the Find entry field. You can use wildcard
characters (* and ?) in the entry field, as follows:
v Use an asterisk (*) to represent zero or more arbitrary characters. For

example, enter:
– * to show a list of all function names
– b* to show all function names, regardless of length, that begin with

the character b

– *b to show all function names that end with the character b

v Use a question mark (?) to represent a single arbitrary character. For
example, enter ?b* to show all function names that start with any
character and have the character b as their second character.
Wildcards are especially useful when you are searching for a fully
qualified function name (for example, myClass::function[parameter]).

3. Be sure the Case sensitive box is checked if you want to enable
case-sensitive searching.

4. Select the thread that you want searched.
5. Click the appropriate radio button to search for occurrences of when the

function:
v Was called
v Returned
v Was either called, or returned

6. Click the appropriate push button to continue.
7. If more than one function matches your search criteria, select the desired

function in the list box, and click OK.
8. Select Edit > Find next to find the next occurrence of the function call or

return.

48 Performance Analyzer: C/C++ Productivity Tools

The search for the function begins at the currently selected function,
annotation (Call Nesting only), or user event (or the first such instance in the
currently selected range). The search continues until the function is found or
the end of the diagram is reached. If the function is found, it is highlighted; if
it is not found, a message box to that effect appears.

Finding trace data for a specific function

You can search for trace data for a specific function in the following diagrams:
v Dynamic Call Graph
v Statistics

To search for a function in one of these diagrams, complete the following
steps:
1. Make sure trace data for functions is shown in the diagram. See the Filter

Events by Component Type topic for instructions.
2. Select Options > Find.... The Find Function window appears.
3. Enter the function name in the Find entry field. You can use wildcard

characters (* and ?) in the entry field, as follows:
v Use an asterisk (*) to represent zero or more arbitrary characters. For

example, enter:
– * to show a list of all function names
– b* to show all function names, regardless of length, that begin with

the character b

– *b to show all function names that end with the character b

v Use a question mark (?) to represent a single arbitrary character. For
example, enter ?b* to show all function names that start with any
character and have the character b as their second character.
Wildcards are especially useful when you are searching for a fully
qualified function name (for example, myClass:: function[parameter]).

4. Be sure the Case sensitive box is checked if you want to enable
case-sensitive searching.

5. Click the appropriate push button to continue.
6. If more than one function matches your search criteria, click the desired

function in the list box, and click OK.

The function is highlighted when found.

“Filtering events by component type” on page 53

Chapter 11. Searching for trace data in a diagram 49

Finding trace data for a specific class

You can search for trace data for a specific class in the following diagrams:
v Dynamic Call Graph
v Statistics

This is possible only if your trace file contains class information.

To search for a class in one of these diagrams, complete these steps:
1. Make sure trace data for classes is shown in the diagram:
v In the Dynamic Call Graph diagram, select View > Nodes of > Classes.
v In the Statistics diagram, select View > Details on > Classes.

2. Select Options > Find.... The Find Class window appears.
3. Enter the class name in the Find entry field. You can use wildcard

characters (* and ?) in the entry field, as follows:
v Use an asterisk (*) to represent zero or more arbitrary characters. For

example, enter:
– * to show a list of all class names.
– b* to show all class names, regardless of length, that begin with the

character b.
– *b to show all class names that end with the character b.

v Use a question mark (?) to represent a single arbitrary character. For
example, enter ?b* to show all class names that start with any character
and have the character b as their second character.

4. Be sure the Case sensitive box is checked if you want to enable
case-sensitive searching.

5. Click the appropriate push button to continue.
6. If more than one class name matches your search criteria, click the desired

class name in the list box, and click OK.

The class is highlighted when found.

“Opening a trace file in a diagram” on page 40

50 Performance Analyzer: C/C++ Productivity Tools

Finding trace data for a specific executable

You can search for trace data for a specific executable in the following
diagrams:
v Dynamic Call Graph
v Statistics

To search for an executable in one of these diagrams, complete these steps:
1. Make sure trace data for executables is shown in the diagram:
v In the Dynamic Call Graph diagram, select View > Nodes of >

Executables.
v In the Statistics diagram, select View > Details on > Executables.

2. Select Options > Find.... The Find Executable window appears.
3. Enter the executable name in the Find entry field. You can use wildcard

characters (* and ?) in the entry field, as follows:
v Use an asterisk (*) to represent zero or more arbitrary characters. For

example, enter:
– * to show a list of all executable names.
– b* to show all executable names, regardless of length, that begin with

the character b.
– *b to show all executable names that end with the character b.

v Use a question mark (?) to represent a single arbitrary character. For
example, enter ?b* to show all executable names that start with any
character and have the character b as their second character.

4. Be sure the Case sensitive box is checked if you want to enable
case-sensitive searching.

5. Click the appropriate push button to continue.
6. If more than one executable matches your search criteria, click the desired

executable in the list box, and click OK.

The executable is highlighted when found.

“Opening a trace file in a diagram” on page 40

Chapter 11. Searching for trace data in a diagram 51

52 Performance Analyzer: C/C++ Productivity Tools

Chapter 12. Controlling what data is shown in the
diagrams

Filtering events by component type

You can show trace data for a specific component type in the following
diagrams:
v Statistics
v Dynamic Call Graph

To show trace data for a specific component type in the Statistics or Dynamic
Call Graph diagram, complete the following steps:
1. Open the trace file in one of the diagrams.
2. Select View > Details on in the Statistics diagram or View > Nodes of in

the Dynamic Call Graph diagram.
3. Select the component type for which you want to show data:
v Select Functions to show data on functions.
v Select Classes to show data on classes (only possible if your trace file

contains class information).
v Select Executables to show data on executables.

A mark is shown next to the component type that is currently selected.

“Opening a trace file in a diagram” on page 40

Filtering events by function

Filters allow you to temporarily reduce the amount of trace data shown in a
diagram, or to isolate interesting or problematic areas. There are several
techniques for filtering the trace data.

You can filter events by function in the following diagrams:
v Call Nesting
v Execution Density

To filter specific functions from one of these diagrams, complete these steps:

© Copyright IBM Corp. 1999 53

1. Select View > Include functions.... The Include Functions window
appears.

2. Scroll the list to find the function or functions you want to filter from the
diagram’s display.

3. Click each function you want to remove so that it is no longer highlighted.
4. Click the appropriate push button to continue.

To include specific functions in one of these diagrams, complete these steps:
1. Select View > Include functions.... The Include Functions window

appears.
2. Click the Deselect all push button.
3. Scroll the list to find the function or functions you want shown.
4. Select each function you want shown.
5. Click the appropriate push button to continue.

To include all functions in one of these diagrams, complete these steps:
1. Select View > Include functions.... The Include Functions window

appears.
2. Click the Select all push button.
3. Click the appropriate push button to continue.

In the Execution Density diagram, only those functions selected are shown. In
the Call Nesting diagram, each selected function and any function in its call
stack are shown.

“Opening a trace file in a diagram” on page 40

Filtering events by thread

Filters allow you to temporarily reduce the amount of trace data shown in a
diagram. There are several techniques for filtering the trace file and isolating
interesting or problematic areas.

When you apply a thread filter, only the data from the selected threads is
processed and displayed in the diagram. You can filter events by thread in the
following diagrams:
v Call Nesting
v Execution Density
v Dynamic Call Graph
v Statistics

54 Performance Analyzer: C/C++ Productivity Tools

To filter events by thread, complete these steps:
1. Open the trace file in one of the diagrams listed above.
2. Select View > Include threads.... The Include Threads dialog appears.
3. Select the thread or threads for which you want to see trace information in

one of the following ways:
v Select specific threads by highlighting them with the mouse.
v Click the Select all push button to highlight all threads.

4. Click the OK push button.

“Opening a trace file in a diagram” on page 40

Filtering events by group

Filters allow you to temporarily reduce the amount of trace data shown in a
diagram, or to isolate interesting or problematic areas. There are several
techniques for filtering the trace data.

You can filter events by function group in the following diagrams:
v Execution Density
v Statistics

To define one or more groups of functions that can be analyzed as a whole in
one of the diagrams that supports groups, complete the following steps:
1. Select Options > Work with groups....
2. On the Grouping File page of the Work with Groups window, define a

grouping file by entering a file name and optional description in the
appropriate fields.

3. On the Group Names page of the Work with Groups window, enter a
group name and optional description in the appropriate fields. Click Add.
Repeat this step for as many groups of functions as you want to define in
the grouping file.

4. On the Group Definition page of the Work with Groups window, add
functions to a group by completing the following steps:
a. Select the group you want to add functions to from the Group Name

drop-down combination box.
b. Enter a search string in the Filter Mask entry field that matches the

function names you want to add to the group. Use * as a wildcard to
match zero or more characters, or ? as a wildcard to match any single
character.

Chapter 12. Controlling what data is shown in the diagrams 55

c. Select the appropriate check boxes to indicate whether you want to
select functions that currently belong to no group, to exactly one group,
or to more than one group.

d. Be sure the Case sensitive box is checked if you want to enable
case-sensitive searching.

e. Click Filter to see the function names that match your search criteria.
f. In the Available Functions container, highlight the functions you want

to add to the group, and click Add.

Repeat this step for each group of functions you want to define in the
grouping file.

Note that if you add a function to more than one group, and are showing
group information in a diagram, the function appears once for each group
it belongs to that is included in the diagram.

5. When you are finished defining groups and their functions, select the Save
grouping file on OK check box in the Work with Groups window, and
click OK. (If you just click OK without having saved your changes to a
grouping file, the defined groups remain in effect for the current trace file
in the current Performance Analyzer session only.)

To indicate which collection of function groups you want to analyze, complete
these steps:
1. Select Options > Work with groups....
2. On the Grouping File page of the Work with Groups window, click Find....
3. Select a grouping file from the files found, and click OK.
4. Click Open.

To include specific groups in one of the diagrams that supports groups,
complete these steps:
1. Select View > Include groups.... The Include Groups window appears.
2. Click the Deselect all push button.
3. Scroll the list to find the groups you want.
4. Select each group you want to include.
5. Click the appropriate push button to continue.
6. To view groups in a diagram, you must be viewing functions in that

diagram:
v In the Statistics diagram, select View > Details on > Functions if you

are not currently viewing functions.

56 Performance Analyzer: C/C++ Productivity Tools

To view group information in a diagram after having removed it from the
diagram, select View > Group filter. A mark appears next to the option to
indicate that it is in effect.

To remove group information from a diagram that is showing group
information, select View > Group filter. The mark next to the option is
removed to indicate that it is not in effect.

“Function groups” on page 19
“Execution Density diagram” on page 8
“Statistics diagram” on page 10

Filtering nodes and arcs in the Dynamic Call Graph diagram

To define a specific cross section of nodes that you want shown in the
Dynamic Call Graph diagram, complete these steps:
1. Select View > Filters > Nodes.... The Nodes Filter window appears.
2. Select the check boxes for the desired filter criteria, and fill in the

corresponding values by which you want to filter the nodes.
3. Click the And radio button to show the nodes that meet the values for all

the selected criteria. Alternatively, click the Or radio button to show the
nodes that meet the values of at least one of the selected criteria.

4. Select one or more compile units in which you want to search for nodes
that meet the filter criteria.

5. Click the OK push button to apply the filters and close the Nodes Filter
window. (The Apply push button applies the filters but leaves the Nodes
Filter window open.)
The nodes that meet the filter criteria are shown and the nodes that do not
meet the criteria are hidden.

To define a specific cross section of arcs that you want shown in the Dynamic
Call Graph diagram, complete these steps:
1. Select View > Filters > Arcs.... The Arcs Filter window appears.
2. Select the check box for the Number of Calls criterion, and fill in the

corresponding values by which you want to filter the arcs.
3. Select one or more compile units in which you want to search for arcs that

meet the filter criterion.
4. Click the OK push button to apply the filter and close the Arcs Filter

window. (The Apply push button applies the filter but leaves the Arcs

Chapter 12. Controlling what data is shown in the diagrams 57

Filter window open.)
The arcs that meet the filter criterion are shown and the arcs that do not
meet the criterion are hidden.

At any time, you can restore nodes or arcs that were hidden as a result of the
filtering by bringing up the appropriate filter window again, clearing the
check boxes, and clicking OK. Alternatively, you can select the Restore graph
or Restore subgraph option, as appropriate, from the View menu.

“Dynamic Call Graph diagram” on page 7

“Opening a trace file in a diagram” on page 40

Recognizing call sequence patterns

The Performance Analyzer lets you combine like sequences of calls and
returns in the Call Nesting diagram, by using a pattern recognition facility.

To recognize patterns in the Call Nesting Diagram, complete these steps:
1. If any calls in the diagram are collapsed (indicated by a plus (+) sign next

to the function name), return to the diagram and expand them by selecting
View > Expand all.

2. Select View > Include threads....
3. Select a single thread for which you want to see patterns by highlighting it

with the mouse.
4. Select the Use pattern recognition check box.
5. Click OK.

The Call Nesting diagram indicates patterns with curved lines that show the
number of repetitions on the right.

“Pattern recognition” on page 20
“Call Nesting diagram” on page 6

“Filtering events by thread” on page 54

58 Performance Analyzer: C/C++ Productivity Tools

Viewing class activity

If you are analyzing a trace file that contains class information, you can view
class activity in a Dynamic Call Graph or Statistics diagram. For example, you
might want to view class activity to do one of the following:
v Discern patterns more easily. Viewing class details in a Dynamic Call Graph

diagram condenses the data shown because activity in all functions defined
for a class is combined, which simplifies observing patterns.

v Identify the function that consumes the most time. Viewing class details in
a Statistics diagram shows you how long a particular process (group of
functions) takes to run, which helps you reduce the number of functions
that you must look at when trying to identify the one consuming the most
time.

To view a Dynamic Call Graph or Statistics diagram by class, do the
following:
1. Create a trace file.
2. Open the trace file in a Dynamic Call Graph or Statistics diagram.
3. In the Dynamic Call Graph diagram, select View > Nodes of > Classes.

Each node then represents the data for every member function contained
in that class.
In the Statistics diagram, select View > Details on > Classes. The
Summary and Details panes then provide statistics about the classes used
in your executable.

“Opening a trace file in a diagram” on page 40

Chapter 12. Controlling what data is shown in the diagrams 59

60 Performance Analyzer: C/C++ Productivity Tools

Chapter 13. Analyzing Your Trace File

Adding, changing, or deleting annotations

An annotation is a bookmark or comment that you can place in the trace file
after it is created. You can add, change, or delete annotations in the Call
Nesting diagram. The Performance Analyzer saves the annotations to the trace
file so you can see them later.

To add or change an annotation, complete these steps:
1. Select the function in which you want to add or change the comment.
2. Select Edit > Annotate....
3. Type the comment in the window. The comment is limited to 64

characters.
4. Click the appropriate push button to continue.

To delete an annotation, complete these steps:
1. Select the comment you want to remove.
2. Select Edit > Annotate....
3. Click Remove.

“Finding a specific annotation” on page 47

Determining the elapsed time between two events

To determine the elapsed time between two events, complete these steps:
1. Create a trace file.
2. Open the trace file in the Time Line diagram.
3. Highlight the area between the two events in the Time Line diagram. To

highlight an area:
a. Click and hold mouse button 1 on the first event.
b. While holding mouse button 1, drag the pointer to the second event.
c. Release the mouse button.

4. Check the status area of the Time Line diagram for the elapsed time
between events. Elapsed time is shown at the beginning of the line labeled
Selected region.

© Copyright IBM Corp. 1999 61

“Time Line diagram” on page 12

“Opening a trace file in a diagram” on page 40

Selecting functions to inline

Your trace file can help you determine which functions to inline. To do this,
complete these steps:
1. Use the OPT compiler option.
2. Create a trace file and view it in the Statistics diagram. If an inlined

function appears in the Statistics diagram, the compiler chose not to inline
it.

3. Look for functions in the Statistics diagram that were called frequently and
had small average execution times. These functions could be good
candidates for inlining.

Although inlining functions improves the performance of your application, it
also increases the size of your executable.

“Opening a trace file in a diagram” on page 40

Viewing thread interactions in a multithreaded program

To view thread interactions in a multithreaded program, complete these steps:
1. Create a trace file.
2. Open the trace file in a Call Nesting or Time Line diagram.
3. Scroll through the diagram using the vertical scroll bar. Look for

horizontal dashed lines, which indicate that your program has switched
from one thread to another.
Doing so allows you to see the flow of execution across threads, and could
be helpful in identifying timing problems.

“Correlation” on page 22
“Call Nesting diagram” on page 6
“Time Line diagram” on page 12

62 Performance Analyzer: C/C++ Productivity Tools

“Opening a trace file in a diagram” on page 40

Chapter 13. Analyzing Your Trace File 63

64 Performance Analyzer: C/C++ Productivity Tools

Chapter 14. Reference

Limitations when analyzing trace data

Note the following limitations when using the Performance Analyzer:
v The Performance Analyzer runs only on Windows 95 or Windows NT. It

does not run on Windows 3.1x or Windows for Workgroups, even with the
Win32s extension.

v The pattern recognition feature in the Call Nesting diagram has the
following limitations:
– The Performance Analyzer only searches for patterns in the first 32,768

events in the selected thread.
– The maximum number of patterns for which the Performance Analyzer

searches is 8191.

If the Performance Analyzer reaches either of these limits, it stops searching
for patterns.

v The Dynamic Call Graph diagram cannot analyze trace files that have more
than 7000 functions.

v If you minimize the Overview window in the Dynamic Call Graph
diagram, it does not appear in the list of open applications.

Workstation Programs Only: The following Performance Analyzer limitations
apply to workstation programs only.

Limitations when creating a trace

When creating a trace with the Performance Analyzer on OS/390, the
following limitations apply:
v There is no support for the Performance Analyzer under a CICS

environment.
v The Performance Analyzer can trace C/C++ applications that have multiple

threads. However, it cannot accurately determine when the processor
switches active threads. It can determine only the following points because
they are the points where the Performance Analyzer gets control:
– When a thread is created
– When a function is called or returns within a thread
– When a thread terminates

© Copyright IBM Corp. 1999 65

Consequently, thread switches are recorded only at function call and return
points.

v Because an OS/390 system can have multiple processors, threads can
execute concurrently. For a particular function call in one thread, the
Performance Analyzer calculates the function’s execution time independent
of the execution time calculations for functions running in other threads. On
an OS/390 system with a single processor, this may result in the reporting
of function execution time that is larger than the actual execution time.
Another consequence of this method of function execution time calculation
for a multithread application is that the data in the Statistics diagram may
show a total execution time for all functions exceeding the total execution
time for the program.

v Because of the overhead time required for tracing, the program takes longer
to execute when it is tracing. This overhead time is factored out in the
Performance Analyzer data.

v When tracing multithreaded applications with TASK time, the source code
for the parent thread must be compiled with the TEST(HOOK) option in
order for the child threads to be traced.

v The time period between the time a C++ exception is thrown and the time
the next method is called will be charged to the method that throws the
exception. A consequence of this is that time spent in a method that catches
the exception but does not call any other methods or functions will not be
charged to that method but to the method that threw the exception.

v When you compile your program with the TEST(HOOK) option, tracing
hooks are inserted into your program. This increases your program’s size,
and because time is required to execute the hook instructions, the program
runs slower even when tracing is turned off. For this reason, it is
recommended that you rebuild your program without the TEST(HOOK)
option after you have finished using the Performance Analyzer to trace and
tune your program.

“Function trace” on page 15

“Creating a trace file” on page 30
“Compiling your program” on page 27

“Run-time option for program tracing” on page 68

66 Performance Analyzer: C/C++ Productivity Tools

Performance Analyzer invocation parameters

When you start the Performance Analyzer from a command line, a command
(CMD) file, or a batch (BAT) file, you can control which of the following
initial actions the Performance Analyzer takes:
v Show the Performance Analyzer - Window Manager window
v Open an existing trace file (in one or more diagrams)

This is accomplished by specifying the appropriate invocation parameters, as
described below.

Show the Performance Analyzer - Window Manager window

To start the Performance Analyzer and show the Performance Analyzer -
Window Manager window, use the following command:
ianalyze

Open an Existing Trace File

To start the Performance Analyzer and open an existing trace file in one or
more trace file analysis diagrams, use the following command:
ianalyze /x myprog.trc

Where:

/x Represents one or more of the following options. If you have already
created a trace file, these options cause the trace file to be shown in
their respective diagrams. You can quickly open the diagrams by
entering one or more of these options in your startup command.

/cn Shows the trace file in the Call Nesting diagram.
/ed Shows the trace file in the Execution Density diagram.
/cg Shows the trace file in the Dynamic Call Graph diagram.
/ss Shows the trace file in the Statistics diagram.
/tl Shows the trace file in the Time Line diagram.

myprog
Represents a trace file name.

For example, if you want to show the myprog.trc trace file in both the Call
Nesting and Execution Density diagrams, enter the command:
ianalyze /cn /ed myprog.trc

“Diagrams for analyzing a trace file” on page 5

Chapter 14. Reference 67

“Opening a trace file in a diagram” on page 40

Tracing programs that have interlanguage calls

The Performance Analyzer does not trace calls to functions written in
languages other than C and C++.

If your C or C++ application makes an interlanguage call, and the
__PROF_HOOKS environment variable was set to ALL or BEFORE_AFTER,
the called function is displayed with name Unknown_Function_xxxxxxxx in
the Performance Analyzer trace diagrams, where xxxxxxxx is the hex offset
within the module of the function entry point. . If __PROF_HOOKS was set to
ENTRY_EXIT, the interlanguage function call does not appear in the function
trace diagrams.

If the non-C/C++ function in turn calls a C or C++ function, the called C or
C++ function appears in the function trace if it was compiled with
TEST(HOOK) and __PROF_HOOKS was set to ALL or ENTRY_EXIT.

In the class views of the Performance Analyzer diagrams, C function calls are
included in a class called C_Function and calls to routines of programming
languages other than C++ are included in a class called Unknown_Language.

“Function trace” on page 15

“Creating a trace file” on page 30
“Compiling your program” on page 27

“Run-time option for program tracing”
“Run-time environment variables for program tracing” on page 72

Run-time option for program tracing

To enable the tracing of a program during its execution, you must set the
Language Environment run-time option, PROFILE, which has the following
syntax:
PROFILE(ON|OFF,'string')

68 Performance Analyzer: C/C++ Productivity Tools

or
PROF (ON|OFF,'string')

The PROFILE run-time option has two suboptions:
v ON|OFF switch to turn on or off the trace for program execution
v ’string’ to specify the type of tracing to be performed

Suboption ON|OFF

Specify ON to activate the Performance Analyzer tracing. Specify OFF if you
do not want the Performance Analyzer to take any trace. You must specify the
ON|OFF suboption.

Suboption String

The suboption string consists of a list of parameters enclosed in either single
or double quotation marks. The parameters are separated by commas (,), and
can occur in any order in the string. They can also be in any case or mixed
case because all values are converted to uppercase before being processed.
The parameters are provided in the following table:

Parameters Abbreviation Default Description

FUNCTION=ALL or
FUNCTION=COUNTS

F=A or F=C F=A FUNCTION=ALL counts
how many times each
function is called, records
what functions are called by
each function and how many
times they are called,
provides total execution and
stack times for each function,
and records event data (every
function call/return, thread
creation and time of that
event).

FUNCTION=COUNTS collect
a count of the number of
times each function is called
and what functions are called
by each function and how
many times they were called..

Note: The TASK|REAL
suboption is ignored if
FUNCTION=COUNTS is
specified.

Chapter 14. Reference 69

Parameters Abbreviation Default Description

TASK | REAL T | R T Specifies the type of time
used during tracing. Specify
TASK for CPU time or REAL
for elapsed time.

Note: This suboption is
ignored if
FUNCTION=COUNTS is
specified.

Note:
v Invalid parameters result in a warning message.
v Defaults are used for unspecified parameters.
v If conflicting parameters in the suboption string are specified, the last one is

used. For example, if the suboption string is "REAL, FUNCTION=COUNTS,
TASK, FUNCTION=ALL", the Performance Analyzer will use TASK and
FUNCTION=ALL.

Multiple Specifications of PROFILE Options
Because run-time options can be specified a number of ways, multiple
PROFILE settings may exist when the program executes. The whole suboption
string is used as a single value. If the suboption string (including a null
string) is specified in the run-time option, the whole suboption string is used.
If not, the suboption string from #pragma runopts is used. If no suboption
string is specified in #pragma runopts, the suboption string in the installation
defaults is used. If the installation defaults do not have a PROFILE suboption
string, then the default parameters (which are FUNCTION=ALL, and TASK)
are used. The IBM supplied installation default for the PROFILE run-time
option is PROFILE(OFF,"")

Note: When a suboption string is used, the Performance Analyzer fills in
missing parameters in the string with defaults. For example if neither TASK
nor REAL was specified in the suboption string, the Performance Analyzer
uses TASK as the type of time when tracing.

Examples

1. Installation Default: PROFILE(OFF,’FUNCTION=COUNTS,REAL’)
Program Code: #pragma runopts(prof(on))
Specified Run-time PROFILE Option: None
PROFILE Option Used for Tracing:
PROFILE(ON,’FUNCTION=COUNTS,REAL’)
Suboption String Used for Tracing:FUNCTION=COUNTS,REAL

2. Installation Default: PROFILE(ON,’FUNCTION=COUNTS,REAL’)
Program Code: #pragma runopts(prof(off,’function’))

70 Performance Analyzer: C/C++ Productivity Tools

Specified Run-time PROFILE Option: prof(on)
PROFILE Option Used for Tracing: PROFILE(ON,’FUNCTION’)
Suboptions String Used for Tracing: FUNCTION=ALL,TASK

3. Installation Default: PROFILE(OFF,’FUNCTION=COUNTS’)
Program Code: No #pragma runopts was specified
Specified Run-time PROFILE Option: prof(on)
PROFILE Option Used for Tracing:
PROFILE(ON,’FUNCTION=COUNTS’)
Suboption String Used for Tracing: FUNCTION=COUNTS,TASK

4. Installation Default: PROFILE(OFF,"’’)
Program Code: #pragma runopts(prof(on,’f=c,real’))
Specified Run-time PROFILE Option: prof(on,’task’)
PROFILE Option Used for Tracing: PROFILE(ON,’TASK’)
Suboption String Used for Tracing: FUNCTION=ALL,TASK

5. Installation Default: PROFILE(ON,’FUNCTION=COUNTS’)
Program Code: #pragma runopts(prof(off,’function=counts,real’))
Specified Run-time PROFILE Option: prof(on,"’’)
PROFILE Option Used for Tracing: PROFILE(ON,"’’)
Suboption String Used for Tracing: FUNCTION=ALL,TASK

Refer to the Language Environment for OS/390 and VM Programming
Reference for more information on run-time options.

“Function trace” on page 15
“Call frequency counting” on page 13

“Setting run-time option PROFILE for Performance Analyzer” on page 29
“Specifying trace file name” on page 37
“Creating a trace file” on page 30
“Collecting call frequency data” on page 35

“Run-time environment variables for program tracing” on page 72
“Sample JCL for creating trace files” on page 83
“Sample TSO commands for creating trace files” on page 82
“Sample Unix system service commands for creating trace files” on page 80

Chapter 14. Reference 71

Run-time environment variables for program tracing

Before tracing a program during its execution, the following environment
variable can be set:

__PROF_FILE_NAME=filename

Default: The filename is name.trc, where name is the
name of the executable or DLL which has
the first main function is used as the
name. If no main function is encountered,
the name of the first executable or DLL
encountered is used as the name.

When tracing an OS/390 UNIX System
Services (formerly known as
OpenEdition) application in the OS/390
UNIX shell, the file is written to the
current directory.

When tracing an OS/390 batch or TSO
application, the trace data is written to a
sequential data set. A high level qualifier
may be added to the file name,
depending on the configuration of your
system.

Description:
Use this environment variable to specify the name of the output trace file(s) created by
the Performance Analyzer.

v HFS output file
When you are tracing an OS/390 UNIX application, you can specify a file name for
the output trace file. If you want to write the file to a directory other than the
current directory, specify a path with filename, for example,
__PROF_FILE_NAME=/u/smith/trace.trc.

v Output to sequential data set
If you want to force the output file to an OS/390 sequential data set, you can prefix
filename with double slashes (//), for example __PROF_FILE_NAME=//smith.trace.
The filename is prefixed with the userid as the high-level qualifier. You can specify a
fully qualified filename by adding single quotation marks (’) around the filename, for
example __PROF_FILE_NAME=//’smith.trace’.

__PROF_WEBSERVER=NO|YES

Default: NO
Description:
To trace the application running in a Lotus Domino Go Webserver environment, this
variable must be se to YES. Otherwise, set this variable to NO.

Examples of Generated Trace Files

72 Performance Analyzer: C/C++ Productivity Tools

__PROF_FILE_NAME= Generated Trace File For Program Running Under

OS/390 Batch/TSO OS/390 UNIX

trace.ftrc Sequential data set
USERID.TRACE.TRC

HFS file
./trace.trc

trace Sequential data set
USERID.TRACE

HFS file
./trace

’test.trace.trc’ Sequential data set
TEST.TRACE.TRC

HFS file
./’test.trace.trc’

/u/smith/test/trace.trc HFS file
/u/smith/test/trace.trc

HFS file
/u/smith/test/trace.trc

//test.trace.trc Sequential data set
USERID.TEST.TRACE.TRC

Sequential data set
USERID.TEST.TRACE.TRC

//’first.test.trace.trc’ Sequential data set
FIRST.TEST.TRACE.TRC

Sequential data set
FIRST.TEST.TRACE.TRC

./trace.trc HFS file
./trace.trc

HFS file
./trace.trc

__PROF_HOOKS = ALL|ENTRY_EXIT|BEFORE_AFTER

Default: __PROF_HOOKS = ALL
Description
Use this environment variable to control which hooks are processed for function calls.

v ENTRY_EXIT
Trace data is only collected at entry and exit points of a function. Exercise caution
when specifying ENTRY_EXIT because you may lose some trace information. For
example, if you specified ENTRY_EXIT, and function B in another file was called,
unless the function B’s file was built with TEST(HOOK), there would be no trace
record indicating that function B was ever executed. This would be conspicuous if a
whole DLL is built without theTEST(HOOK) compile option because none of the
calls to the DLL would be recorded.

v BEFORE_AFTER
Trace data is collected before and after a function call.

v ALL
Events are processed before and after a function call and also at the entry and exit
points of a function. If all files of a program are compiled with TEST(HOOK), then
tracing the program will be faster when you specify BEFORE_AFTER instead of
ALL because fewer hooks are processed. However, the main function does not
appear in the trace data because nothing calls it.

Refer to the OS/390 C/C++ Programming Guide and the OS/390 UNIX
System Services User’s Guide for more information on environment variables.

Chapter 14. Reference 73

“Function trace” on page 15
“Call frequency counting” on page 13

“Setting environment variables for Performance Analyzer” on page 28
“Collecting call frequency data” on page 35
“Creating a trace file” on page 30

“Sample JCL for creating trace files” on page 83
“Sample TSO commands for creating trace files” on page 82
“Sample Unix system service commands for creating trace files” on page 80

Troubleshooting Performance Analyzer problems

No Trace File Created

By default, the Performance Analyzer creates the trace file as xxxxxx.trc, where
xxxxxx is the name of the module in which the first main function is found. If
the Performance Analyzer cannot find the main function, it creates a file
named module_name.trc, where module_name is the name of the first
executable or DLL encountered.

If you specified the environment variable __PROF_FILE_NAME, then the
trace file will be created with the name you specified. If you cannot find the
file, check the following:
v The PROFILE run-time option must be turned on.
v If your application is running with run-time option POSIX(ON), your trace

file may be stored as an HFS file.
v If your application creates other processes with the fork or spawn functions,

the names of the trace files created for the
different processes of the application will have the process ID’s appended
to the name that was specified with
__PROF_FILE_NAME.

v Your program must be compiled with the TEST(HOOK) option.
v Check for Performance Analyzer error messages in stdout or stderr.
v If an OS/390 UNIX kill command was used to stop the process, no trace

files will be generated.
v If the operator used a cancel command to stop the process, no trace files will

be generated.

74 Performance Analyzer: C/C++ Productivity Tools

ianalyze Not Found - Workstation Error

Ensure that the workstation part of the Performance Analyzer was installed
properly. For more details on installing it on the workstation, see Installing
and Getting Started with OS/390 C/C++ Productivity Tools for Windows NT.

Error Reading the Trace File - Workstation Error

If you are using the ianalyze command to display a graph, the following
message may appear:
28104E: Error reading trace file,"trace file name"

it means that the trace file cannot be displayed. The cause of the error may be
one or more of the situations described in the following table:

Situation Response

The trace file was downloaded from the
host machine as a text file instead of a
binary file.

Download the file again as a binary file.

The version of the Performance
Analyzer’s host component is different
from the version of the workstation
component.

Ensure that both the host and workstation
components of Performance Analyzer are
at the most recent service level.

The workstation is out of storage. Close other programs that are running
and use the ianalyze command again.

29104E: No events were logged in trace file error - Workstation Error

You cannot open the Call Nesting, Time Line, or Execution Density diagrams
with a trace file generated by specifying the call frequency counting
sub-option FUNCTION=COUNTS. Only the Dynamic Call Graph diagram
and Statistics diagram show call frequency information.

34002E: Error number 100 occured - Workstation Error

This error message is issued when a diagram cannot be displayed because the
data in the trace file includes a thread call depth of greater than 512. The Call
Nesting, Execution Density, and Time Line diagrams do not support thread
call depths greater than 512.

Loading Help Error - Workstation Error

When the Performance Analyzer is invoked at the workstation to analyze a
trace file, the following error message may appear: "Failed to load Help
Manager. IPTPW10.HLP must be in your HELP and DPATH environment
variables" The cause of the error is usually a user HELP variable setting that

Chapter 14. Reference 75

does not include %HELP%. The installation of OS/390 C/C++ Productivity
Tools sets a system HELP environment variable to include the path containing
the required file. If you have specified a user HELP variable, add %HELP% at
the end of your path specifications. Note: The DPATH environment variable
does not need to be set.

“Function trace” on page 15
“Call frequency counting” on page 13

“Creating a trace file” on page 30
“Collecting call frequency data” on page 35

“Performance Analyzer error messages on the host”
“Run-time option for program tracing” on page 68
“Run-time environment variables for program tracing” on page 72
“Limitations when creating a trace” on page 65

Performance Analyzer error messages on the host

These are error messages that the Performance Analyzer generates during
tracing:

CTV0001
Cannot allocate memory.

Explanation:

The Performance Analyzer is unable to acquire some heap storage and
cannot continue.

Programmer Response:

Run the program with a larger storage region.

CTV0002
Invalid value specified for environment variable%1. The default value
%2 is used.

Explanation:

%1 is the environment variable name and %2 is the default
environment variable value. An invalid value was specified for the
indicated environment variable. The default value is used instead.
Tracing continues.

76 Performance Analyzer: C/C++ Productivity Tools

Programmer Response:

Ensure that the environment variable is set to the desired value and
try again.

CTV0004
Cannot create data space.

Explanation:

Data space creation failed. Data spaces might not be supported by the
system. Data space support is required to run the Performance
Analyzer. Tracing is discontinued.

Programmer Response:

Contact your systems administrator to determine whether or not data
spaces are supported on your system.

CTV0005
Cannot release storage.

Explanation:

A failure occurred while trying to release data space or address space
storage. If this condition continues, a storage shortage may occur.

Programmer Response:

Try tracing again. If this message continues to reappear, notify your
systems administrator of this problem.

CTV0007
Tracing cannot continue due to a Performance Analyzer internal error.

Explanation:

The Performance Analyzer has encountered inconsistent data and
cannot continue processing the data. If a trace file is generated, it is
incomplete.

Programmer Response:

Try tracing again. If this message continues to reappear, contact your
IBM representative to report this problem.

CTV0009
Cannot open iconv table.

Explanation:

A failure occurred trying to open the iconv conversion table of the
Language Environment Run-Time Library. Tracing is stopped and no
trace file is created.

Programmer Response:

Chapter 14. Reference 77

Try tracing again. If this message continues to reappear, contact your
systems administrator to ensure that the Language Environment run
time is installed properly and available to your program.

CTV0010
Cannot open the trace file %1.

Explanation:

%1 is the trace file name. The specified trace file cannot be opened for
writing. Tracing is stopped and no trace file is created.

Programmer Response:

Ensure that space is available in the file system or volume and that
you have the correct permissions to create the file.

CTV0011
Cannot write to the trace file.

Explanation:

A failure occurred writing to the Performance Analyzer trace file.
Tracing is stopped and the trace file is incomplete.

Programmer Response:

Ensure that the file system or volume is operational and not full, then
try tracing again. If this message continues to reappear, contact your
IBM representative to report the problem.

CTV0012
Cannot convert string to ASCII.

Explanation:

A failure occurred doing code page conversion using the iconv
functions of the Language Environment Run-Time Library. Tracing is
stopped and the Performance Analyzer trace is incomplete.

Programmer Response:

Try tracing again. If this message continues to reappear, contact your
systems administrator to ensure that the Language Environment run
time is installed properly and available to your program

CTV0013
Cannot read from data space.

Explanation:

Reading from a data space failed. Tracing continues but the
Performance Analyzer trace is incomplete. A serious system problem
may exist.

78 Performance Analyzer: C/C++ Productivity Tools

Programmer Response:

If this message continues to be reappear, a serious system problem
may exist. Contact your systems administrator to ensure that data
space support is operational. Try tracing again. If the problem persists,
contact your IBM representative to report the problem.

CTV0015
%1 is an invalid Performance Analyzer option and is ignored.

Explanation:

%1 is the invalid option that was specified. An invalid Performance
Analyzer option was specified. The option is ignored and tracing
continues.

Programmer Response:

Specify valid Performance Analyzer options in the "PROFILE"
run-time option and try again.

CTV0016
The %1 feature of OS/390 is not enabled. Contact your system
programmer.

Explanation:

%1 is the name of the OS/390 feature. This feature of OS/390 is not
enabled at your installation. This feature is required in order to use
the Performance Analyzer. Your system programmer can contact IBM
OS/390 service to have this element enabled.

Programmer Response:

Contact your system programmer to have this feature enabled.

CTV0017
No tracing data is available because no hooks were encountered.

Explanation:

No tracing hooks were found in the program code. The program
cannot be traced.

Programmer Response:

Compile the program code with the TEST(HOOK) option and try
tracing again.

CTV0018
Cannot write to data space.

Explanation:

Chapter 14. Reference 79

Writing to a data space failed. Tracing continues but is incomplete. A
serious system problem may exist.

Programmer Response:

If this message continues to reappear, a serious system problem may
exist. Contact your systems administrator to ensure that data space
support is operational. Try tracing again. If the problem persists,
contact your IBM representative to report the problem.

CTV0019
Data space is full and it cannot be extended.

Explanation:

Extending a data space failed. Tracing continues but is incomplete. A
serious system problem may exist.

Programmer Response:

If this message continues to reappear, a serious system problem may
exist. Contact your systems administrator to ensure that data space
support is operational. Try tracing again. If the problem persists,
contact your IBM representative to report the problem.

“Function trace” on page 15

“Creating a trace file” on page 30

“Troubleshooting Performance Analyzer problems” on page 74

Sample Unix system service commands for creating trace files

Here are some examples of OS/390 UNIX shell commands used to compile
and execute a program and turn on the Performance Analyzer for function
tracing.

Compile and Bind C Programs for Tracing
Use the c89 command to compile and bind test.c:
c89 -o ./test -0 -Wc,"TEST(HOOK),NOGONUMBER" test.c

Compile and Bind C++ Programs for Tracing
Use the c++ command to compile and bind test.cxx:
c++ -o ./test -0 -Wc,"TEST(HOOK),NOGONUMBER" test.cxx

80 Performance Analyzer: C/C++ Productivity Tools

Set Run-Time PROFILE Option and Environment Variables
Use the export command for setting run-time options and environment
variables, for example:
export _CEE_RUNOPTS="PROFILE(ON,'FUNCTION=ALL,REAL')"
export __PROF_FILE_NAME=./test.trc

Set the STEPLIB environment variable so that Language Environment can find
the Performance Analyzer module (only required if it is not included in the
Link Pack Area):
export STEPLIB=CBC.SCTVMOD:$STEPLIB

Execute Your Program and Start Performance Analyzer
Start your program as follows, and the Performance Analyzer tracing will
begin at the same time:
test

Turn off tracing after running your program by setting the _CEE_RUNOPTS
environment variable as follows:
export _CEE_RUNOPTS="PROFILE(OFF)"

Note: If tracing is not turned off in this way, any other program that is
executed in the current shell will be traced, including some OS/390 UNIX
shell commands.

Refer to the OS/390 UNIX System Services Command Reference for more
information on the use of the OS/390 UNIX commands.

“Function trace” on page 15

“Compiling your program” on page 27
“Setting environment variables for Performance Analyzer” on page 28
“Setting run-time option PROFILE for Performance Analyzer” on page 29

“Sample JCL for creating trace files” on page 83
“Sample TSO commands for creating trace files” on page 82
“Sample trace file names from tracing a multiprocess program” on page 85

Chapter 14. Reference 81

Sample TSO commands for creating trace files

Here are some examples of TSO commands used to compile and execute your
program and turn on the Performance Analyzer for function tracing.

Compile and Bind C Programs for Tracing
Use the following to compile and bind your C program:
cc testprof.c(testcpgm) (test(hook) nogonumber search('cee.sceeh.+') obj(testpgm.obj(testcpgm))

cxxbind obj(testpgm.obj(testcpgm)) load(testpgm.load(testcpgm))

Compile and Bind C++ Programs for Tracing
Use the following to compile and bind your C++ program:
cxx testprof.cpp(testcpp) (test(hook) nogonumber lsearch(testprof.hpp)

se('cbc.sclbh.+','cee.sceeh.+') obj(testpgm.obj(testcpp))

cxxbind obj(testpgm.obj(testcpp)) load(testpgm.load(testcpp))

Set Run-Time PROFILE Option and Environment Variables and Run Your
Program
You use the following to set run-time options and environment variables and
run your program. In this case, the program being executed is
testpgm.load(testprof).
tsolib act dsname('CBC.SCTVMOD')
call testpgm(testprof) 'PROFILE(ON,"F=A,R"),ENVAR(__PROF_FILE_NAME=testprof.trace)/'

Refer to the OS/390 C/C++ User’s Guide for more information on compiling
and running your applications.

“Function trace” on page 15

“Compiling your program” on page 27
“Setting environment variables for Performance Analyzer” on page 28
“Setting run-time option PROFILE for Performance Analyzer” on page 29

“Sample JCL for creating trace files” on page 83
“Sample Unix system service commands for creating trace files” on page 80
“Sample trace file names from tracing a multiprocess program” on page 85

82 Performance Analyzer: C/C++ Productivity Tools

Sample JCL for creating trace files

You can customize this sample JCL to execute your program and turn on the
Performance Analyzer for function tracing. The JCL compiles, binds, and
traces the sample program CBC3GDC1 that comes with the OS/390 C/C++
Compiler.
//PROFFUNC JOB 1,'PP5647-A01',MSGLEVEL=(1,1),MSGCLASS=A
// SET #CPP=CBC
// SET #PA=CBC
// SET #LE=CEE
//PROC JCLLIB ORDER=(&#CPP..SCBCPRC,
// &#LE..SCEEPROC)
//*—————————————————————————————————-
//* PROFFUNC - OS/390 C/C++ Performance Analyzer Sample JCL For
//* Function Level Trace
//*
//* COPYRIGHT:
//* LICENSED MATERIALS - PROPERTY OF IBM.
//*
//* 5647-A01
//* (C) COPYRIGHT IBM CORP. 1997,1999 ALL RIGHTS RESERVED
//* US GOVERNMENT USERS RESTRICTED RIGHTS - USE,
//* DUPLICATION OR DISCLOSURE RESTRICTED BY GSA
//* ADP SCHEDULE CONTRACT WITH IBM CORP.
//*
//* INSTRUCTIONS:
//* Before submitting this job, the JCL must be customized
//* for your installation. The following changes need to be
//* made:
//*
//* 1. Update the JOB card with the installation specific
//* parameters.
//* 2. If you chose to use a different prefix than the IBM supplied
//* one for the C/C++ Compiler, please change the value of CBC
//* to your chosen prefix on the // SET #CPP=CBC statement.
//* 3. If you chose to use a different prefix than the IBM supplied
//* one for the C/C++ Host Performance Analyzer, please change
//* the value of CBC to your chosen prefix on the // SET #PA=CBC
//* statement.
//* 4. If you chose to use a different prefix than the IBM supplied
//* one for the Language Environment, please change the value
//* of CEE to your chosen prefix on the // SET #LE=CEE
//* statement.
//* 5. If you have installed Kanji Messages for the C/C++ Compiler
//* on your system and want to enable it, uncomment the CRUN
//* line.
//* 6. You may have to change the unit TUNIT='VIO' to your
//* locally-defined esoteric name.
//*
//* REQUIRED ENVIRONMENT:
//* 1. C/C++ Compiler and Language Environment must be installed on
//* the system prior to execution of this JCL.
//*

Chapter 14. Reference 83

//* INPUT:
//* 1. Input data set: CBC.SCBCSAM(CBC3GDC1).
//*
//* OUTPUT:
//* 1. Return code of zero for all steps.
//* 2. Function trace file yourid.CBC3GDC1.FUNCTION.TRC is
//* generated.
//* 3. Output from the program:
//* res_add =11.87655
//* res_sub =0.34
//* res_mul =-1.4814000
//* res_div =1.12079927338782
//*———————————————————————————————
//PROFTST EXEC EDCCBG,
// CPARM='OPTFILE(DD:OPTION)',
// TUNIT='VIO',
// LIBPRFX=&#LE.,
// LNGPRFX=&#CPP.,
//* CRUN='NATLANG(JPN)',
// INFILE=&#CPP..SCBCSAM(CBC3GDC1),
// OUTFILE='&&GSET(GO),DISP=(NEW,PASS),SPACE=(TRK,(7,7,1))',
// GPARM='PROFILE(ON,"FUNC=A,T")),ENVAR("_CEE_ENVFILE=DD:MYVARS")/'
//OPTION DD *
LIST
TEST(HOOK)
NOGONUMBER
OPT(1)
/*
//BIND.SYSLMOD DD DSNAME=&OUTFILE,UNIT=&TUNIT.
//GO.MYVARS DD *
__PROF_FILE_NAME=CBC3GDC1.FUNCTION.TRC
__PROF_HOOKS=ALL
/*
//GO.STEPLIB DD
// DD DSN=&#PA..SCTVMOD,DISP=SHR
//* ========> END OF JOB PROFFUNC <========

“Function trace” on page 15

“Compiling your program” on page 27
“Setting environment variables for Performance Analyzer” on page 28
“Setting run-time option PROFILE for Performance Analyzer” on page 29

“Sample TSO commands for creating trace files” on page 82
“Sample Unix system service commands for creating trace files” on page 80
“Sample trace file names from tracing a multiprocess program” on page 85

84 Performance Analyzer: C/C++ Productivity Tools

Sample trace file names from tracing a multiprocess program

In this example, program prog1 calls the fork function and the resulting child
process calls the exec function to execute program prog2:

/* prog1.c */
int main()
{ /* start of program */
/* ...some code...*/
if ((pid = fork()) < 0) {

perror("fork failed");
exit(2);
}

if (pid == (pid_t)0) { /* CHILD process */
execl("./prog2", NULL);
perror("The execl() call must have failed");
exit(255); /* return failure to parent */
}

else { /* PARENT process */
pid = wait(&c_status);

if (WIFEXITED(c_status)) {
printf("\nchild exited with code

%d\n",WEXITSTATUS(c_status));
}

else
puts("\nchild did not exit successfully\n");

}
exit(0);
}
Output Trace Files Default Names
If __PROF_FILE_NAME is not set, the following trace files are produced:
v prog1.trc.11111111 - parent process (PID=11111111)
v prog1.trc.22222222 - child process (PID=22222222)
v prog2.trc - PID=22222222

Note:
1. Because the __PROF_FILE_NAME environment variable was not set, the

trace file is named after the program that contains the main function,
prog1, and the default file extension, .trc, is added.

2. With the fork function a new process is created, and to distinguish the
trace file for the second process from the first one, the process ID (PID)
number is appended at the end of each trace file’s name.

3. Then, the exec function is executed and a new trace file is created. The
exec function replaces the current process image with a new process image

Chapter 14. Reference 85

without changing the PID number. The name of the new program that
contains the main function, prog2, is used as the file name. Because the
PID number did not change, the PID number is not appended to the new
trace file’s name.

Output Trace Files That Are Explicitly Named
If __PROF_FILE_NAME=prog1.trace is specified , the following trace files are
produced:
v prog1.trace.11111112 - parent process (PID=11111112)
v prog1.trace.22222223 - child process (PID=22222223)
v prog1.trace - PID=22222223

Note:
1. Because the __PROF_FILE_NAME environment variable is set to

prog1.trace, the prog1.trace is used for all processes, including the process
that executes the prog2 program..

2. With the fork function a new process is created and to distinguish the
trace file for the second process from the first one, the process ID (PID)
number is appended at the end of each trace file’s name.

3. Then, the exec function is executed and a new trace file is created. The
exec function replaces the current process image with a new process image
without changing the PID number. Because the PID number did not
change, the PID number is not appended to the new trace file’s name.

“Function trace” on page 15
“Multiple process support” on page 17

“Setting environment variables for Performance Analyzer” on page 28

“Sample JCL for creating trace files” on page 83
“Sample TSO commands for creating trace files” on page 82
“Sample Unix system service commands for creating trace files” on page 80

86 Performance Analyzer: C/C++ Productivity Tools

Notices

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
Intellectual Property and Licensing
IBM Corporation
North Castle Drive, MD-NC 119
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
DOCUMENT “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OR CONDITIONS OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will

© Copyright IBM Corp. 1999 87

be incorporated in new editions of the document. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

Lab Director
IBM Canada Ltd.
1150 Eglinton Ave E
Toronto, Ontario, M3C 1H7
Canada

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement or any equivalent
agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

88 Performance Analyzer: C/C++ Productivity Tools

All statements regarding IBM’s future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may
include the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses used
by an actual business enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks and service marks

The following terms are trademarks or registered trademarks of the IBM
Corporation in the United States, other countries, or both:

CICS
CICS/ESA
CICS/MVS
CICS/VSE
DB2
IBM

IMS
Language Environment
MVS/ESA
OS/390
S/390

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks
of Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark of The Open Group in the United States
and/or other countries licensed exclusively through X/Open Company
Limited.

Sun, SunLink, Solaris, SunOS, Java, all Java-based trademarks and logos, NFS,
and Sun Microsystems are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and/or other countries.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE
ACCURATE, THE OBJECT MANAGEMENT GROUP, AND THE
COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND WITH
REGARDS TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE.

Other company, product, and service names may be trademarks or service
marks of others.

Notices 89

	Contents
	About this book
	Who should read this book
	Conventions used in this book
	Related information
	How to send your comments

	Chapter 1. Introducing the Performance Analyzer
	The Performance Analyzer for OS/390
	Performance Analyzer product files

	Chapter 2. Diagrams for analyzing a trace file
	Diagrams for analyzing a trace file
	Call Nesting diagram
	Dynamic Call Graph diagram
	Execution Density diagram
	Statistics diagram
	Time Line diagram

	Chapter 3. Trace file generation
	Call frequency counting
	Time stamps
	Trace events
	Function trace
	Overhead time
	Multiple process support

	Chapter 4. Trace file viewing and analysis
	Function groups
	Pattern recognition
	Diagram filters
	Correlation

	Chapter 5. Tips for Using the Performance Analyzer tounderstand your program
	Use a combination of diagrams to understand your program
	Annotate your trace file

	Chapter 6. Preparing your program for analysis
	Compiling your program
	Setting environment variables for Performance Analyzer
	Setting run-time option PROFILE for Performance Analyzer
	Creating a trace file

	Chapter 7. Starting and exiting the Performance Analyzer
	Starting the Performance Analyzer
	Starting the Performance Analyzer from a command line
	Exiting the Performance Analyzer

	Chapter 8. Controlling what data is collected in the tracefile
	Collecting call frequency data
	Tracing a specific DLL
	Tracing a Webserver application
	Specifying trace file name

	Chapter 9. Viewing your trace file in a diagram
	Downloading the trace file from the host
	Starting the Performance Analyzer to analyze a trace file
	Opening a trace file in a diagram

	Chapter 10. Navigating the trace file view
	Correlating events between diagrams
	Enlarging or reducing a diagram
	Seeing details by combining the zoom and correlation features
	Viewing a specific time or range of time

	Chapter 11. Searching for trace data in a diagram
	Finding a specific annotation
	Finding a specific function call or return
	Finding trace data for a specific function
	Finding trace data for a specific class
	Finding trace data for a specific executable

	Chapter 12. Controlling what data is shown in thediagrams
	Filtering events by component type
	Filtering events by function
	Filtering events by thread
	Filtering events by group
	Filtering nodes and arcs in the Dynamic Call Graph diagram
	Recognizing call sequence patterns
	Viewing class activity

	Chapter 13. Analyzing Your Trace File
	Adding, changing, or deleting annotations
	Determining the elapsed time between two events
	Selecting functions to inline
	Viewing thread interactions in a multithreaded program

	Chapter 14. Reference
	Limitations when analyzing trace data
	Limitations when creating a trace
	Performance Analyzer invocation parameters
	Tracing programs that have interlanguage calls
	Run-time option for program tracing
	Run-time environment variables for program tracing
	Troubleshooting Performance Analyzer problems
	Performance Analyzer error messages on the host
	Sample Unix system service commands for creating trace files
	Sample TSO commands for creating trace files
	Sample JCL for creating trace files
	Sample trace file names from tracing a multiprocess program

	Notices
	Trademarks and service marks

