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PREFACE.

In the works of Abel, Euler, Jacobi, Legendre, and others, the stu-
dent of Mathematics has a most abundant supply of material for the
study of the subject of Elliptic Functions.

These works, however, are not accessible to the general student, and,
in addition to being very technical in their treatment of the subject, are
moreover in a foreign language.

It is in the hope of smoothing the road to this interesting and increas-
ingly important branch of Mathematics, and of putting within reach of
the English student a tolerably complete outline of the subject, clothed
in simple mathematical language and methods, that the present work
has been compiled.

New or original methods of treatment are not to be looked for. The
most that can be expected will be the simplifying of methods and the
reduction of them to such as will be intelligible to the average student
of Higher Mathematics.

I have endeavored throughout to use only such methods as are fa-
miliar to the ordinary student of Calculus, avoiding those methods of
discussion dependent upon the properties of double periodicity, and
also those depending upon Functions of Complex Variables. For the
same reason I have not carried the discussion of the Θ and H functions
further.

Among the minor helps to simplicity is the use of zero subscripts to
indicate decreasing series in the Landen Transformation, and of numer-
ical subscripts to indicate increasing series. I have adopted the notation
of Gudermann, as being more simple than that of Jacobi.

I have made free use of the following works: Jacobi’s Fun-
damenta Nova Theoriæ Func. Ellip.; Houel’s Calcul Infinitésimal;



Legendre’s Traité des Fonctions Elliptiques; Durege’s Theorie der
Elliptischen Functionen; Hermite’s Théorie des Fonctions Ellip-
tiques; Verhulst’s Théorie des Functions Elliptiques; Bertrand’s
Calcul Intégral; Laurent’s Théorie des Fonctions Elliptiques; Cay-
ley’s Elliptic Functions; Byerly’s Integral Calculus; Schlomilch’s
Die Höheren Analysis; Briot et Bouquet’s Fonctions Elliptiques.

I have refrained from any reference to the Gudermann or Weier-
strass functions as not within the scope of this work, though the Gu-
dermannians might have been interesting examples of verification for-
mulæ. The arithmetico-geometrical mean, the march of the functions,
and other interesting investigations have been left out for want of room.
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ELLIPTIC FUNCTIONS.

INTRODUCTORY CHAPTER.∗

The first step taken in the theory of Elliptic Functions was the de-
termination of a relation between the amplitudes of three functions of
either order, such that there should exist an algebraic relation between
the three functions themselves of which these were the amplitudes. It
is one of the most remarkable discoveries which science owes to Euler.
In 1761 he gave to the world the complete integration of an equation
of two terms, each an elliptic function of the first or second order, not
separately integrable.

This integration introduced an arbitrary constant in the form of a
third function, related to the first two by a given equation between the
amplitudes of the three.

In 1775 Landen, an English mathematician, published his celebrated
theorem showing that any arc of a hyperbola may be measured by two
arcs of an ellipse, an important element of the theory of Elliptic Func-
tions, but then an isolated result. The great problem of comparison of
Elliptic Functions of different moduli remained unsolved, though Euler,
in a measure, exhausted the comparison of functions of the same mod-
ulus. It was completed in 1784 by Lagrange, and for the computation
of numerical results leaves little to be desired. The value of a function
may be determined by it, in terms of increasing or diminishing moduli,

∗Condensed from an article by Rev. Henry Moseley, M.A., F.R.S., Prof. of Nat. Phil.
and Ast., King’s College, London.
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until at length it depends upon a function having a modulus of zero, or
unity.

For all practical purposes this was sufficient. The enormous task
of calculating tables was undertaken by Legendre. His labors did not
end here, however. There is none of the discoveries of his predecessors
which has not received some perfection at his hands; and it was he who
first supplied to the whole that connection and arrangement which have
made it an independent science.

The theory of Elliptic Integrals remained at a standstill from 1786,
the year when Legendre took it up, until the year 1827, when the sec-
ond volume of his Traité des Fonctions Elliptiques appeared. Scarcely
so, however, when there appeared the researches of Jacobi, a Professor
of Mathematics in Königsberg, in the 123d number of the Journal of
Schumacher, and those of Abel, Professor of Mathematics at Christia-
nia, in the 3d number of Crelle’s Journal for 1827.

These publications put the theory of Elliptic Functions upon an en-
tirely new basis. The researches of Jacobi have for their principal object
the development of that general relation of functions of the first order
having different moduli, of which the scales of Lagrange and Legendre
are particular cases.

It was to Abel that the idea first occurred of treating the Elliptic In-
tegral as a function of its amplitude. Proceeding from this new point
of view, he embraced in his speculations all the principal results of Ja-
cobi. Having undertaken to develop the principle upon which rests the
fundamental proposition of Euler establishing an algebraic relation be-
tween three functions which have the same moduli, dependent upon
a certain relation of their amplitudes, he has extended it from three to
an indefinite number of functions; and from Elliptic Functions to an
infinite number of other functions embraced under an indefinite num-
ber of classes, of which that of Elliptic Functions is but one; and each
class having a division analogous to that of Elliptic Functions into three
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orders having common properties.
The discovery of Abel is of infinite moment as presenting the first

step of approach towards a more complete theory of the infinite class
of ultra elliptic functions, destined probably ere long to constitute one
of the most important of the branches of transcendental analysis, and
to include among the integrals of which it effects the solution some of
those which at present arrest the researches of the philosopher in the
very elements of physics.



CHAPTER I.

ELLIPTIC INTEGRALS.

The integration of irrational expressions of the form

X dx
√

A + Bx + Cx2,

or

X dx√
A + Bx + Cx2

,

X being a rational function of x, is fully illustrated in most elemen-
tary works on Integral Calculus, and shown to depend upon the tran-
scendentals known as logarithms and circular functions, which can be
calculated by the proper logarithmic and trigonometric tables.

When, however, we undertake to integrate irrational expressions
containing higher powers of x than the square, we meet with insur-
mountable difficulties. This arises from the fact that the integral sought
depends upon a new set of transcendentals, to which has been given
the name of elliptic functions, and whose characteristics we will learn
hereafter.

The name of Elliptic Integrals has been given to the simple integral
forms to which can be reduced all integrals of the form

(1) V =
∫

F(X, R) dx,

where F(X, R) designates a rational function of x and R, and R repre-
sents a radical of the form

R =
√

Ax4 + Bx3 + Cx2 + Dx + E,
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where A, B, C, D, E indicate constant coefficients.
We will show presently that all cases of Eq. (1) can be reduced to

the three typical forms

(2)

∫ x

0

dx√
(1− x2)(1− k2x2)

,

∫ x

0

x2 dx√
(1− x2)(1− k2x2)

,∫ x

0

dx
(x2 + a)

√
(1− x2)(1− k2x2)

,

which are called elliptic integrals of the first, second, and third order.
Why they are called Elliptic Integrals we will learn further on. The

transcendental functions which depend upon these integrals, and which
will be discussed in Chapter IV, are called Elliptic Functions.

The most general form of Eq. (1) is

(3) V =
∫ A + BR

C + DR
dx;

where A, B, C, and D stand for rational integral functions of x.
A + BR
C + DR

can be written

A + BR
C + DR

=
AC− BDR2

C2 − D2R2 −
(AD− CB)R2

C2 − D2R2 · 1
R

= N − P
R

;

N and P being rational integral functions of x. Whence Eq. (3) becomes

(4) V =
∫

N dx−
∫ P dx

R
.
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Eq. (4) shows that the most general form of V can be made to de-
pend upon the expressions

(5) V′ =
∫ P dx

R
,

and ∫
N dx.

This last form is rational, and needs no discussion here.
We can write

P =
G0 + G1x + G2x2 + · · ·
H0 + H1x + H2x2 + · · ·

=
G0 + G2x2 + G4x4 + · · ·+ (G1 + G3x2 + · · · )x
H0 + H2x2 + H4x4 + · · ·+ (H1 + H3x2 + · · · )x

.

Multiplying both numerator and denominator by

H0 + H2x2 + H4x4 + · · · − (H1 + H3x2 + H5x4 + · · · )x,

we have a new denominator which contains only powers of x2. The
result takes the following form:

P =
M0 + M2x2 + M4x4 + · · ·+ (M1 + M3x2 + M5x4 + · · · )x

N0 + N2x2 + N4x4 + N6x6 + · · ·
= Φ(x2) + Ψ(x2) · x.

Equation (5) thus becomes

(6) V′ =
∫ Φ(x2) dx

R
+
∫ Ψ(x2) · x · dx

R
.

We shall see presently that R can always be assumed to be of the
form √

(1− x2)(1− k2x2).
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Therefore, putting x2 = z, the second integral in Eq. (6) takes the
form

1
2

∫ Ψ(z) · dz√
(1− z)(1− k2z)

,

which can be integrated by the well-known methods of Integral Calcu-
lus, resulting in logarithmic and circular transcendentals.

There remains, therefore, only the form

∫ Φ(x2) dx
R

to be determined.
We will now show that R can always be assumed to be in the form√

(1− x2)(1− k2x2).

We have

R =
√

Ax4 + Bx3 + Cx2 + Dx + E

=
√

G(x− a)(x− b)(x− c)(x− d),

a, b, c, and d being the roots of the polynomial of the fourth degree, and
G any number, real or imaginary, depending upon the coefficients in
the given polynomial.

Substituting in equation (1)

x =
p + qy
1 + y

,

we have

V =
∫

φ(y, ρ) dy,(7)
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ρ designating the radical

ρ =
√

G[p− a + (q− a)y][p− b + (q− b)y][p− c + (q− c)y] · · · .

In order that the odd powers of y under the radical may disappear
we must have their coefficients equal to zero; i.e.,

(p− a)(q− b) + (p− b)(q− a) = 0,

(p− c)(q− d) + (p− d)(q− c) = 0;

whence

2pq− (p + q)(a + b) + 2ab = 0,

2pq− (p + q)(c + d) + 2cd = 0,

and

(8)


pq =

ab(c + d)− cd(a + b)
a + b− (c + d)

,

p + q =
2ab− 2cd

a + b− (c + d)
.

Equation (8) shows that p and q are real quantities, whether the roots
a, b, c, and d are real or imaginary; a, b, and c, d being the conjugate
pairs.

Hence equation (1) can always be reduced to the form of equa-
tion (7), which contains only the second and fourth powers of the vari-
able.

This transformation seems to fail when a + b− (c + d) = 0; but in that
case we have

R =
√

G[x2 − (a + b)x + ab][x2 − (a + b)x + cd],
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and substituting

x = y− a + b
2

will cause the odd powers of y to disappear as before.
If the radical should have the form√

G(x− a)(x− b)(x− c),

placing x = y2 + a, we get

V =
∫

φ(y, ρ) dy,

ρ =
√

G(y2 + a− b)(y2 + a− c),

φ designating a rational function of y and ρ.
Thus all integrals of the form contained in equation (1), in which

R stands for a quadratic surd of the third or fourth degree, can be
reduced to the form

(9) V =
∫

φ(x, R) dx,

R designating a radical of the form√
G(1 + mx2)(1 + nx2),

m and n designating constants.
It is evident that if we put

x′ = x
√−m, k2 = − n

m
,

we can reduce the radical to the form√
(1− x2)(1− k2x2).
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We shall see later on that the quantity k2, to which has been given
the name modulus, can always be considered real and less than unity.

Combining these results with equation (6), we see that the integra-
tion of equation (1) depends finally upon the integration of the expres-
sion

(10) V′′ =
∫

φ(x2) dx√
(1− x2)(1− k2x2)

=
∫

φ(x2) dx
R

.

The most general form of φ(x2) is

φ(x2) =
M0 + M2x2 + M4x4 + · · ·
N0 + N2x2 + N4x4 + · · ·

= P0 + P2x2 + P4x4 + P6x6 + · · ·
+ ∑

L
(x2 + a)n .

Hence

(11) V′′ = ∑ P
∫ x2m dx

R
+ ∑ L

∫ dx
(x2 + a)n R

.

But
∫ x2m dx

R
depends upon

∫ dx
R

and
∫ x2 dx

R
, which can be shown

as follows:
Differentiating Rx2m−3, we have

d[x2m−3R] = d
[

x2m−3
√

α + βx2 + γx4
]

= (2m− 3)x2m−4 dx
√

α + βx2 + γx4 +
x2m−3(βx + 2γx3) dx√

α + βx2 + γx4
.



ELLIPTIC INTEGRALS. 11

Integrating and collecting, we get

Rx2m−3 = (2m− 3)α
∫ x2m−4 dx

R
+ (2m− 2)β

∫ x2m−2 dx
R

+ (2m− 1)γ
∫ x2m dx

R

= α′
∫ x2m−4 dx

R
+ β′

∫ x2m−2 dx
R

+ γ′
∫ x2m dx

R
.(12)

Whence we get, by taking m = 2,

(13) Rx = α
∫ dx

R
+ β

∫ x2 dx
R

+ γ
∫ x4 dx

R
,

which shows that the general expression
∫ x2m dx

R
can be found by suc-

cessive calculations, when we are able to integrate the expressions∫ dx
R

and
∫ x2 dx

R
,

the first and second of equation (2).
We will now consider the second class of terms in eq. (11), viz.,
L dx

(x2 + a)n R
.

This second term is as follows:

∑
∫ L

(x2 + a)n R
=
∫ A dx

(x2 + a)n R
+
∫ B dx

(x2 + a)n−1 R
(14)

+
∫ C dx

(x2 + a)n−2 R
+ · · ·

Each of these terms can be shown to depend ultimately upon terms
of the form

x2 dx
R

,
dx
R

, and
dx

(x2 + a) R
.
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The two former will be recognized as the two ultimate forms already
discussed, the first and second of equation (2). The third is the third
one of equation (2).

This dependence of equation (14) can be shown as follows:
We have

d
[

xR
(x2 + a)n−1

]
=

(x2 + a)n−1(x dR + R dx)− 2x2R(n + 1)(x2 + a)n−2 dx
(x2 + a)2n−2

=
(x2 + a)(x dR + R dx)− 2x2R(n− 1) dx

(x2 + a)n .

Substituting the value of

R =
√

α + βx2 + γx4 and dR = (βx + 2γx3)
dx
R

,

we get

d
[

xR
(x2 + a)n−1

]
=

(x2 + a)(βx2 + 2γx4 + α + βx2 + γx4)− 2x2(n− 1)(α + βx2 + γx4)
(x2 + a)n · dx

R

=

{ (
3γ− 2(n− 1)γ

)
x6 +

(
2β + 3aγ− 2(n− 1)β

)
x4

+
(
2aβ + α− 2(n− 1)α

)
x2 + aα

}
(x2 + a)n · dx

R

=
−(2n− 5)γx6 +

(−(2n− 4)β + 3aγ
)

x4 +
(−(2n− 3)α + 2aβ

)
x2 + aα

(x2 + a)n · dx
R

;
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or, by substituting in the numerator x2 = z− a,

=



− (2n− 5)γz3

+
(
(2n− 5)3aγ− (2n− 4)β + 3aγ

)
z2

+
(−(2n− 5)3a2γ + (2n− 4)2aβ− 6a2γ− (2n− 3)α + 2aβ

)
z

+
(
(2n− 5)a3γ− (2n− 4)a2β + 3a3γ + (2n− 3)aα− 2a2β + aα

)


(x2 + a)n · dx

R
;

or, after resubstituting z = x2 + a, and integrating,

xR
(x2 + a)n−1 = −(2n− 5)γ

∫ dx
(x2 + a)n−3R

(15)

− (2n− 4)(β− 3aγ)
∫ dx

(x2 + a)n−2R

− (2n− 3)(3a2γ− 2aβ + α)
∫ dx

(x2 + a)n−1R

+ (2n− 2)(a3γ− a2β + aα)
∫ dx

(x2 + a)nR
.

= α1

∫ dx
(x2 + a)n−3R

+ β1

∫ dx
(x2 + a)n−2R

+ γ1

∫ dx
(x2 + a)n−1R

+ δ1

∫ dx
(x2 + a)nR

.

Making n = 2, we have

xR
(x2 + a)1 = α1

∫ (x2 + a) dx
R

+ β1

∫ dx
R

+ γ1

∫ dx
(x2 + a)R

(16)

+ δ1

∫ dx
(x2 + a)2R

.
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Equation (16) shows that ∫ dx
(x2 + a)2R

depends upon the three forms∫ x2 dx
R

,
∫ dx

R
, and

∫ dx
(x2 + a)R

,

the three types of equation (2), and equation (15) shows that the general
form ∫ dx

(x2 + a)nR
depends ultimately upon the same three types.

We have now discussed every form which the general equation (1)
can assume, and shown that they all depend ultimately upon one or
more of the three types contained in equation (2).

These three types are called the three Elliptic Integrals of the first,
second, and third kind, respectively.

Legendre puts x = sin φ, and reduces the three integrals to the fol-
lowing forms:

F(k, φ) =
∫ φ

0

dφ√
1− k2 sin2 φ

;(17)

1
k2

∫ φ

0

dφ√
1− k2 sin2 φ

− 1
k2

∫ φ

0

√
1− k2 sin2 φ · dφ;

Π(n, k, φ) =
∫ φ

0

dφ

(1− n sin2 φ)
√

1− k2 sin2 φ
;(18)

the first being Legendre’s integral of the first kind; the form

(19) E(k, φ) =
∫ φ

0

√
1− k2 sin2 φ · dφ
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being the integral of the second kind; and the third one being the inte-
gral of the third kind.

The form of the integral of the second kind shows why they are
called Elliptic Integrals, the arc of an elliptic quadrant being equal to

a
∫ π

2

0

√
1− e2 sin2 φ · dφ,

φ being the complement of the eccentric angle.
By easy substitutions, we get from Eqs. (17), (18), and (19) the fol-

lowing solutions:

∫ φ

0

sin2 φ

∆
dφ =

F− E
k2 ;

∫ φ

0

cos2 φ

∆
dφ =

E− (1− k2)F
k2 ;

∫ φ

0

tan2 φ

∆
dφ =

∆ tan φ− E
1− k2 ;

∫ φ

0

sec2 φ

∆
dφ =

∆ tan φ + (1− k2)F− E
1− k2 ;

∫ φ

0

1
∆3 dφ =

1
1− k2

(
E− k2 sin φ cos φ

∆

)
;

∫ φ

0

sin2 φ

∆3 dφ =
1

1− k2

(
E− (1− k2)F

k2 − sin φ cos φ

∆

)
;

∫ φ

0

cos2 φ

∆3 dφ =
F− E

k2 +
sin φ cos φ

∆
.



CHAPTER II.

ELLIPTIC FUNCTIONS.

Let u =
∫ φ

0

dφ√
1− k2 sin2 φ

.

φ∗ is called the amplitude corresponding to the argument u, and is
written

φ = am(u, k) = am u.

The quantity k is called the modulus, and the expression
√

1− k2 sin2 φ

is written∗ √
1− k2 sin2 φ = ∆ am u = ∆φ,

and is called the delta function of the amplitude of u, or delta of φ, or
simply delta φ.

u can be written
u = F(k, φ).

The following abbreviations are used:

sin φ = sin am u = sn †u;

cos φ = cos am u = cn †u;

∆φ = ∆ am u = dn †u = ∆u;

tan φ = tan am u = tn u.

∗Legendre.
†Gudermann, in his “Theorie der Modularfunctionen”: Crelle’s Journal, Bd. 18.
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Let φ and ψ be any two arbitrary angles, and put

φ = am u;

ψ = am ν.

A

B

C

µ

φ

ψ

In the spherical triangle ABC we have from
Trigonometry, µ and C being constant,

dφ

cos B
+

dψ

cos A
= 0.

Since C and µ are constant, denoting by k an ar-
bitrary constant, we have

(1)
sin C
sin µ

= k.

But
sin A = sin ψ

sin B
sin φ

= sin ψ
sin C
sin µ

= k sin ψ.

Whence
cos A =

√
1− sin2 A =

√
1− k2 sin2 ψ.

In the same manner

cos B =
√

1− sin2 B =
√

1− k2 sin2 φ.

Substituting these values, we get

(2)
dφ√

1− k2 sin2 φ
+

dψ√
1− k2 sin2 ψ

= 0.
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Integrating this, there results

(3)
∫ φ

0

dφ√
1− k2 sin2 φ

+
∫ ψ

0

dψ√
1− k2 sin2 ψ

= const.

When φ = 0, we have ψ = µ, and therefore the constant must be of
the form ∫ µ

0

dφ√
1− k2 sin2 φ

,

whence

(4)
∫ φ

0

dφ√
1− k2 sin2 φ

+
∫ ψ

0

dψ√
1− k2 sin2 ψ

=
∫ µ

0

dφ√
1− k2 sin2 φ

,

or
u + ν = m;

and evidently the amplitudes φ, ψ, and µ can be considered as the three
sides of a spherical triangle, and the relations between the sides of this
spherical triangle will be the same as those between φ, ψ, and µ.

P

C

Q

A

B

B

G

Hµ

φ

But the sides of this triangle have imposed upon
them the condition

sin C
sin µ

= k;

and since k < 1, we must have µ > C, which requires
that one of the angles of the triangle shall be obtuse
and the other two acute.

In the figure, let C be an acute angle of the trian-
gle ABC, and PQ the equatorial great circle of which
C is the pole.
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P

C

Q

A

D

B

The arc PQ will be the measure of the
angle C.

Let AG and AH be the arcs of two
great circles perpendicular respectively
to CQ and CP. They will of course be
shorter than PQ. Hence AB = µ must in-
tersect CQ in points between CG and HQ,
since µ > (C = PQ). In any case either
A or B will be obtuse according as B falls
between QH or CG respectively; and the
other angle will be acute.

In the case where C is an obtuse an-
gle, it will be easily seen that the angle at A must be acute, since the
great circle AD, perpendicular to CP, intersects PQ in D, PD being a
quadrant. The same remarks apply to the angle B. Hence, in either
case, one of the angles of the triangle is obtuse and the other two are
acute, as a result of the condition

sin C
sin µ

= k < 1.

From Trigonometry we have

cos µ = cos φ cos ψ + sin φ sin ψ cos C;

and since the angle C is obtuse,

cos C = −
√

1− sin2 C = −
√

1− k2 sin2 µ,

and

(5) cos µ = cos φ cos ψ− sin φ sin ψ

√
1− k2 sin2 µ,
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the relation sought.
The spherical triangle likewise gives the following relations between

the sides:

(5)∗

 cos φ = cos µ cos ψ + sin µ sin ψ

√
1− k2 sin2 φ;

cos ψ = cos µ cos φ + sin µ sin φ

√
1− k2 sin2 ψ.

These give, by eliminating cos µ,

sin µ =
cos2 ψ− cos2 φ

sin φ cos ψ∆ψ− sin ψ cos φ∆φ
;

which, after multiplying by the sum of the terms in the denominator
and substituting cos2 = 1− sin2, can be written

sin µ =
(sin2 φ− sin2 ψ)(sin φ cos ψ∆ψ + sin ψ cos φ∆φ)

sin2 φ cos2 ψ∆2ψ− sin2 ψ cos2 φ∆2φ
.

Since the denominator can be written

(sin2 φ− sin2 ψ)(1− k2 sin2 φ sin2 ψ),

sin µ =
sin φ cos ψ∆ψ + sin ψ cos φ∆φ

1− k2 sin2 φ sin2 ψ
.(6)

In a similar manner we get

(6)∗


cos µ =

cos φ cos ψ− sin φ sin ψ∆φ∆ψ

1− k2 sin2 φ sin2 ψ
;

∆µ =
∆φ∆ψ− k2 sin φ sin ψ cos φ cos ψ

1− k2 sin2 φ sin2 ψ
.
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These equations can also be written as follows:

(7)



sin am(u± ν) =
sin am u cos am ν∆ am ν± sin am ν cos am u∆ am u

1− k2 sin2 am u sin2 am ν
;

cos am(u± ν) =
cos am u cos am ν∓ sin am u sin am ν∆ am u∆ am ν

1− k2 sin2 am u sin2 am ν
;

∆ am(u± ν) =
∆ am u∆ am ν∓ k2 sin am u sin am ν cos am u cos am ν

1− k2 sin2 am u sin2 am ν
;

or

(8)



sn(u± ν) =
sn u cn ν dn ν± sn ν cn u dn u

1− k2 sn2 u sn2 ν
;

cn(u± ν) =
cn u cn ν∓ sn u sn ν dn u dn ν

1− k2 sn2 u sn2 ν
;

dn(u± ν) =
dn u dn ν∓ k2 sn u sn ν cn u cn ν

1− k2 sn2 u sn2 ν
.

Making u = ν, we get from the upper sign

(9)



sn 2u =
2 sn u cn u dn u

1− k2 sn4 u
;

cn 2u =
cn2 u− sn2 u dn2 u

1− k2 sn4 u
=

1− 2 sn2 u + k2 sn4 u
1− k2 sn4 u

;

dn 2u =
dn2 u− k2 sn2 u cn2 u

1− k2 sn4 u
=

1− 2k2 sn2 u + k2 sn4 u
1− k2 sn4 u

.
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From these

(10)



1− cn 2u =
2 cn2 u dn2 u
1− k2 sn4 u

;

1 + cn 2u =
2 cn2 u

1− k2 sn4 u
;

1− dn u =
2k2 sn2 u cn2 u

1− k2 sn4 u
;

1 + dn u =
2 dn2 u

1− k2 sn4 u
;

and therefore

(11)



sn2 u =
1− cn 2u
1 + dn 2u

;

cn2 u =
dn 2u + cn 2u

1 + dn 2u
;

dn2 u =
1− k2 + dn 2u + k2 cn 2u

1 + dn 2u
;

and by analogy

(12)



sn
u
2

=
√

1− cn u
1 + dn u

;

cn
u
2

=
√

cn u + dn u
1 + dn u

;

dn
u
2

=

√
1− k2 + dn u + k2 cn u

1 + dn u
.

In equations (7) making u = ν, and taking the lower sign, we have

(13)


sn 0 = 0;

cn 0 = 1;

dn 0 = 1.
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Likewise, we get by making u = 0,

(14)


sn(−u) = − sn u;

cn(−u) = + cn u;

dn(−u) = dn u.



CHAPTER III.

PERIODICITY OF THE FUNCTIONS.

When the elliptic integral

∫ φ

0

dφ√
1− k2 sin2 φ

has for its amplitude
π

2
, it is called, following the notation of Legendre,

the complete function, and is indicated by K, thus:

K =
∫ π

2

0

dφ√
1− k2 sin2 φ

.

When k becomes the complementary modulus, k′, (see eq. (4), Chap.
IV,) the corresponding complete function is indicated by K′, thus:

K′ =
∫ π

2

0

dφ√
1− k′2 sin2 φ

.

From these, evidently,

am(K, k) =
π

2
, am(K′, k′) =

π

2
.

(1)


sn(K, k) = 1;

cn(K, k) = 0;

dn(K, k) = k′.
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From eqs. (7), (8), and (9), Chap. II, we have, by the substitution of
the values of sn(K) = 1, cn(K) = 0, dn(K) = k′,

(2)


sn 2K = 0;

cn 2K = −1;

dn 2K = 1.

These equations, by means of (1), (2), and (3) of Chap. II, give

(3)


sn(u + 2K) = − sn u;

cn(u + 2K) = − cn u;

dn(u + 2K) = dn u;

and these, by changing u into u + 2K, give

(4)


sn(u + 4K) = sn u;

cn(u + 4K) = cn u;

dn(u + 4K) = dn u.

From these equations it is seen that the elliptic functions sn, cn, dn,
are periodic functions having for their period 4K. Unlike the period
of trigonometric functions, this period is not a fixed one, but depends
upon the value of k, the modulus.

From the Integral Calculus we have∫ n π
2

0

dφ

∆φ
=
∫ π

2

0

dφ

∆φ
+
∫ π

π
2

dφ

∆φ
+
∫ 3π

2

π

dφ

∆φ
+ · · ·+

∫ n π
2

(n−1) π
2

dφ

∆φ

= n
∫ π

2

0

dφ

∆φ
= nK;

from which we see that

n
π

2
= am(nK);
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or, since
π

2
= am K,

am(nK) = n · am K,

and

nπ = am(2nK),

and also nπ = 2n am K.

In the case of an Elliptic Integral with the arbitrary angle α, we can put

α = nπ ± β,

where β is an angle between 0 and
π

2
, the upper or the lower sign being

taken according as
π

2
is contained in α an even or an uneven number of

times.
In the first case we have∫ nπ+β

0

dφ

∆φ
=
∫ nπ

0

dφ

∆φ
+
∫ nπ+β

nπ

dφ

∆φ
;

or, putting φ1 = φ− nπ,∫ nπ+β

0

dφ

∆φ
= 2nK +

∫ β

0

dφ1
∆φ1

.

In the second case∫ nπ−β

0

dφ

∆φ
=
∫ nπ

0

dφ

∆φ
−
∫ nπ

nπ−β

dφ

∆φ
;

or, putting φ1 = nπ − φ,∫ nπ−β

0

dφ

∆φ
= 2nK−

∫ β

0

dφ1
∆φ1

;
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or in either case, ∫ nπ±β

0

dφ

∆φ
= 2nK±

∫ β

0

dφ1
∆φ1

.

Thus we see that the Integral with the general amplitude α can be
made to depend upon the complete integral K and an Integral whose
amplitude lies between 0 and

π

2
.

Put now ∫ β

0

dφ1
∆φ1

= u, β = am u.

This gives

∫ nπ±β

0

dφ

∆φ
= 2nK± u,

or am(2nK± u) = nπ ± β

= nπ ± am u(5)

= 2n · am K± am u;(6)

or, since am(−z) = − am z,

am(u± 2nK) = am u± nπ

= am u± 2n · am K.

Taking the sine and cosine of both sides, we have

sn(u + 2nK) = ± sn u;

cn(u + 2nK) = ± cn u;

the upper or the lower sign being taken according as n is even or odd.
By giving the proper values to n we can get the same results as in
equations (3) and (4).
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Putting n = 1 in eq. (5), we have

sn(2K− u) = sin π cn u− cos π sn u

= sn u.(7)

Elliptic functions also have an imaginary period. In order to show
this we will, in the integral ∫ φ

0

dφ

∆φ
,

assume the amplitude as imaginary. Put

sin φ = i tan ψ.

From this we get

(8)



cos φ =
1

cos ψ
;

∆φ =

√
1− k′2 sin2 ψ

cos ψ
=

∆(ψ, k′)
cos ψ

;

dφ = i
dψ

cos ψ
.

From these, since φ and ψ vanish simultaneously, we easily get

∫ φ

0

dφ

∆φ
= i

∫ ψ

0

dψ

∆(ψ, k′) .

Put ∫ ψ

0

dψ

∆(ψ, k′) = u and ψ = am(u, k′),



PERIODICITY OF THE FUNCTIONS. 29

whence

∫ φ

0

dφ

∆φ
= iu and φ = am(iu);

and these substituted in Eq. (8) give

(9)



sn iu = i tn(u, k′);

cn iu =
1

cn(u, k′) ;

dn iu =
dn(u, k′)
cn(u, k′) .

By assuming

∫ ψ

0

dψ

∆(ψ, k′) = iu and
∫ φ

0

dφ

∆φ
= −u,

we get

sn(−u) = i tn(iu, k′),

cn(−u) =
1

cn(iu, k′) ,

dn(−u) =
dn(iu, k′)
cn(iu, k′) ;

or, from eq. (14), Chap. II,

(10)



sn u = −i tn(iu, k′);

cn u =
1

cn(iu, k′) ;

dn u =
dn(iu, k′)
cn(iu, k′) .
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From eqs. (7), Chap. II, making ν = K, we get, since sn K = 1, cn K =
0, dn K = k′,

(11)



sn(u± K) = ± cn u dn u
1− k2 sn2 u

= ± cn u
dn u

;

cn(u± K) = ∓sn u dn uk′

dn2 u
= ∓ k′ sn u

dn u
;

dn(u± K) = +
k′

dn u
.

In these equations, changing u into iu, we get, by means of eqs. (9),

(12)



sn(iu± K) = ± 1
dn(u, k′) ;

cn(iu± K) = ∓ ik′ sn(u, k′)
dn(u, k′) ;

dn(iu± K) = +
k′ cn(u, k′)
dn(u, k′) .

Putting now in eqs. (9) u ± K′ instead of u, and making use of
eqs. (10), and interchanging k and k′, we have

(13)



sn(iu± iK′) = − i cn(u, k′)
k sn(u, k′) ;

cn(iu± iK′) = ∓ dn(u, k′)
k sn(u, k′) ;

dn(iu± iK′) = ∓ 1
sn(u, k′) .

Substituting in these −iu in place of u, we get, by means of eqs. (9)
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and eqs. (14) of Chap. II,

(14)


sn(u± iK′) =

1
k sn u

;

cn(u± iK′) = ∓ i dn u
k sn u

;

dn(u± iK′) = ∓i cot am u.

In these equations, putting u + K in place of u, we get

(15)


sn(u + K± iK′) = +

dn u
k cn u

;

cn(u + K± iK′) = ∓ ik′
k cn u

;

dn(u + K± iK′) = ±ik′ tn u.

Whence for u = 0 we get

(16)


sn(K± iK′) =

1
k

;

cn(K± iK′) = ∓ ik′
k

;

dn(K± iK′) = 0.

If in eqs. (14) we put u = 0, we see that as u approaches zero, the
expressions

sn(±iK′), cn(±iK′), dn(±iK′)

approach infinity.
We see from what has preceded that Elliptic Functions have two

periods, one a real period, and one an imaginary period.
In the former characteristic they resemble Trigonometric Functions,

and in the latter Logarithmic Functions.
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On account of these two periods they are often called Doubly Peri-
odic Functions. Some authors make this double periodicity the starting-
point of their investigations. This method of investigation gives some
very beautiful results and processes, but not of a kind adapted for an
elementary work.

It will be noticed that the Elliptic Functions sn u, cn u, and dn u have
a very close analogy to trigonometric functions, in which, however, the
independent variable u is not an angle, as it is in the case of trigono-
metric functions.

Like Trigonometric Functions, these Elliptic Functions can be ar-
ranged in tables. These tables, however, require a double argument,
viz., u and k. In Chap. IX these functions are developed into series,
from which their values may be computed and tables formed.

No complete tables have yet been published, though they are in
process of computation.



CHAPTER IV.

LANDEN’S TRANSFORMATION

φφ1

A O C B

P

P′
Let AB be the diameter of a circle, with

the centre at O, the radius AO = r, and
C a fixed point situated upon OB, and
OC = k0r. Denote the angle PBC by φ, and
the angle PCO by φ1. Let P′ be a point in-
definitely near to P.

Then
PP′
PC

=
sin PCP′
sin PP′C =

sin PCP′
cos OP′C .

But PP′ = 2r dφ, and sin PCP′ = PCP′ = dφ1; therefore

2r dφ

PC
=

dφ1
cos OP′C .

But

PC2 = r2 + r2k2
0 + 2r2k0 cos 2φ

= (r + rk0)2 cos2 φ + (r− rk0)2 sin2 φ;

also r2 cos2 OP′C = r2 − r2 sin2 OP′C
= r2 − r2k2

0 sin2 φ1.

Therefore
2 dφ√

(r + rk0)2 cos2 φ + (r− rk0)2 sin2 φ
=

dφ1√
r2 − r2k2

0 sin2 φ1

,

which can be written
2

r + rk0

dφ√
1− 4k0r2

(r + rk0)2 sin2 φ

=
1
r

dφ1√
1− k2

0 sin2 φ1

,
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Putting

(1)
4k0r2

(r + rk0)2 =
4k0

(1 + k0)2 = k2,

we have

(2)
∫ φ

0

dφ√
1− k2 sin2 φ

=
1 + k0

2

∫ φ1

0

dφ1√
1− k2

0 sin2 φ1

;

no constant being added because φ and φ1 vanish simultaneously; φ

and φ1 being connected by the equation

(3)
sin OPC
sin OCP

=
sin(2φ− φ1)

sin φ1
=

rk0
r

= k0.

From the value of k2 we have

(4) 1− k2 = k′2 =
(1− k0)2

(1 + k0)2 ,

and therefore

(5) k0 =
1− k′
1 + k′ .

k′ is called the complementary modulus, and is evidently the minimum
value of ∆φ, the value of ∆φ when φ = 90◦:√

1− k2 = k′.

From eq. (1) we evidently have k > k0, for, putting eq. (1) in the form

k2

k2
0

=
4

k0 + 2k2
0 + k3

0
,
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we see that if k0 = 1, then k = k0, but as k0 < 1, always, as is evident
from the figure, k must be greater than k0.

It is also evident, from the figure, that φ1 > φ. Or it may be deduced
directly from eq. (3).

Since k < 1, we can write

k = sin θ, k′ =
√

1− k2 = cos θ.

Substituting in eq. (5), we have

k0 =
1− k′
1 + k′ = tan2 1

2 θ,

and we can write

k0 = sin θ0, k′1 =
√

1− k2
0 = cos θ0.

From eq. (5) we have

1 + k0 =
2

1 + k′ .

Substituting the value of k0 in that for k′1, we get

k′1 =
2
√

k′
1 + k′ .

We also have

2φ− φ1 = φ− (φ1 − φ)

φ1 = φ + (φ1 − φ),

and, eq. (3), sn(2φ− φ1) = k0 sin φ1,
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becomes

sin φ cos(φ1 − φ)− cos φ sin(φ1 − φ)

= k0 sin φ cos(φ1 − φ) + k0 cos φ sin(φ1 − φ),

or
tan φ− tan(φ1 − φ) = k0 tan φ + k0 tan(φ1 − φ),

or

tan(φ1 − φ) =
1− k0
1 + k0

tan φ

= k′ tan φ.

Collecting these results, we have

k =
2
√

k0
1 + k0

= sin θ;(6)

k0 =
1− k′
1 + k′ = sin θ0 = tan2 1

2 θ;(7)

k′1 =
2
√

k′
1 + k′ = cos θ0;(8)

k′ = 1− k0
1 + k0

= cos θ;(9)

1 + k0 =
2

1 + k′ =
2
√

k0
k

=
k′1√

k′
=

1
cos2 1

2 θ
;(10)

sin(2φ− φ1) = k0 sin φ1;(11)

tan(φ1 − φ) = k′ tan φ;(12)
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∫ φ

0

dφ

∆(k, φ)
=

1 + k0
2

∫ φ1

0

dφ1
∆(k0, φ1)

;(13)

k =
√

1− k′2, k′ =
√

1− k2.(14)

Upon examination it will easily appear that k and k0, and θ and θ0,
are the first two terms of a decreasing series of moduli and angles;
k′ and k′1, and φ and φ1, of an increasing series; the law connecting the
different terms of the series being deduced from eqs. (6) to (12).

By repeated applications of these equations we would get the fol-
lowing series of moduli and amplitudes:

k0n = 0(n=∞) k′n = 1(n=∞) φn
...

...
...

k00 k′2 φ2

k0 k′1 φ1

k k′ φ

The upper limit of the one series of moduli is 1, and the lower limit
of the other series is 0, as is indicated. k and k′, which are bound by the
relation k2 + k′2 = 1, are called the primitives of the series.

Note.— It will be noticed that the successive terms of a decreasing series are indi-
cated by the sub-accents 0, 00, 03, 04, . . . 0n; and the successive terms of an increasing
series by the sub-accents 1, 2, 3, . . . n.

Again, by application of these equations, we can form a new series
running up from k, viz., k1, k2, k3, . . . kn = 1(n=∞); and also a new series
running down from k′, viz., k′0, k′00, . . . k′0n = 0(n=∞). So also with φ.
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Collecting these series, we have

k0n= 0 k′n= 1 φn
...

...
...

k02 k′2 φ2

k0 k′1 φ1

k . . . . . k′ . . . . . . φ

k1 k′0 φ0

k2 k′00 φ00
...

...
...

kn= 1 k′0n= 0 φ0n = 0

Note.— In practice it will be found that generally n will not need to be very large
in order to reach the limiting values of the terms, often only two or three terms being
needed.

Applying eqs. (7), (12), (13), and (14) repeatedly, we get

(141)



k = sin θ, k′ = cos θ;

k0 =
1− k′
1 + k′ = tan2 1

2 θ = sin θ0, k′1 = cos θ0;

k00 = tan2 1
2 θ0 = sin θ00, k′2 = cos θ00;

k03 = tan2 1
2 θ00 = sin θ03, k′3 = cos θ03;

. . . . . . . . . . . . . . . .

k0n = tan2 1
2 θ0(n−1) = sin θ0n, k′n = cos θ0n.
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

tan(φ1 − φ) = k′ tan φ;

tan(φ2 − φ1) = k′1 tan φ1;

tan(φ3 − φ2) = k′2 tan φ2;

. . . . . . . . . . . .

tan(φn − φn−1) = k′(n−1) tan φn−1.

(142)



F(k, φ) =
1 + k0

2
F(k0, φ1);

F(k0, φ1) =
1 + k00

2
F(k00, φ2);

F(k00, φ2) =
1 + k03

2
F(k03, φ3);

. . . . . . . . . . . . . .

F(k0(n−1), φn−1) =
1 + k0n

2
F(k0n, φn).

(143)

Multiplying these latter equations together, member by member, we
have

(15) F(k, φ) = (1 + k0)(1 + k00) · · · (1 + k0n)
F(k0n, φn)

2n ;

k0, k00, etc., and φ1, φ2, etc., being determined from the preceding equa-
tions.

From eqs. (9) and (10) we get

1 + k0 =
1

cos2 1
2 θ

, 1 + k00 =
1

cos2 1
2 θ0

, etc.

Substituting these in eq. (15), we get

(16) F(k, φ) =
1

cos2 θ

2
cos2 θ0

2
· · · cos2 θ0n

2

· F(k0n, φn)
2n .
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From eqs. (15) and (10) we get

F(k, φ) =

√
k′1k′2k′3 · · · k′2n

k′ · F(k0n, φn)
2n .

And this with equations (8) and (9) gives

(17) F(k, φ) =

√
cos θ0 cos θ00 · · · cos2 θ0n

cos θ
· F(k0n, φn)

2n .

Applying equation (13) to (k1, φ0), (k2, φ00), etc., we get

F(k1, φ0) =
1 + k

2
F(k, φ), etc.;

but since, eq. (10),
1 + k

2
=

1
1 + k′0

, etc.,

these become
F(k, φ) = (1 + k′0)F(k1, φ0);

F(k1, φ0) = (1 + k′00)F(k2, φ00);

. . . . . . . . . . .

F(kn−1, φ0(n−1)) = (1 + k′0n)F(kn, φ0n);

whence

(18) F(k, φ) = (1 + k′0)(1 + k′00) · · · (1 + k′0n)F(kn, φ0n),

in which k′0, k′00, etc., k1, k2, etc., φ0, φ00, etc., are determined as fol-
lows:

Let k = sin θ,

k1 = sin θ1.



LANDEN’S TRANSFORMATION 41

From eq. (10),

k1 =
2
√

k
1 + k

or sin θ1 =
2
√

sin θ

1 + sin θ
.

Solving this equation for sin θ, we get

sin θ = tan2 1
2 θ1.

Hence we can write

k = sin θ = tan2 1
2 θ1;

k1 = sin θ1 = tan2 1
2 θ2;

. . . . . . . .

kn = sin θn.

(181)

From equation (12) we get

sin(2φ0 − φ) = k sin φ; ∗

sin(2φ00 − φ0) = k1 sin φ0;

. . . . . . . . . .

sin(2φ0n − φ0(n−1)) = kn−1 sin φ0(n−1).

(182)

∗When sin φ = 1 nearly, φ is best determined as follows: From eq. (12) we have

tan(φ− φ0) = k′0 tan φ0

= k′0 tan φ nearly;
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whence

φ− φ0 = Rk′0 tan φ nearly,

R being the radian in seconds, viz. 206264′′.806, and log R = 5.3144251.
Substituting the approximate value of φ0, we can get a new approximation.
Example. φ0 = 82◦ 30′ k′00 = log−1 5.8757219

tan 82◦ 30′ 10.8805709

k′00 5.8757219

R 5.3144251

2.0707179 117′′.684 = 1′.9614

φ0 − φ00 = 1′.9614

φ00 = 82◦ 28′.0386 1st approximation.

This value gives

φ0 − φ00 = 117′′.1675 = 1′.95279

∴ φ00 = 82◦ 28′.04721 2d approximation.

This value gives

φ0 − φ00 = 117′′.1698 = 1′.95283

φ00 = 82◦ 28′.04717 3d approximation.
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To determine k′0, k′00, etc., we have

(183)



k′ = sin η, k = cos η;

k′0 =
1− k
1 + k

= tan2 1
2 η = sin η0, k1 = cos η0;

k′00 = tan2 1
2 η0 = sin η00, k2 = cos η00;

etc. etc. etc.

Or, since 1 + k′0 =
1

cos2 1
2 η

, 1 + k′00 =
1

cos2 1
2 η0

, etc., we can put

eq. (18) in the following form:

(19) F(k, φ) =
1

cos2 1
2 η cos2 1

2 η0 · · · cos2 1
2 η0n

F(kn, φ0n).

From equation (13) we have

F(k1, φ0) =
1 + k

2
F(k, φ),(19)∗

whence

F(k, φ) =
2

1 + k
F(k1, φ0).

By repeated applications this gives, after combining,

F(k, φ) =
2

1 + k
· 2

1 + k1
· · · 2

1 + kn−1
· F(kn, φ0n)

=
k1√

k
· k2√

k1
· · · kn√

kn−1
· F(kn, φ0n);

(20) F(k, φ) =

√
k1k2 · · · k2

n
k

· F(kn, φ0n);
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k1, k2, etc., being determined by repeated applications of

k1 =
2
√

k
1 + k

,

or by equations (181).
In equation (19)∗ let us change k1 and φ0 into k′ and φ respectively,

so that the first member may have for its complete function

K′ = F(k′, φ).

Upon examination of eq. (19)∗ we see that the modulus in the second
member must be the one next less than the one in the first member, that
is, k′0; and likewise that the amplitude must be the one next greater than
the amplitude in the first member, viz., φ1; hence we get

F(k′, φ) =
1 + k′0

2
F(k′0, φ1).

Indicating the complete functions by K′ and K′0, we have, since φ =
π

2
when φ1 = π (see Chap. V),

K′ = (1 + k′0)K′0;

and in the same manner,

K′0 = (1 + k′00)K′00,

K′00 = (1 + k′03)K′03,

. . . . . . .

K′0(n−1) = (1 + k′0n)K′0n;

whence
K′ = (1 + k′0)(1 + k′00) · · · (1 + k′0n)K′0n.
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Since

K′0n =
∫ π

2

0
dφ =

π

2
, (n = limit,)

we have

(20)∗ (1 + k′0)(1 + k′00) · · · (1 + k′0n) =
2K′
π

.

From eq. (19)∗ we have, since [eq. (10), Chap. IV]

1 + k
2

=
1

1 + k′0
,

(1 + k′0)
∫ φ0

0

dφ0
∆(φ0, k1)

=
∫ φ

0

dφ

∆(φ1, k)
;

whence also, since for φ0 =
π

2
, φ = π,

(1 + k′0)K1 = 2K,

(1 + k′00)K2 = 2K1,

. . . . . . .

(1 + k′0n)Kn = 2Kn−1,

and
(1 + k′0)(1 + k′00) · · · (1 + k′0n)Kn = 2nK;

or

Kn
2n =

K
(1 + k′0)(1 + k′00) · · ·

(n = ∞)

=
π

2K1
K.(21)
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Let us find the limiting value of F(k0n, φn) in eq. (15). In the equation
tan(φn−φn−1) = kn−1 tan φn−1, we see that when kn−1 reaches the limit 1,
then φn − φn−1 = φn−1 or φn = 2φn−1. Therefore

φn
2n =

2φn−1
2n =

φn−1
2n−1 ;

φn+1
2n+1 =

2φn

2n+1 =
φn
2n =

φn−1
2n ;

φn+m
2n+m =

φn−1
2n = constant, whatever m may be.

Therefore eq. (15) becomes

(21)∗ F(k, φ) = (1 + k0)(1 + k00) · · · (1 + k0n)
φn
2n ,

n being whatever number will carry k0 and
φ1
2

to their limiting values.
In the same way, eqs. (16) and (17) become

F(k, φ) =
1

cos2 θ

2
cos2 θ0

2
· · · cos2 θ0n

2

· φn
2n(22)

=

√
cos θ0 cos θ00 · · · cos2 θ0n

cos θ
· φn

2n ,(23)

n− 1 being the number which makes k′n−1 = 1.
In these last three equations k0, k00 are determined by eqs. (141);

φ1, φ2, etc., by eqs. (142)∗; θ, θ0, etc., by eqs. (141); and k′, k′1, k′2, etc., for
use in eq. (142) by eqs. (141).

∗Taking for φ1 − φ, etc., not always the least angle given by the tables, but that
which is nearest to φ.
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BISECTED AMPLITUDES.

We have identically

u = 2 · u
2

= 2

∫
d am

u
2√

1− k2 sn2 u
2

;

u
2

= 2 · u
4

= 2F
(

k, am
u
4

)
;

etc.

Therefore

u = F(k, am u) = 2nF
(

k, am
u
n

)
= 2n · am

u
n

, (n = limit,)

am
u
n

being determined by repeated applications of eq. (12) of Chap. II,
as follows:

sn2 u
2

=
1− cn u
1 + dn u

=
2 sin2 1

2 am u
1 + dn u

;

sn
u
2

=
sin 1

2 am u√
1 + cos β

2

=
sin

am u
2

cos 1
2 β

;(24)

β being an angle determined by the equation

(25) cos β = dn u =
√

1− k2 sn2 u,

and n being the number which makes

2n am
u
n

= constant.
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am
u
n

is found by repeated applications of eq. (24).
Indicating the amplitudes as follows:

(26)

am u = φ,

am
u
2

= φ02,

am
u
4

= φ04,

am
u
8

= φ08,

. . . . .

am
u
2n = φ02n , —

F(k, φ) = 2nφ02n ;

n being the limiting value.
In eq. (18), when kn reaches its limit 1, we have

F(kn, φ0n) =
∫ φ

0

dφ0n
cos φ0n

= logε tan(45◦ + 1
2 φ0n),

and eqs. (18) and (19) become

F(k, φ) = (1 + k′0)(1 + k′00) · · · (1 + k′0n) logε tan(45◦ + 1
2 φ0n)(27)

=
1

cos2 1
2 η cos2 1

2 η0 · · · cos2 1
2 η0n

logε tan(45◦ + 1
2 φ0n)

=
1

cos2 1
2 η cos2 1

2 η0 · · · cos2 1
2 η0n

· 1
M

log tan(45◦ + 1
2 φ0n);(28)

n being the number which renders kn = 1.
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Eq. (20) becomes

F(k, φ) =

√
k1k2 · · · k2

n
k

· logε tan(45◦ + 1
2 φ0n)(29)

=

√
k1k2 · · · k2

n
k

· 1
M

log tan(45◦ + 1
2 φ0n)

=

√
cos η0 cos η00 · · · cos2 η0n

cos η
· 1

M
log tan(45◦ + 1

2 φ0n).

In these equations k′0, k′00, etc., are determined by eqs. (183); η, η0, etc.,
by eqs. (183); φ0, φ00, etc., by eqs. (182); k1, k2, etc., by eqs. (181).

Substituting in eq. (27) from eq. (20)∗, we have

F(k, φ) =
2K′
π

logε tan(45◦ + 1
2 φ0n)

=
2K′
πM

log tan(45◦ + 1
2 φ0n).(30)



CHAPTER V.

COMPLETE FUNCTIONS

Indicate by K the complete integral

(1) K =
∫ π

2

0

dφ√
1− k2 sin2 φ

,

and by K0 the complete integral

(2) K0 =
∫ π

2

0

dφ1√
1− k2

0 sin2 φ1

;

and in a similar manner K00, K03, etc.
From eq. (12), Chap. IV, we have

tan(φ1 − φ) = k′ tan φ

=
tan φ1 − tan φ

1 + tan φ1 tan φ
,

whence

tan φ1 =
(1 + k′) tan φ

1− k′ tan2 φ

=
1 + k′

1
tan φ

− k′ tan φ

.

From this equation we see that when φ =
π

2
, φ1 = π. This same

result might also have been deduced from Fig. 1, Chap. IV, or from the
equation

(3) φ1 = 2φ− k0 sin 2φ + 1
2 k2

0 sin 4φ− etc.,
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this last being the well-known trigonometrical formula

tan x = n tan y,

x = y− 1− n
1 + n

sin 2y +
1
2

(
1− n
1 + n

)2
sin 4y− 1

3

(
1− n
1 + n

)3
sin 6y + etc.

Since
∫ π

2

0

dφ1
∆(k0, φ1)

= K0, we must have∫ π

0

dφ1
∆(k0, φ1)

= 2K0.

These values substituted in eq. (13), Chap. IV, give successively

(4)

K = (1 + k0)K0,

K0 = (1 + k00)K00,

. . . . . . .

K0(n−1) = (1 + k0n)K0n;

whence

(5) K = (1 + k0)(1 + k00) · · · (1 + k0n)K0n.

Since the limit of k0n is 0, K0n becomes

K0n =
∫ π

2

0
dφ =

π

2
,

and we have

K =
π

2
(1 + k0)(1 + k00) · · ·(6)

=
1
2 π

cos2 1
2 θ cos2 1

2 θ0 · · · cos2 1
2 θ0n

;(7)
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k1, k0, etc., and θ1, θ0, etc., being found by eqs. (141) of Chap. IV.
From the formulæ in these two chapters we can compute the values

of u for all values of φ and k and arrange them in tables. These are
Legendre’s Tables of Elliptic Integrals.



CHAPTER VI.

EVALUATION FOR φ.

TO FIND φ, u AND k BEING GIVEN.

From eqs. (21) and (23), Chap. IV, we have (n having the value which
makes cos θ0n = 1)

(1) φn =
2nu

(1 + k0)(1 + k00) · · · (1 + k0n)
=

2nu
√

cos θ√
cos θ0 · · · cos2 θ0n

,

from which φn can be calculated, k0, k00, etc., being found by means of
equations (141), Chap. IV.

Then, having φn, k0, k00, etc., we can find φ by means of the following
equations:

sin(2φn−1 − φn)= k0n sin φn,

sin(2φn−2 − φn−1)= k0(n−1) sin φn−1,

. . . . . . . . . . . . . .

sin(2φ− φ1)= k0 sin φ1;

whence we can get the angle φ.

When k >
√

1
2 the following formulæ will generally be found to

work more rapidly:
From eq. (29), Chap. IV, we have

(2) log tan(45◦ + 1
2 φ0n) =

uM√
k1k2 · · · k2

n
k

,
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from which we can get φ0n; k1, k2, etc., being calculated from eqs. (181),
Chap. IV, and φ being calculated from the following equations:

tan(φ0(n−1) − φ0n)= kn tan φ0n,

. . . . . . . . . . .

tan(φ0 − φ00)= k2 tan φ02,

tan(φ− φ0)= k tan φ0;

whence we get φ.
This gives a method of solving the equation

Fψ = n Fφ,

where n and φ and the moduli are known, and ψ is the required quan-
tity. n and φ give Fψ, and then ψ can be determined by the foregoing
methods.

When k = 1 nearly, equation (2) takes a special form,—

1
o. When tan φ is very much less than

1
k′ . In this case

F(k, φ) =
∫ dφ√

cos2 φ + k′2 sin2 φ
=
∫ dφ√

(1 + k′2 tan2 φ) cos2 φ

=
∫ dφ

cos φ
= log tan(45◦ + 1

2 φ);

whence we can find φ.

2
o. When tan φ and

1
k′ approach somewhat the same value, and

k′ tan φ cannot be neglected, F(k, φ) must be transposed into another
where k′ shall be much smaller, so that k′ tan φ can be neglected.
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These methods for finding φ apply only when φ <
π

2
, that is, u < K.

In the opposite case (u > K) put

u = 2nK± ν,

the upper or the lower sign being taken according as K is continued in u
an even or an odd number of times. In either case ν < K, and we can
find ν by the preceding methods.

Having found ν, we have from eq. (5), Chap. III,

am u = am(2nK± ν)

= nπ ± am ν.



CHAPTER VII.

DEVELOPMENT OF ELLIPTIC FUNCTIONS INTO
FACTORS.

From eq. (12), Chap. IV, we readily get

sin(2φ0 − φ) = k sin φ;

sin φ =
sin 2φ0√

1 + k2 + 2k cos 2φ0

=
sin 2φ0√

(1 + k)2 − 4k sin2 φ0

=
1 + k′0

2
· sin 2φ0√

1− k2
1 sin2 φ0

(
since

4k
1 + k

= k1 and 1 + k =
2

1 + k′0
, eqs. (6) and (10), Chap. IV

)
; and

thence

(1) sin φ =
(1 + k′0) sin φ0 cos φ0

∆(φ0, k1)
.

From eq. (13), Chap. IV, we have∫ φ0

0

dφ0
∆(φ0, k1)

=
1 + k

2

∫ φ

0

dφ

∆(φ, k)
;

and from eq. (4), Chap. V, passing up the scale of moduli one step,

1 + k =
K1
K

,
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whence
F(φ0, k1) =

K1
2K

F(φ, k).

Put
F(φ0, k1) = u1 and F(φ, k) = u,

whence
u1 =

K1
2K

u.

Furthermore,

φ = am(u, k);

φ1 = am(u1, k1) = am
(

K1
2K

u, k1

)
.

Substituting these values in eq. (1), we have

sn(u, k) = (1 + k′0)
sn
(

K1
2K

u, k1

)
cn
(

K1
2K

u, k1

)
dn
(

K1
2K

u, k1

) .

But from eq. (11), Chap. III, we have

cn(v, k1)
dn(v, k1)

= sn(v + K1, k1),

or

cn
(

K1
2K

u, k1

)
dn
(

K1
2K

u, k1

) = sn
(

K1u
2K

+ K1, k1

)

= sn
(

K1
2K

(u + 2K), k1

)
;
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whence

sn(u, k) = (1 + k′0) sn
K1u
2K

sn
[

K1
2K

(u + 2K)
]

.∗(2)

(Mod. = k1.)

From this equation, evidently, we have generally

sn(ν, kn) = (1 + k′0(n+1)) sn
Kn+1
2Kn

ν sn
[

Kn+1
2Kn

(ν + 2Kn)
]

.(2)∗

(Mod. = kn+1.)

Applying this general formula to the two factors of eq. (2), we
have

sn
(

K1u
2K

, k1

)
= (1 + k′00) sn

K2
2K1
· K1u

2K
· sn

[
K2

2K1

(
K1u
2K

+ 2K1

)]
(Mod. k2)

= (1 + k′00) sn
K2u
22K

sn
K2

22K
(u + 4K); (Mod. k2;)

sn
[

K1
2K

(u + 2K), k1

]
= (1 + k′00) sn

K2
22K

(u + 2K)(3)

· sn
K2

2K1

[
K1
2K

(u + 2K) + 2K1

]
. (Mod. k2.)

∗The analogous formula in Trigonometry is

sin φ = 2 sin 1
2 φ sin 1

2 (φ + π).
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The last argument in this equation is equal to

K2
22K

(u + 6K);

and since, eq. (7), Chap. III,

sn(u, k2) = sn(2K2 − u, k2),

we can put in place of this,

2K2 − K2
22K

(u + 6K) =
K2

22K
(2K− u);

whence eq. (3) becomes

sn
[

K1
2K

(u + 2K), k1

]
= (1 + k′00) sn

K2
22K

(2K + u) · sn
K2

22K
(2K− u).

(Mod. k2.)

Substituting these values in eq. (2), we have

sn(u, k) = (1 + k′0)(1 + k′00)
2 sn

K2u
22K

(4)

· sn
K2

22K
(2K± u) sn

K2
22K

(4K + u), (Mod. k2,)

in which the double sign indicates two separate factors which are to be
multiplied together.

By the application of the general equation (2)∗ we find that the ar-
guments in the second member of eq. (4) will each give rise to two new
arguments, as follows:

K2u
22K

gives
K3u
23K

,
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and
K3

2K2

(
K2u
22K

+ 2K2

)
=

K3
23K

(u + 8K);

K2
22K

(2K± u) gives
K3

23K
(2K± u),

and
K3

2K2

[
K2

22K
(2K± u) + 2K2

]
=

K3
23K

(10K± u),(a)

K2
22K

(4K + u) gives
K3

23K
(4K + u),

and

K3
2K2

[
K2

22K
(4K + u) + 2K2

]
=

K3
23K

(12K + u).(b)

Subtracting (a) and (b) from 2K3, by which the sine of the amplitudes
will not be changed [eq. (7), Chap. III], and since our new modulus is k3,
we have for the expressions (a) and (b),

K3
23K

(6K∓ u);(a′)
K3

23K
(4K− u).(b′)

Substituting these values in eq. (4), and remembering the factor (1 +
k′03) introduced by each application of eq. (2)∗, we have

sn(u, k) = (1 + k′0)(1 + k′00)
2(1 + k′03)

4 sn
K3u
23K

· sn
K3

23K
(2K± u) sn

K3
23K

(4K± u)

· sn
K3

23K
(6K± u) sn

K3
23K

(8K + u). (Mod. k3.)
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From this the law governing the arguments is clear, and we can write
for the general equation

sn(u, k) = (1 + k′0)(1 + k′00)
2(1 + k′03)

4 · · · (1 + k′0n)2n−1
(5)

· sn
Knu
2nK

sn
Kn

2nK
(2K± u)

· sn
Kn

2nK
(4K± u) sn

Kn
2nK

(6K± u)

· · · sn
Kn

2nK

[
(2n − 2)K± u

]
· sn

Kn
2nK

(2nK + u). (Mod. kn.)

Indicate the continued product of the binomial factors by A′, and we
have

A′ = (1 + k′0)(1 + k′00)
2(1 + k′03)

4(1 + k′04)
8 · · · .

Since the limit of k′0, k′00, etc., is zero, it is evident that these factors
converge toward the value unity. It can be shown that the functional
factors also converge toward the value unity. Thus the argument of the
last factor can be written

Kn +
Knu
2nK

.

From eq. (11), Chap. III, we get then

sn
(

Kn +
Knu
2nK

)
=

cn
Knu
2nK

dn
Knu
2nK

. (Mod. kn.)

But since kn at its limit is equal to unity, cn = dn; whence the last
factor of eq. (5) is unity.

From eq. (21), Chap. IV, we have

limit
Kn

2nK
=

2π

2K′ .
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Therefore for n = ∞, eq. (5) becomes

sn(u, k) = A′ sn
πu
2K′ sn

π

2K′ (2K± u)

· sn
π

2K′ (4K± u) sn
π

2K′ (6K± u), . . . (Mod. 1,)

or

sn(u, k) = A′ sn
πu
2K′

[
∞
∏
1

h
]

sn
π

2K′ (2hK± u), (Mod. 1,)(6)

where the sign
[
∏
]

indicates the continued product in the same manner
as ∑ indicates the continued sum.

When k = 1,
∫ φ

0
F(φ, k) dφ becomes

ν =
∫ φ

0

dφ

cos φ
= 1

2 logε
1 + sin φ

1− sin φ
;

whence
e2ν =

1 + sin φ

1− sin φ
,

and

sin φ =
e2ν − 1
e2ν + 1

=
eν − e−ν

eν + e−ν = sn(ν, 1).

Hence in equation (6)

sin
πu
2K′ =

e
πu
2K′ − e−

πu
2K′

e
πu
2K′ + e−

πu
2K′

;

sn
π

2K′ (2hK± u) =
e

hπK
K′ e±

πu
2K′ − e−

hπK
K′ e∓

πu
2K′

e
hπK
K′ e±

πu
2K′ + e−

hπK
K′ e∓

πu
2K′

.
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Put

(6)∗ q = e−
πK′

K , q′ = e−
πK
K′ ,

and the last expression becomes

sn
π

2K′ (2hK± u) =
q′−he±

πu
2K′ − q′he∓

πu
2K′

q′−he±
πu
2K′ + q′he∓

πu
2K′

;

sn
π

2K′ (2hK + u) sn
π

2K′ (2hK− u)

=
q′−he

πu
2K′ − q′he−

πu
2K′

q′−he
πu
2K′ + q′he−

πu
2K′
· q′−he−

πu
2K′ − q′he

πu
2K′

q′−he−
πu
2K′ + q′he

πu
2K′

=
q′−2h + q′2h −

(
e

πu
K′ + e−

πu
K′
)

q′−2h + q′2h +
(

e
πu
K′ + e−

πu
K′
) .

From plane trigonometry we have the equations

ex − e−x

ex + e−x = −i tan ix, ex + e−x = 2 cos ix;
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where i =
√−1: which gives

sn
πu
2K′ = −i tan

πiu
2K′ ; (Mod. 1;)

sn
π

2K′ (2hK + u) sn
π

2K′ (2hK− u)

=
q′−2h + q′2h − 2 cos

πiu
K′

q′−2h + q′2h + 2 cos
πiu
K′

=
1− 2q′2h cos

πiu
K′ + q′4h

1 + 2q′2h cos
πiu
K′ + q′4h

.(7)

From eq. (10), Chap. III, we have

sn(u, k) = −i tn(iu, k′).

Substituting these values in eq. (6), we have

tn(iu, k′) = A′ tan
πiu
2K′

[
∏
]1− 2q′2h cos

πiu
K′ + q′4h

1 + 2q′2h cos
πiu
K′ + q′4h

.

Now in place of the series of moduli k′, k′0 and the corresponding
complete integral K′, we are at liberty to substitute the parallel series
of moduli k, k0 and the corresponding complete integral K; calling the
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new integral u, we have

tn(u, k) = A tan
πu
2K
[
∏
]1− 2q2h cos

πu
K

+ q4h

1 + 2q2h cos
πu
K

+ q4h
(8)

= A tan
πu
2K

1− 2q2 cos
πu
K

+ q4

1 + 2q2 cos
πu
K

+ q4

·
1− 2q4 cos

πu
K

+ q8

1 + 2q4 cos
πu
K

+ q8

·
1− 2q6 cos

πu
K

+ q12

1 + 2q6 cos
πu
K

+ q12
· · · ,

where

(9) A = (1 + k0)(1 + k00)2(1 + k03)4(1 + k04)
8 · · ·

Now in equation (6) put u + K for u, and we have, since [eq. (11),
Chap. III] sn(u + K) =

cn u
dn u

,

cn u
dn u

= A′ sn
π(u + K)

2K′[
∏
]

sn
π

2K′ [(2h + 1)K + u] · sn
π

2K′ [(2h− 1)K− u].

(Mod. 1.)

Now from 2h − 1 and 2h + 1 we have the following series of numbers
respectively:

2h− 1 : 1, 3, 5, 7, 9, etc.

2h + 1 : 3, 5, 7, 9, etc.
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It will be observed that the factor outside of the sign
[
∏
]
, viz.,

sin am
π(u + K)

2K′ , would, if placed under the sign
[
∏
]
, supply the miss-

ing first term of the second series. Hence, placing this factor within the
sign, we have

cn u
dn u

= A′
[
∏
]

sn
π

2K′ [(2h− 1)K + u] · sn
π

2K′ [(2h− 1)K− u] .(10)

(Mod. 1.)

Comparing this with equation (7), we see that the factors herein
differ from those in equation (7) only in having 2h − 1 in place of 2h;
hence we have

sn
π

2K′ [(2h− 1)K + u] sn
π

2K′ [(2h− 1)K− u]

=
1− 2q′2h−1 cos

πiu
K′ + q′4h−2

1 + 2q′2h−1 cos
πiu
K′ + q′4h−2

. (Mod. 1.)

From eqs. (10), Chap. III, we have

cn(u, k)
dn(u, k)

=
1

dn(iu, k′) ;

whence eq. (10) becomes

(11)
1

dn(iu, k′) = A′
[
∏
]1− 2q′2h−1 cos

πiu
K′ + q′4h−2

1 + 2q′2h−1 cos
πiu
K′ + q′4h−2

;

and when in place of iu, k′, K′, q′, A′, we substitute u, k, K, q and A, and
invert the equation, we have

(12) dn(u, k) =
1
A
[
∏
]1 + 2q2h−1 cos

πu
K

+ q4h−2

1− 2q2h−1 cos
πu
K

+ q4h−2
.
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Bearing in mind the remarkable property (Chap. III, p. 31) that the
functions sn u and dn u approach infinity for the same value of u, we
see that both these functions, except as to the factor independent of u,
must have the same denominator. Furthermore, since sn u and tn u dis-
appear for the same value of u, they must, except for the independent
factor, have the same numerator. Hence, indicating by B a new quantity,
dependent upon k but independent of u, we have

(13) sn(u, k) = B sin
πu
2K
[
∏
] 1− 2q2h cos

πu
K

+ q4h

1− 2q2h−1 cos
πu
K

+ q4h−2
;

and since
cn u =

sn u
tn u

,

we also have, from eqs. (8) and (13),

(14) cn(u, k) =
B
A

cos
πu
2K
[
∏
] 1 + 2q2h cos

πu
K

+ q4h

1− 2q2h−1 cos
πu
K

+ q4h−2
.

Collecting these results, we have the following equations:

sn(u, k) = B sin
πu
2K
[
∏
] 1− 2q2h cos

πu
K

+ q4h

1− 2q2h−1 cos
πu
K

+ q4h−2
,(15)

cn(u, k) =
B
A

cos
πu
2K
[
∏
] 1 + 2q2h cos

πu
K

+ q4h

1− 2q2h−1 cos
πu
K

+ q4h−2
,(16)

dn(u, k) =
1
A
[
∏
]1 + 2q2h−1 cos

πu
K

+ q4h−2

1− 2q2h−1 cos
πu
K

+ q4h−2
.(17)
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To ascertain the values of A and B, we proceed as follows:
In eq. (17) we make u = 0, whence, by eq. (13), Chap. II, we have

1 =
1
A
[
∏
] (1 + q2h−1

1− q2h−1

)2

;

whence

1
A

=
[
∏
] (1− q2h−1

1 + q2h−1

)2

.(18)

In equation (17), making u = K, we get, by equation (1), Chap. III,

k′ = 1
A
[
∏
] (1− q2h−1

1 + q2h−1

)2

=
1

A2 ;

∴
1
A

=
√

k′.(19)

We have identically

1 = B
1
B

= B

1
A
B
A

= B

√
k′

B
A

;

whence

B
A

= B
√

k′.

To calculate B, put e
iπu
2K = ν; if we change

πu
2K

into
πu
2K

+
iπK′
2K

, ν will
change into ν

√
q, and sn u will become, by eq. (14), Chap. III,

sn(u + iK′) =
1

k sn u
.
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Now, replacing sin
πu
2K

and cos
πu
K

by their exponential values, and
observing that

1− 2qn cos
πu
K

+ q2n = (1− qnν2)(1− qnν−2),

we have

sn u =
B
2
· ν− ν−1
√−1

·
[
∏
]
(1− q2hν2)(1− q2hν−2)[

∏
]
(1− q2h−1ν2)(1− q2h−1ν−2)

.

Changing u into u + iK′, and consequently ν into ν
√

q, we have

1
k sn u

=
B
2
·

ν
√

q− ν−1
√

q−1
√−1

·
[
∏
]
(1− q2h+1ν2)(1− q2h−1ν−2)[

∏
]
(1− q2hν2)(1− q2h−2ν−2)

.

Multiplying these equations together, member by member, and ob-
serving that

ν
√

q− ν−1
√

q−1 =
1− qν2

−ν
√

q
,

ν− ν−1 = ν(1− ν−2),

we get

1
k

=
B2

4
· 1− qν2

ν
√

q
· ν(1− ν−2) ·

[
∏
]
(1− q2h+1ν2)(1− q2hν−2)[

∏
]
(1− q2h−1ν2)(1− q2h−2ν−2)

=
B2

4
√

q
(1− qν2)ν(1− ν−2)

(1− q3ν2)(1− q5ν2) · · ·
(1− qν2)(1− q3ν2) · · ·

· (1− q2ν−2)(1− q4ν−2) · · ·
(1− ν−2)(1− q2ν−2) · · ·

=
B2

4
· 1√

q
.
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∴ B =
2 4√q√

k
;

whence

B
A

= 2 4√q

√
k′
k

.

Substituting these values in eqs. (15), (16), and (17), we have

sn(u, k) =
2 4√q√

k
sin

πu
2K
[
∏
] 1− 2q2h cos

πu
K

+ q4h

1− 2q2h−1 cos
πu
K

+ q4h−2
;(20)

cn(u, k) =
2
√

k′ 4√q√
k

cos
πu
2K
[
∏
] 1 + 2q2h cos

πu
K

+ q4h

1− 2q2h−1 cos
πu
K

+ q4h−2
;(21)

dn(u, k) =
√

k′
[
∏
]1 + 2q2h−1 cos

πu
K

+ q4h−2

1− 2q2h−1 cos
πu
K

+ q4h−2
.(22)



CHAPTER VIII.

THE Θ FUNCTION.

We will indicate the denominator in eq. (20), Chap. VII, by φ(u),
thus:

(1) φ(u) =
[
∏
]
(1− 2q2h−1 cos

πu
K

+ q4h−2).

We will now develop this into a series consisting of the cosines of the
multiples of

πu
K

. Put
πu
2K

= x, whence

2 cos
πu
K

= (e2ix + e−2ix);

but

1− 2q2h−1 cos
πu
K

+ q4h−2 = (1− q2h−1e2ix)(1− q2h−1e−2ix),

and therefore

φ(u) = (1− qe2ix)(1− q3e2ix)(1− q5e2ix) · · ·(2)

(1− qe−2ix)(1− q3e−2ix)(1− q5e−2ix) · · ·
Putting now u + 2iK′ instead of u, we have

x1 =
π(u + 2iK′)

2K
= x +

πiK′
K

,

2ix1 = 2ix− 2πK′
K

;

and

e2ix1 = q2e2ix,

e−2ix1 =
1
q2 e−2ix.
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From these we have

φ(u + 2iK′) = −1
q

e−2ix(1− qe2ix)(1− q3e2ix) · · ·

(1− qe−2ix)(1− q3e−2ix) · · · ;

whence

φ(u + 2iK′) = −1
q

e−2ixφ(u),

or

φ(u + 2iK′) = −q−1e−
πiu
K φ(u).(3)

Now put

(4) φ(u) = A + B cos
πu
K

+ C cos
2πu

K
+ D cos

3πu
K

+ etc.

Since
cos

πu
K

= 1
2

(
e2ix + e−2ix

)
,

this becomes

φ(u) = A + 1
2 Be2ix + 1

2 Ce4ix + 1
2 De6ix + · · ·(5)

+ 1
2 Be−2ix + 1

2 Ce−4ix + 1
2 De−6ix + · · · ;

whence

− 1
q

e−2ixφ(u) =− A
q

e−2ix − B
2q
− C

2q
e2ix − D

2q
e4ix − · · ·(6)

− B
2q

e−4ix − C
2q

e−6ix − D
2q

e−8ix − · · · .
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Now in equation (5) put u + 2iK′ in place of u, remembering that
e2ix and e−2ix are thereby changed respectively into q2e2ix and q−2e−2ix,
and we have

φ(u + 2iK′) = A +
Bq2

2
e2ix +

Cq4

2
e4ix +

Dq6

2
e6ix + · · ·(7)

+
B

2q2 e−2ix +
C

2q4 e−4ix + · · · .

Since equations (6) and (7) are equal, we have

− B
2q

= A, B= −2qA;

− C
2q

=
Bq2

2
, C= +2q4A;

−D
2q

=
Cq4

2
, D= −2q9A;

. . . . . . . . . .

whence

(8)



[
∏
]
(1− 2q2h−1 cos

πu
K

+ q4h−2)

= A(1− 2q cos
πu
K

+ 2q4 cos
2πu

K
− 2q9 cos

3πu
K

+ 2q16 cos
4πu

K
− . . .).

The series in the second member has been designated by Jacobi and
subsequent writers by Θ(u), thus:

(9) Θ(u) = 1− 2q cos
πu
K

+ 2q4 cos
2πu

K
− · · ·



CHAPTER IX.

THE Θ AND H FUNCTIONS.

In equation (20), Chap. VII, viz.,

sn(u, k) =
2 4√q√

k
sin

πu
2K
[
∏
] 1− 2q2h cos

πu
K

+ q4h

1− 2q2h−1 cos
πu
K

+ q4h−2
,

the numerator and the denominator have been considered separately
by Jacobi, who gave them a special notation and developed from them
a theory second only in importance to the elliptic functions themselves.

Put [see equation (8), Chap. VIII]

Θ(u) =
1
A
[
∏
]
(1− 2q2h−1 cos

πu
K

+ q4h−2).(1)

H(u) = 2
1
A

4√q sin
πu
2K
[
∏
] (

1− 2q2h cos
πu
K

+ q4h
)

;(2)

A being a constant whose value is to be determined later. From these
we have

(3) sn(u, k) =
1√
k
· H(u)

Θ(u)
.

The functions sn u and cn u can also be expressed in terms of the new
functions; thus we have

(4) cn(u, k) =

√
k′
k
· 2 4√q cos

πu
2K
[
∏
] 1 + 2q2h cos

πu
K

+ q4h

1− 2q2h−1 cos
πu
K

+ q4h−2
;
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or, since sin x = cos
(

x +
π

2

)
and cos x = − sin

(
x +

π

2

)
, and putting u =

2Kx
π

,

cn
(

2Kx
π

, k
)

=

√
k′
k

H
[

2K
π

(
x +

π

2

)]
Θ
(

2Kx
π

)

=

√
k′
k

H
[

2Kx
π

+ K
]

Θ
(

2Kx
π

) .

Replacing
2Kx

π
by its value, u, we have

(5) cn(u, k) =

√
k′
k

H(u + K)
Θ(u)

.

Furthermore,

(6) dn(u, k) =
√

k′
[
∏
]1 + 2q2h−1 cos

πu
K

+ q4h−2

1− 2q2h−1 cos
πu
K

+ q4h−2

gives in the same manner

dn
2Kx

π
=
√

k′
Θ
[

2K
π

(
x +

π

2

)]
Θ
(

2Kx
π

) ,

or

dn(u, k) =
√

k′ Θ(u + K)
Θ(u)

.(7)
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If we put

H(u + K) = H1(u),(8)

Θ(u + K) = Θ1(u),(9)

the three elliptic functions can be expressed by the following formulas:

sn(u, k) =
1√
k
· H(u)

Θ(u)
;(10)

cn(u, k) =

√
k′
k
· H1(u)

Θ(u)
;(11)

dn(u, k) =
√

k′Θ1(u)
Θ(u)

.(12)

These functions Θ and H can be expressed in terms of each other.
By definition,

H(u) = 2C 4√q sin
πu
2K
[
∏
] (

1− 2q2h cos
πu
K

+ q4h
)

;

but

1− 2qh cos
πu
K

+ q2h =
(

1− qhe
πu
√−1
K

)(
1− qhe−

πu
√−1
K

)
sin

πu
2K

=
e

πiu
2K − e−

πiu
2K

2
√−1

= e
−πiu

2K
1− e

πiu
K

2

√−1,

and consequently

(13) H(u) = C 4√qe−
πiu
2K
√−1

(
1− e

πiu
K
)(

1− q2e−
πiu
K
)(

1− q2e
πiu
K
)
· · · .
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Now, changing u into u + iK′, and remembering that e−
πK′

K = q, we
have

(14) H(u + iK′) = Cq−
1
4 e−

πiu
2K
√−1

(
1− qe

πiu
K
)(

1− qe−
πiu
K
)

(
1− q3e

πiu
K
)(

1− q3e−
πiu
K
)
· · · ;

and reuniting the factors two by two, this becomes

(15) H(u + iK′) = C
√−1q−

1
4 e−

πiu
2K(

1− 2q cos
πu
K

+ q2
) (

1− 2q3 cos
πu
K

+ q6
)
· · · ;

and finally, according to equation (1),

(16) H(u + iK′) =
√−1q−

1
4 e−

πiu
2K Θ(u).

In the same manner, we can get

(17) Θ(u + iK′) =
√−1q−

1
4 e−

πiu
2K H(u).

Substituting u + 2K for u in equations (1) and (2), we get

Θ(u + 2K) = Θ(u),(18)

H(u + 2K) = −H(u),(19)

since cos
π

K
(u + 2K) = cos

πu
K

and sin
π

2K
(u + 2K) = − sin

πu
2K

.
The comparison of these four equations with equations (10), (11),

and (12) shows the periodicity of the elliptic functions. For example,
comparing eqs. (10) and (16) and (17), we see that changing u into
u + iK′ simply multiplies the numerator and denominator of the second
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member of eq. (10) by the same number, and does not change their
ratio.

The addition of 2K changes the sign of the function, but not its value.
We will define Θ1 and H1 as follows:

Θ1(x) = Θ(x + K);(20)

H1(x) = H(x + K).(21)

Hence we get, from equation (17),

Θ1(x + iK′) = Θ(x + iK′ + K) = Θ(x + K + iK′)

= iH(x + K)e−
iπ
4K (2x+2K+iK′)

= iH1(x)e−
iπ
4K (2x+iK′)(−√−1),

since e−
iπ
2 = cos

π

2
−√−1 sin

π

2
= −√−1;

whence

(22) Θ1(x + iK′) = H1(x)e−
iπ
4K (2x+iK′).

In a similar manner we get

(22)∗ H1(x + iK′) = Θ1(x)e−
iπ
4K (2x+iK′).

In eq. (9), Chap. VIII, put u =
2Kz
π

, and we get

(23) Θ
(

2Kz
π

)
= 1− 2q cos 2z + 2q4 cos 4z− · · · .

Now, in this equation, changing z into z +
π

2
, and observing eq. (20),

we get

(24) Θ1

(
2Kz
π

)
= 1 + 2q cos 2z + 2q4 cos 4z + · · · .
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Applying eq. (22) to this, we have

H1

(
2Kz
π

)
= Θ1

(
2K
π

(
z +

πiK′
2K

))
e

πi
4K

(
4Kz
π +iK′

)

= Θ1

(
2K
π

(
z +

πiK′
2K

))
eizq

1
4

= eizq
1
4

[
1 + 2q cos 2

(
z +

πiK′
2K

)
+ 2q4 cos 4

(
z +

πiK′
2K

)
+ · · ·

]
= eizq

1
4

[
1 + q

(
e2i
(

z+ πiK′
2K

)
+ e−2i

(
z+ πiK′

2K

))
+ q4

(
e4i
(

z+ πiK′
2K

)
+ e−4i

(
z+ πiK′

2K

))
+ · · ·

]
= eizq

1
4
[
1 + q(qe2iz + q−1e−2iz) + q4(q2e4iz + q−2e−4iz) + · · ·

]
= eizq

1
4
[
1 + q2e2iz + q6e4iz + · · ·+ e−2iz + q2e−4iz + · · ·

]
= q

1
4
[
eiz + q2e3iz + q6e5iz + · · ·+ e−iz + q2e−3iz + q6e−5iz + · · ·

]
= 2q

1
4
[
cos z + q2 cos 3z + q6 cos 5z + · · ·

]
;

whence

(25) H1

(
2Kz
π

)
= 2 4√q cos z + 2 4

√
q9 cos 3z + 2 4

√
q25 cos 5z + · · ·

In this equation, changing z into z − π

2
, and applying eq. (21), we

get

H
(

2Kz
π

)
= 2 4√q sin z− 2 4

√
q9 sin 3z + 2 4

√
q25 sin 5z− · · · ,(26)

since

H1

(
2Kz
π

)
= H

(
2Kz
π

+ K
)

.
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We will now determine the constant A of eq. (8), Chap. VIII, and
eqs. (1) and (2) of this chapter. Denote A by f (q), and we have

(26)∗
[
∏
]
(1− 2q2h−1 cos

πu
K

+ q4h−2) = f (q)Θ(u).

Substituting herein u = 0 and u =
K
2

, we have

[
∏
]
(1− q2h−1)2 = f (q)Θ(0);[

∏
]
(1 + q4h−2) = f (q)Θ

(
K
2

)
.

From eq. (9), Chap. VIII, we get

Θ(0) = 1− 2q + 2q4 − 2q9 + 2q16 − · · · ;(27)

Θ
(

K
2

)
= 1− 2q4 + 2q16 − 2q36 + 2q64 − · · · ;(28)

from which we see that Θ(0) is changed into Θ
(

K
2

)
when we put q4 in

place of q.
Whence [

∏
]
(1− q8h−4)2 = f (q4)Θ

(
K
2

)
;

and therefore

f (q)
f (q4)

=
[
∏
] 1 + q4h−2

(1− q8h−4)2

=
[
∏
] 1
(1− q8h−4)(1− q4h−2)

.(29)

Now, the expressions 4h− 2, 8h− 4, and 8h give the following series
of numbers:
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4h− 2, 2, 6, 10, 14, 18, 22, 26, 30, 34;

8h− 4, 4, 12, 20, 28, 36;

8h, 8, 16, 24, 32.

Hence, the three expressions taken together contain all the even num-
bers, and [

∏
]
(1− q8h−4)(1− q4h−2)(1− q8h) =

[
∏
]
(1− q2h).

Therefore, multiplying eq. (29) by

[
∏
]1− q8h

1− q8h ,

we have

f (q)
f (q4)

=
[
∏
]1− q8h

1− q2h .

Now in this equation, by successive substitutions of q4 for q, we get

f (q4)
f (q16)

=
[
∏
]1− q32h

1− q8h ;

f (q16)
f (q64)

=
[
∏
]1− q128h

1− q32h ;

f (q64)
f (q256)

=
[
∏
]1− q512h

1− q128h ;

. . . . . . . . .

Now q being less than 1, qn tends towards the limit 0 as n increases,
and consequently 1− qn tends towards the limit 1. Also, from eq. (8),
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Chap. VIII, we see that f (0) = 1. Hence, multiplying the above equa-
tions together member by member, we have

f (q) =
[
∏
] 1

1− q2h ,(30)

or

A =
1

(1− q2)(1− q4)(1− q6) · · · .(31)

Substituting this value in equation (8), Chap. VIII, we have, after
making u = 0,

(1− q)2(1− q3)2(1− q5)2 · · · = 1− 2q + 2q4 − 2q9 + · · ·
(1− q2)(1− q4)(1− q6) · · ·

=
Θ(0)

(1− q2)(1− q4)(1− q6) · · · .

(See equation (9), Chap. VIII.)
Transposing one of the series of products from the left-hand mem-

ber, we get

(1− q)(1− q3) · · · = Θ(0)
(1− q)(1− q2)(1− q3)(1− q4) · · · .

Introducing on both sides of the equation the factors 1− q2, 1− q4,
1− q6, etc., we get

(1− q)(1− q2)(1− q3)(1− q4) · · ·

= Θ(0)
1− q2

1− q
· 1− q4

1− q2 ·
1− q6

1− q3 ·
1− q8

1− q4 · · ·

= Θ(0)(1 + q)(1 + q2)(1 + q3) · · · ;
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whence

Θ(0) =
(1− q)(1− q2)(1− q3) · · ·
(1 + q)(1 + q2)(1 + q3) · · · .(32)

Resuming equation (20), Chap. VII, and dividing both members of
the equation by u, we have

sn u
u

=
2 4√q√

k

sin
πu
2K

u
[
∏
] 1− 2q2h cos

πu
K

+ q4h

1− 2q2h−1 cos
πu
K

+ q4h−2
.

This, for u = 0, since the limiting value of
sn u

u
for u = 0 is 1, and of

sin
πu
2K

u
for x = 0 is

π

2K
, becomes

1 =
4√q√

k
· π

K
· (1− q2)2(1− q4)2(1− q6)2 · · ·

(1− q)2(1− q3)2(1− q5)2 · · · ,

or

√
kK

π 4√q
=

[
(1− q2)(1− q4)(1− q6) · · ·
(1− q)(1− q3)(1− q5) · · ·

]2

.(33)

Further, from equation (21), Chap. VII, for u = 0, we have

(34)
√

k
2
√

k′ 4√q
=

[
(1 + q2)(1 + q4)(1 + q6) · · ·
(1− q)(1− q3)(1− q5) · · ·

]2

.

The quotient of these two equations gives

(35)
2
√

k′K
π

=

[
(1− q2)(1− q4)(1− q6) · · ·
(1 + q2)(1 + q4)(1 + q6) · · ·

]2

;
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or, substituting the value of
√

k′ from eqs. (18) and (19), Chap. VII,

(36)
2k′K

π
=

[
(1− q)(1− q2)(1− q3) · · ·
(1 + q)(1 + q2)(1 + q3) · · ·

]2

.

Comparing this with equation (32), we easily get

(37) Θ(0) =

√
2k′K

π
.

From equation (9), Chap. VIII, making u = K, we get

(38) Θ(K) = 1 + 2q + 2q4 + 2q9 + 2q16 + · · · .

Making z = 0 in equation (24), Chap. IX, we have

(39) Θ1(0) = 1 + 2q + 2q4 + 2q9 + · · · .

This might also have been derived from eq. (38) by observing that

Θ(0 + K) = Θ1(0) = Θ(K).

Knowing Θ(0), it is easy to deduce Θ(K) and H(K).
From equation (7) we have

dn u =
√

k′ Θ(u + K)
Θ(u)

.

Making u = 0, we have, since dn(0) = 1,

(40) Θ(K) =
Θ(0)√

k′
.

From equation (5) we get, in the same manner,

(41) H(K) =

√
k′
k

Θ(0).
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From eq. (12), Chap. IX, we have

(41)∗ dn u =
√

1− k2 sin2 φ =
√

k′ Θ1(u)
Θ(u)

;

and putting x =
πu
2K

, we have

(42)
dn u√

k′
=

1 + 2q cos 2x + 2q4 cos 4x + 2q9 cos 6x + · · ·
1− 2q cos 2x + 2q4 cos 4x− 2q9 cos 6x + · · · .

Putting

(42)∗ dn u√
k′

= cot γ,

we have
cot γ− 1
cot γ + 1

= tan(45◦ − γ) = 2q
cos 2x + q8(4 cos3 2x− 3 cos 2x) + · · ·

1 + q4(4 cos2 2x− 2)
;

whence

(43) cos 2x =
tan(45◦ − γ)[1 + q4(4 cos2 2x− 2)]

2q

− q8(4 cos3 2x− 3 cos 2x)− · · · ,

and approximately,

(44) cos 2x =
tan(45◦ − γ)

2q
.

From equations (37) and (40), Chap. IX, we have

x =
u

Θ2(K)
;(45)

whence

u = xΘ2(K).(46)



CHAPTER X.

ELLIPTIC INTEGRALS OF THE SECOND ORDER.

From Chap. I, equation (19), we have

E(k, φ) =
∫ φ

0

√
1− k2 sin2 φ · dφ =

∫ φ

0
∆φ · dφ.

From this we have

E(φ) + E(ψ) =
∫ φ

0
∆φ · dφ +

∫ ψ

0
∆φ · dφ.

Put

(1) Eφ + Eψ = S.

Differentiating, we get

(2) ∆φ · dφ + ∆ψ · dψ = dS.

But we have, Chap. II, equation (2),

dφ

∆φ
+

dψ

∆ψ
= 0,

or

(3) ∆ψ · dφ + ∆φ · dψ = 0.

Adding equations (2) and (3), we get

(4) (∆φ + ∆ψ)(dφ + dψ) = dS.
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Substituting cos µ from eq. (5), in eq. (5)∗, Chap. II, we get

(5)


∆φ =

sin φ cos ψ ∆µ + cos φ sin ψ

sin µ
,

∆ψ =
sin ψ cos φ ∆µ + cos ψ sin φ

sin µ
;

whence

(6) ∆φ± ∆ψ =
∆µ± 1
sin µ

sin(φ± ψ).

Substituting in equation (4), we have

dS =
∆µ + 1
sin µ

sin(φ + ψ) d(φ + ψ)

= −∆µ + 1
sin µ

d cos(φ + ψ).(7)

Integrating equation (7), we have

Eφ + Eψ =
∆µ + 1
sin µ

[C− cos(φ + ψ)] .

The constant of integration, C, is determined by making φ = 0; in
this case ψ = µ, Eφ = 0, Eψ = Eµ, and S = Eµ; whence

Eµ =
∆µ + 1
sin µ

(C− cos µ),

and by subtraction,

Eφ + Eψ− Eµ =
∆µ + 1
sin µ

(cos µ− cos φ cos ψ + sin φ sin ψ).



ELLIPTIC FUNCTIONS. 88

But, Chap. II, eq. (5),

cos µ− cos φ cos ψ = − sin φ sin ψ ∆µ;

whence

Eφ + Eψ− Eµ =
1− ∆2µ

sin µ
sin φ sin ψ

whence

(8) Eφ + Eψ = Eµ + k2 sin φ sin ψ sin µ.

When φ = ψ, we have

Eµ = 2Eφ− k2 sin2 φ sin µ.(9)

But in that case

cos µ = cos2 φ− sin2 φ ∆µ;(10)

whence

sin φ =

√
1− cos µ

1 + ∆µ
.(11)

Let φ, φ1
2
, φ1

4
, etc., be such values as will satisfy the equations

Eφ = 2Eφ1
2
− k2 sin2 φ1

2
sin φ,(12)

Eφ1
2

= 2Eφ1
4
− k2 sin2 φ1

4
sin φ1

2
,

etc. etc.

Assume an auxiliary angle γ, such that

(13) sin γ = k sin φ;
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whence
∆φ = cos γ,

and Chap. IV, eq. (24),

(14) sin φ1
2

=
sin 1

2 φ

cos 1
2 γ

.

Applying eqs. (13) and (14) successively, we get

(15)



sin φ1
2

=
sin 1

2 φ

cos 1
2 γ

, sin γ1
2

= k sin φ1
2

;

sin φ1
4

=
sin 1

2 φ1
2

cos 1
2 γ1

2

, sin γ1
4

= k sin φ1
4

;

. . . . . . . . . . . . . .

sin φ 1
2n

=
sin 1

2 φ 1
2n−1

cos 1
2 γ 1

2n−1

;

whence

Eφ = 2nEφ 1
2n
−
(

sin φ sin2 γ1
2

+ 2 sin φ1
2

sin2 γ1
4

(16)

+ 22 sin φ1
4

sin2 γ1
8

+ · · · 2n−1 sin φ 1
2n

sin2 γ 1
2n−1

)
To find the limiting value, Eφ 1

n
, we have, by the Binomial Theorem,
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since sin φ = 1− φ3

3!
+

φ5

5!
− etc.,

∆φ = (1− k2 sin2 φ)
1
2

= 1− k2

2

(
φ− φ3

6

)2

− k4

8

(
φ− φ3

6

)4

+ · · ·

= 1− k2

2
φ2 +

(
k2

6
− k4

8

)
φ4.

Whence

Ekφ 1
2n

=
∫ φn

0
∆φ 1

2n
dφ

= φ 1
2n
− k2

6
φ3

1
2n

+
k2(4− 3k2)

120
φ5

1
2n

.(17)

Substituting in eq. (16) the numerical values derived from equa-
tions (15) and (17), we are enabled to determine the value of Eφ.

Landen’s Transformation can also be applied to Elliptic Integrals of
this class.

From eq. (11), Chap. IV, we get, by easy transformation,

(18) sin2 2φ = sin2 φ1(1 + k0 + 2k0 cos 2φ).

From this we easily get

2k0 cos 2φ sin2 φ1 = sin2 2φ− sin2 φ1 − k2
0 sin2 φ1

= 1− cos2 2φ− sin2 φ1 − k2
0 sin2 φ1

= ∆2k0φ1 − sin2 φ1 − cos2 2φ;

whence
cos2 2φ + 2k0 sin2 φ1 cos 2φ = ∆2k0φ1 − sin2 φ1;
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and from this,

cos 2φ = −k0 sin2 φ1 ±
√

∆2k0φ1 − sin2 φ1 + k2
0 sin4 φ1

= cos φ1∆k0φ1 − k0 sin2 φ1;(19)

whence, also,

1− cos2 2φ = 1− cos2 φ1 ∆2φ1 + 2k sin2 φ1 cos φ1 ∆k0φ1 − k2
0 sin4 φ1

= sin2 φ1(1 + k2
0 cos2 φ1 + 2k0 cos φ1 ∆k0φ1 − k2

0 sin2 φ1)

and

(20) sin 2φ = sin φ1(∆k0φ1 + k0 cos φ1).

Differentiating equation (19), we get

2 sin 2φ
dφ

dφ1
= sin φ1

(k0 cos φ1 + ∆k0φ1)2

∆k0φ1
.

Dividing this by equation (20), we have

2dφ

dφ1
=

k0 cos φ1 + ∆k0φ1
∆k0φ1

.

But from (19), and eq. (6), Chap. IV,

k2 sin2 φ =
k2(1− cos 2φ)

2

=
2k0

(1 + k0)2 {1 + k0 sin2 φ1 − cos φ1∆k0φ1};

whence

∆k φ =
∆k0φ1 + k0 cos φ1

1 + k0
,
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and

2∆k φ · dφ

dφ1
=

(k0 cos φ1 + ∆k0 φ1)2

(1 + k0)∆k0 φ1
,

and

dφ ∆k φ =
dφ1

∆k0φ1
· (k0 cos φ1 + ∆k0 φ1)2

2(1 + k0)
.

This gives immediately, by integration,

Ekφ =
1

2(1 + k0)

∫ dφ1
∆k0 φ1

{k0 cos φ1 + ∆k0φ1}2

=
1

2(1 + k0)

∫ dφ1
∆k0 φ1

{2∆2k0 φ1 + 2k0 cos φ1∆k0φ1 − k′21 }

=
Ek0φ1
1 + k0

+
k0 sin φ1
1 + k0

− 1
2 (1− k0)Fk0φ1.(21)

Thus the value of Ekφ is made to depend upon Ek0φ1 (containing
a smaller modulus and a larger amplitude), and upon the integral of
the first class, Fk0φ1; k0, φ1, etc., being determined by the formulæ (6)
to (12) of Chap. IV.

By successive applications of equation (21), Ekφ may be made to
depend ultimately upon Ek0nφn, where k0n approximates to zero and
Ek0nφn to φn.

Or, by reversing, it may be made to depend upon Eknφ0n, where
kn approximates to unity and Eknφ0n to − cos φ0n.

To facilitate this, assume

Gkφ = Ekφ− Fkφ.

Subtracting from equation (21) the equation

Fkφ =
1 + k0

2
Fk0φ1 (see eq. (13), Chap. IV),



ELLIPTIC INTEGRALS OF THE SECOND ORDER. 93

we have
Gkφ =

1
1 + k0

(Gk0φ1 + k0 sin φ1 − k0 Fk0 φ1).

Repeated applications of this give

Gk0φ1 =
1

1 + k00
(Gk00φ2 + k00 sin φ2 − k00 Fk00 φ2),

. . . . . . . . . . . . . . . . . . .

Gk0(n−1)φn−1 =
1

1 + k0n
(Gk0nφn + k0n sin φn − k0n Fk0n φn).

Whence

(22) Gkφ =
1

∑
n

{
k0n(sin φn − Fk0nφn)[ 1

∏
n

]
(1 + k0n)

}
+

Gk0n φn[ 1
∏
n

]
(1 + k0n)

.

But since (compare eq. (13), Chap. IV)

Fkφ =
Fk0n φn

[ 1
∏
n

]
(1 + k0n)

2n ,

or

(23)
Fk0n φn[ 1

∏
n

]
(1 + k0n)

=
2nFk φ[ 1

∏
n

]
(1 + k0n)2

;

and since, also, (compare eq. (6), Chap. IV,)

k2
0(n−1)
k0n

=
22

(1 + k0n)2 ,
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we have

2nk0n[ 1
∏
n

]
(1 + k0n)2

=
k0n
2n
[ 1
∏
n

] k2
0(n−1)
k0n

(24)

=
k0n
2n
[ 1
∏
n

] k0(n−1)
k0n

[ 1
∏
n

]
k0(n−1)

=
k0n
2n ·

k
k0
· k0

k00
· · · k0(n−1)

k0n
· k[ 2

∏
n

]
k0(n−1)

=
k2

2n
[ 2
∏
n

]
k0(n−1).

Substituting these values in equation (22), and neglecting the term
containing Gk0nφn since, carried to its limiting value,

Gk0nφn = Ek0nφn − Fk0nφn

= φn − φn = 0, (n = limiting value,)

we have

Gkφ =
1

∑
n

{ k
√

k0n sin φn
[ 2
∏
n

]√
k0(n−1) − k2[ 2

∏
n

]
k0(n−1)

2n

}
(25)

= k

[√
k0

2
sin φ1 +

√
k0k00
22 sin φ2 +

√
k0k00k03

23 sin φ3 + · · ·
]

− k2

2

[
1 +

k0
2

+
k0k00

22 +
k0k00k03

23 + · · ·
]

;
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whence

Ekφ = Fkφ

[
1− k2

2

(
1 +

k0
2

+
k0k00

22 + · · ·
)]

(26)

+k

[√
k0

2
sin φ1 +

√
k0k00
22 sin φ2 +

√
k0k00k03

23 sin φ3 + · · ·
]

.

From eq. (3), Chap. V, we see that when φ =
π

2
,

φn = 2n−1π.

Substituting these values in equation (26), we have for a complete
Elliptic Integral of the second class,

(27) E
(

k,
π

2

)
=

F
(

k,
π

2

) [
1− k2

2

(
1 +

k0
2

+
k0k00

22 +
k0k00k03

23 + · · ·
)]

.

In a similar manner we could have found the formula for E(k, φ) in
terms of an increasing modulus, viz.,

E(k, φ) = F(k, φ)
[

1 + k
(

1 +
2
k1

+
22

k1k2
+

23

k1k2k3
+ · · ·(28)

+
2n−2

k1k2 · · · kn−2
− 2n−1

k1k2 · · · kn−1

)]
− k
[

sin φ +
2√
k

sin φ1 +
22√
kk1

sin φ2 + · · ·

+
2n−1√

kk1 · · · kn−2
sin φn−1 −

2n√
kk1 · · · kn−1

sin φn

]
.



CHAPTER XI.

ELLIPTIC INTEGRALS OF THE THIRD ORDER.

The Elliptic Integral of the third order is

(1) Π(n, k, φ) =
∫ φ

0

dφ

(1 + n sin2 φ) ∆φ
.

Put

(2) Π(φ) + Π(ψ) = S;

whence we have immediately

(3) dS =
dφ

(1 + n sin2 φ) ∆φ
+

dψ

(1 + n sin2 ψ) ∆ψ
.

But, eq. (2), Chap. II,

(4)
dφ

∆φ
+

dψ

∆ψ
= 0;

whence

dS =

(
1

1 + n sin2 φ
− 1

1 + n sin2 ψ

)
dφ

∆φ

=
n(sin2 ψ− sin2 φ)

(1 + n sin2 φ)(1 + n sin2 ψ)
· dφ

∆φ
.(5)

From equation (8), Chap. X, we get by differentiation, since σ (or µ)
is constant,

∆φ · dφ + ∆ψ · dψ = k2 sin σ d(sin φ sin ψ),
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or, from equation (3),

(sin2 ψ− sin2 φ)
dφ

∆φ
= sin σ d(sin φ sin ψ).

This, introduced into equation (5), gives

dS =
n sin σ d(sin φ sin ψ)

1 + n(sin2 φ + sin2 ψ) + n2 sin2 φ sin2 ψ
.

Put
sin φ sin ψ = q, sin2 φ + sin2 ψ = p;

whence

(6) dS =
n sin σ dq

1 + np + n2p2 .

From equation (5), Chap. II, we have

cos σ = cos φ cos ψ− sin φ sin ψ ∆σ,

from which we easily get

(cos σ + q∆σ)2 = cos2 φ cos2 ψ

= (1− sin2 φ)(1− sin2 ψ)

= 1− p + q2,

and thence

p = 1 + q2 − (cos σ + q ∆σ)2

= sin2 σ− 2 cos σ∆σq + k2 sin2 σ · q2.
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This, substituted in eq. (6), gives

dS =
n sin σ dq

1 + n sin2 σ− 2n cos σ∆σq + n(n + k2 sin2 σ)q2

=
n sin σ dq

A− 2Bq + Cq2 ,

where

A = 1 + n sin2 σ,

B = n cos σ ∆σ,

C = nk2 sin2 σ + n2.

From this we get

S = n sin σ
∫ dq

A− 2Bq + Cq2 + Const.

In order to determine the constant of integration we must observe
that for φ = 0, ψ = σ and q = 0; whence

Πσ = n sin σ
∫

q=0

dq
A− 2Bq + Cq2 + Const.;

whence

S = Πσ + n sin σ
∫ q

0

dq
A− 2Bq + Cq2 ,

or

Πφ + Πψ = Πσ + n sin σ
∫ q

0

dq
A− 2Bq + Cq2 .(7)
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But we have

dS =
CM dq

AC− B2 + (Cq− B)2

=
CM

AC− B2 ·
dq

1 +
(

Cq− B√
AC− B2

)2

=
M√

AC− B2
·

C dq√
AC− B2

1 +
(

Cq− B√
AC− B2

)2

where M = n sin σ.
The integral of the second member is

M√
AC− B2

tan−1 Cq− B√
AC− B2

;

whence∫ q

0
dS = S1 =

M√
AC− B2

[
tan−1 Cq− B√

AC− B2
+ tan−1 B√

AC− B2

]
;

or, since

tan−1 x + tan−1 y = tan−1 x + y
1− xy

,

S1 =
M√

AC− B2
tan−1 q

√
AC− B2

A− Bq
.

Substituting the values of A, B, C and M, we have

AC− B2 = n(1 + n− ∆2σ)(1 + n sin2 σ)− n2 cos2 σ ∆2σ

= n(1 + n− ∆2σ + n(1 + n) sin2 σ− n ∆2σ)

= n(1 + n)(1− ∆2σ + n sin2 σ)

= n(1 + n)(k2 + n) sin2 σ;
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and putting
(1 + n)(k2 + n)

n
= Ω,

we have √
AC− B2 = n

√
Ω sin σ.

Substituting these values in eq. (7), we have

Π(n, k, φ) + Π(n, k, ψ)−Π(n, k, σ) = S1

=
1√
Ω

tan−1 n
√

Ω sin φ sin ψ sin σ

1 + n sin2 σ− n sin φ sin ψ cos σ ∆σ
.



CHAPTER XII.

NUMERICAL CALCULATIONS. q.

CALCULATION OF THE VALUE OF q.

From eq. (7), Chap. IX, we have

dn u =
√

k′ Θ(u + K)
Θ(u)

;

whence, eq. (9), Chap. IV, eqs. (27) and (39), Chap. IX,

√
cos θ =

1− 2q + 2q4 − 2q9 + 2q16 − · · ·
1 + 2q + 2q4 + 2q9 + 2q16 + · · ·(1)

= 1− 4q + 8q2 − 16q3 + 32q4 − 56q5 + · · · .

The first five terms of this series can be represented by
√

cos θ =
1− 2q
1 + 2q

.

From this we get

(2) q =
1
2
· 1−√cos θ

1 +
√

cos θ
,

which is exact up to the term containing q5.
Or we can deduce a more exact formula as follows: From eq. (1),

1 +
√

cos θ

1−√cos θ
=

√
1 + tan2 1

2 θ +
√

1− tan2 1
2 θ√

1 + tan2 1
2 θ −

√
1− tan2 1

2 θ

=
1 + 2q4 + 2q16 + · · ·
2q + 2q9 + 2q25 + · · · ;
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whence, by the method of indeterminate coefficients,

q = 1
4 tan2 θ

2
+ 1

16 tan6 θ

2
+ 17

512 tan10 θ

2
+ 45

2048 tan14 θ

2
+ · · · ,(3)

or

log q = 2 log tan
θ

2
− log 4

+ log
(

1 + 1
4 tan4 θ

2
+ 17

128 tan8 θ

2
+ 45

512 tan12 θ

2
· · ·
)

= 2 log tan
θ

2
− log 4(4)

+ M
(

1
4 tan4 θ

2
+ 13

128 tan8 θ

2
+ 23

384 tan12 θ

2
+ · · ·

)
,

M being the modulus of the common system of logarithms.
Put

(5) log q = 2 log tan
θ

2
+ 9.397940 + a tan4 θ

2
+ b tan8 θ

2
+ c tan12 θ

2
+ · · · ,

in which

log a = 9.0357243;

log b = 8.64452;

log c = 8.41518;

log d = 8.25283.

Example. Let k′ = cos 10◦ 23′ 46′′. To find q.

4 log tan
θ

2
= 5.835

log a = 9.036

4.871

a tan4 θ

2
= 0.0000074

2 log tan
θ

2
= 7.9176842

9.3979400

74

log q = 7.3156316
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When θ approaches 90◦, tan
θ

2
differs little from unity, and the series

in eq. (5) is not very converging, but q can be calculated by means of
eq. (6), Chap. VII, viz.,

q = e−
πK′

K , q′ = e−
πK
K′ .

By comparing these equations with eqs. (6) and (9), Chap. IV, we
see that if

q = f (k) = f (θ),

then

q′ = f (k′) = f (90◦ − θ).

Therefore, having θ, we can from its complement, 90◦ − θ, find q′ by
eq. (5), and thence q by the following process. We have

1
q

= e
πK′

K ,
1
q′ = e

πK
K′ ;

whence

log
1
q

log
1
q′ = M2π2 = 1.8615228,

log log
1
q

+ log log
1
q′ = 0.2698684,(6)

by which we can deduce q from q′.
Example. Let θ = 79◦ 36′ 14′′. To find q.

90◦ − θ = 10◦ 23′ 46′′.
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By eq. (5) we get

log q′ = 7.3156316, log
1
q′ = 2.6843684,

and log log
1
q′ = .4288421;

and by eq. (6),

log log
1
q

= 9.8410263;

whence

log q = 1.3065321.

When k′ = k = cos 45◦ = 1
2
√

2, eq. (6) becomes

log
1
q

= Mπ = 1.3643763; (k = k′;)(7)

whence

log q = 2.6356237,

q = 0.0432138. (k = k′.)

Example. Given θ = 10◦ 23′ 46′′. Find q.
Ans. log q = 7.3156316.

Example. Given θ = 82◦ 45′. Find q.
Ans. log q = 9.37919.



CHAPTER XIII.

NUMERICAL CALCULATIONS. K.

CALCULATION OF THE VALUE OF K.

We have already found from eq. (37), Chap. IX,

(1) Θ(0) =

√
2k′K

π
,

and from eq. (40), same chapter,

(2) Θ(K) =
Θ(0)√

k′
=

√
2K
π

.

But, eqs. (38) and (27), Chap. IX,

Θ(K) = 1 + 2q + 2q4 + 2q9 + 2q16 + · · · ,

Θ(0) = 1− 2q + 2q4 − 2q9 + 2q16 − · · · ;

whence, eq. (2),

(3) K =
π

2
(1 + 2q + 2q4 + 2q9 + · · · )2.

By adding eqs. (1) and (2) we get

Θ(0) + Θ(K) =

√
2K
π

(1 +
√

k′);
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whence

K =
π

2

(
Θ(0) + Θ(K)

1 +
√

k′

)2

=
π

2

[
2(1 + 2q4 + 2q16 + · · · )

1 +
√

k′

]2

=
π

2

(
2

1 +
√

k′

)2
(1 + 2q4 + 2q16 + · · · )2.(4)

Example. Let k = sin θ = sin 19◦ 30′. Required K.
First Method. By eq. (3).
By eq. (5), Chap. XII, we find log q = 8.6356236. Applying eq. (3),

using only two terms of the series, we have

1 + 2q = 1.0147662

log(1 + 2q) = 0.0063660

2 log(1 + 2q) = 0.0127320

log
π

2
= 0.1961199

log K = 0.2088519

K = 1.615101

Second Method. By eq. (4).
Equation (4) may be written, neglecting q4,

K =
π

2

(
1 +
√

cos θ

2

)−2

;
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whence

log cos θ = 9.9743466,

log
√

cos θ = 9.9871733,

1 +
√

cos θ = 1.9708973,

1 +
√

cos θ

2
= 0.98544865;

and

log K = 0.2088519,

K = 1.615101,

the same result as above.
Third Method. By eq. (7), Chap. V.

θ = 19◦ 30′ θ0 = 1◦ 41′ 31′′.1
1
2 θ = 9◦ 45′ 1

2 θ0 = 0◦ 50′ 45′′.5

log tan 1
2 θ = 9.235103

log cos 1
2 θ = 9.993681 log cos 1

2 θ0 = 9.999953

log tan2 1
2 θ

log sin θ0

}
= 8.470206

θ0 = 1◦ 41′ 31′′.1
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log cos2 1
2 θ = 9.987362

log cos2 1
2 θ0 = 9.999906

9.987268

log
π

2
= 0.196120

log K = 0.208852

θ00 is not calculated, as it is evident that its cosine will be 1.
Example. Given k = sin 75◦. Find K.
By eq. (7), Chap. V.
From eqs. (141), Chap. IV, we find

k = sin θ = sin 75◦ log = 9.9849438

k0 =
{

tan2 1
2 θ = tan2 37◦ 30′

sin θ0 = sin 36◦ 4′ 16′′.47

}
9.7699610

k00 =
{

tan2 1
2 θ0 = tan2 18◦ 2′ 8′′.235

sin θ00 = sin 6◦ 5′ 9′′.38

}
9.0253880

k03 =
{

tan2 1
2 θ00 = tan2 3◦ 2′ 34′′.69

sin θ03 = sin 9′ 42′′.90

}
7.4511672
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log 2 log a. c. 2 log

cos 1
2 θ = cos 37◦ 30′ 9.8994667 9.7989334 0.2010666

cos 1
2 θ0 = cos 18◦ 2′.13725 9.9781184 9.9562368 0.0437632

cos 1
2 θ02 = cos 3◦ 2′.57817 9.9993873 9.9987746 0.0012254

cos 1
2 θ03 = cos 4′.8575 9.9999995 9.9999990 0.0000010

0.2460562
π

2
π

2
.1961199

log K = 0.4421761

K = 2.768064 Ans.

Example. Given k = sin 45◦. Find K.
Method of eq. (7), Chap. V.
From eqs. (141), Chap. IV, we have

log

k0 =
{

tan2 1
2 θ = tan2 22◦ 30′

sin θ0 = sin 9◦ 52′.75683

}
9.2344486

k00 =
{

tan2 1
2 θ0 = tan2 4◦ 56′.37841

sin θ00 = sin 25′.679

}
7.8733009

k03 =
{

tan2 1
2 θ00 = tan2 12′.3395

sin θ03 = sin 0′.05

}
5.1445523
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a. c. log cos2 1
2 θ 0.0687694

a. c. log cos2 1
2 θ0 0.0032320

a. c. log cos2 1
2 θ00 0.0000060

log
π

2
0.1961199

log K = 0.2681273

K = 1.8540747 Ans.

Example. Given θ = 63◦ 30′. Find K.
Ans. log K = 0.3539686.

Example. Given θ = 34◦ 30′. Find K.
Ans. K = 1.72627.



CHAPTER XIV.

NUMERICAL CALCULATIONS. u

CALCULATION OF THE VALUE OF u.

When θ◦ = sin−1 k < 45◦.
Example. Let φ = 30◦, k = sin 45◦. Find u.
First Method. Eq. (23), Chap. IV, and eqs. (141), (142), (143), Chap. IV.
By equations (141),

θ

2
= 22◦ 30′;

log tan
θ

2
= 9.6172243;

log tan2 θ

2
= 9.2344486 = log k0 = log sin θ0;

θ0 = 9◦ 52′ 45′′.41;

log tan
θ0
2

= 8.9366506;

log tan2 θ0
2

= 7.8733012 = log k00 = log sin θ00;

θ00 = 0◦ 25′ 40′′.7;

log tan2 θ00
2

= 5.144552 = log k03.
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By equations (142),

φ = 30◦

log tan φ = 9.761439

log cos θ = 9.849485

log tan(φ1 − φ) = 9.610924

φ1 − φ = 22◦ 12′ 27′′.56

φ1 = 52◦ 12′ 27′′.56

log tan φ1 = 0.110438

log cos θ0 = 9.993512

log tan(φ2 − φ1) = 0.103949

φ2 − φ1 = 51◦ 47′ 32′′.59

φ2 = 104◦ 0′ 0′′.15

log tan φ2 = 0.603228

log cos θ00 = 9.999988

log tan(φ3 − φ2) = 0.603216

φ3 − φ2 = 104◦ 0′ 1′′.5

φ3 = 208◦ 0′ 1′′.65

Since
φ2
4

= 26◦ 0′ 0′′.04 and
φ3
8

= 26◦ 0′ 0′′.21, we need not calcu-
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late φ4.
φ3
8

= 93600′′.21.

Reducing this to radians, we have

log
φ3
8

= 9.656852.

Substituting in eq. (23), Chap. IV, we have, since cos θ03 = 1,

a. c. log cos θ = 0.150515

log cos θ0 = 9.993512

log cos θ00 = 9.999988

0.144014

0.072007 = log

√
cos θ0 cos θ00

cos θ

log
φ3
8

= 9.656852

log u = 9.728859

u = 0.535623, Ans.

When θ = sin−1 k > 45◦.

Example. Given k = sin 75◦, tan φ =

√
2√
3

. To find F(k, φ).

First Method. Bisected Amplitudes.
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By equations (24) and (25), Chap. IV, we get

φ = 47◦ 3′ 30′′.91,

φ1
2

= 25◦ 36′ 5′′.64, β = 45◦;

φ1
4

= 13◦ 6′ 30′′.98, β0 = 24◦ 40′ 10′′.94;

φ1
8

= 6◦ 35′ 40′′.74, β00 = 12◦ 39′ 15′′.83;

φ 1
16

= 3◦ 18′ 8′′.75, β03 = 6◦ 22′ 8′′.40;

φ 1
32

= 1◦ 39′ 7′′.43, β04 =

Substituting in equation (26), Chap. IV, we have

F(k, φ) = 32× 1◦ 39′ 7′′.43

= 52◦ 51′ 58′′.03

= 0.9226878. Ans.

Second Method. Equation (29), Chap. IV.
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From equations (183), Chap. IV, we have

log

k = cos η = cos 15◦ 0′ 0′′.00 9.9849438

k′ = sin η = sin 15◦ 0′ 0′′.00 9.4129962

k′0 =
{

tan2 1
2 η

sin η0

= tan2 7◦ 30′ 0′′.00

= sin 0◦ 59′ 35′′.25

}
8.2388582

k1 = cos η0 = cos 0◦ 59′ 35′′.25 9.9999348

k′00 =
{

tan2 1
2 η0

sin η00

= tan2 0◦ 29′ 47′′.62

= sin 0◦ 0′ 15′′.49

}
5.8757219

k2 = cos η00 = cos 0◦ 0′ 15′′.49 0.0000000

k′03 =
(

1
2 k′00

)2
1.1493838

From equations (182), Chap. IV, we get

φ = 47◦ 3′ 30′′.95;

2φ0 − φ = 45◦;
φ0 = 46◦ 1′ 45′′.475;

φ02 = 46◦ 1′ 29′′.41;

φ03 = 46◦ 1′ 29′′.41;

45◦ + 1
2 φ3 = 68◦ 0′ 44′′.705.

Substituting these values in eq. (29), Chap. IV, we get

F(k, φ) =

√
k1
k
· 1

M
· log tan 68◦ 0′ 44′′.705

= 0.9226877. Ans.
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Third Method. Equation (23), Chap. IV.
From equations (141), Chap. IV, we have

log

k = sin θ = sin 75◦ 0′ 0′′ 9.9849438

k′ = cos θ = cos 75◦ 9.4129962

k0 =
{

tan2 1
2 θ

sin θ0

= tan2 37◦ 30′

= sin 36◦ 4′ 16′′.47

}
9.7699610

k′1 = cos θ0 9.9075648

k02 =
{

tan2 1
2 θ0

sin θ00

= tan2 18◦ 2′ 8′′.235

= sin 6◦ 5′ 9′′.38

}
9.0253880

k′2 = cos θ00 9.9975452

k03 =
{

tan2 1
2 θ00

sin θ03

= tan2 3◦ 2′ 34′′.69

= sin 9′ 42′′.90

}
7.4511672

k′3 = cos θ03 9.9999982

k04 =
(

1
2 k03

)2
4.3002761

k′4 = 0.0000000

From equations (142), Chap. IV, we have

φ = 47◦ 3′ 30′′.94;

φ1 = 62◦ 36′ 3′′.10;

φ2 = 119◦ 55′ 47′′.67;

φ3 = 240◦ 0′ 0′′.19;

φ4 = 480◦ 0′ 0′′.

Therefore the limit of φ,
φ1
2

,
φ2
4

, or
φn
2n is 30◦ =

π

6
.
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Substituting these values in eq. (23), Chap. IV, we have

F(k, φ) =

√
k′1k′2k′3k′4

k′ · π

6

= 0.9226874. Ans.

Example. Given φ = 30◦, k = sin 89◦. Find u.
Method of eq. (28), Chap. IV.
From eqs. (181) we find

k1 = sin θ1 and tan2 1
2 θ1 = k = sin θ,

from which we find that k1 = 1 as far as seven decimal places.
From eqs. (182) we have

sin φ = 9.6989700

k = 9.9999338

sin(2φ0 − φ) = 9.6989038

2φ0 − φ = 29◦ 59′.69733

2φ0 = 59◦ 59′.69733

45◦ + 1
2 φ0
∗ = 59◦ 59′.92433

log
(

45◦ + 1
2 φ0

)
= 0.2385385

From eqs. (183), Chap. IV, we have

k = cos η = cos 1◦, 1
2 η = 30′.

∗Since k1 = 1, φ00 = φ0, and we need not carry the calculation further.
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Substituting in eq. (28), Chap. IV, we have

a. c. log cos 1
2 η 0.0000330

log log
(

45◦ + 1
2 φ0

)
9.3775585

a. c. log M 0.3622157

log F(k, φ) = 9.7398072

F(k, φ) = 0.549297. Ans.

Example. Given φ = 79◦, k = 0.25882. Find u.
Ans. u = 0.39947.

Example. Given φ = 37◦, k = 0.86603. Find u.
Ans. u = 0.68141.



CHAPTER XV.

NUMERICAL CALCULATIONS. φ.

Example. Given u = 1.368407, θ = 38◦. Find φ.
First Method. From eqs. (46) and (41)∗, Chap. IX, we have

u = xΘ2(K),

∆φ =
√

k′Θ1(x)
Θ(x)

.

From equations (5), Chap. XII, and (38), Chap. IX, we have

log q = 8.4734187

log Θ2(K) = 0.0501955

log u = 0.1362153

log x = 0.0860198

x = 69◦ 50′ 46′′.12

From equations (23) and (24), Chap. IX, we get

log Θ1(x) = 9.9798368

log Θ(x) = 0.0192687

9.9605681

log
√

k′ = 9.9482661

log ∆φ = 9.9088342 = log sin λ
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But

k2 sin2 φ = 1− ∆2φ,

k sin φ = cos λ;

whence
log cos λ = 9.7675483

log k = 9.7893420

log sin φ = 9.9782063

φ = 72◦. Ans.

Second Method. From eq. (1), Chap. VI.
From eqs. (141) Chap. IV, we find

log

k0 =
{

tan2 1
2 θ

sin θ0

= tan2 19◦

= sin 6◦ 48′.54569

}
9.0739438

cos θ0 9.9969260

k00 =
{

tan2 1
2 θ0

sin θ00

= tan2 3◦ 24′.2784

= sin 12′.16659

}
7.5488952

cos θ00 9.9999974

k03 =
{

tan2 1
2 θ00

sin θ03

= tan2 6′.08329
}

4.4957316

cos θ03 0.0000000
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Substituting these values in eq. (1), Chap. VI, we have

log cos θ0 9.9969260

log cos θ00 9.9999974

9.9969234

log
√

cos θ0 cos θ00 9.9984617

a. c. log “ “ 0.0015383

log u .1362153

log
√

cos θ 9.9482660

log 23 .9030900∗

a. c. log
√

cos θ0 cos θ00 0.0015383

0.9891096

2.2418773

log φ3
∗ 2.7472323

φ3 558◦ 46′.140

∗n is taken equal to 3, because cos θ03 = 1.
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Whence, by equations (1) of Chap. VI, we get

k03 log = 4.4957316

sin φ3 9.5075232n

sin(2φ2 − φ3) 4.0032548n

2φ2 − φ3 = −0′.00346

φ2 = 279◦ 23′.06827

k00 log = 7.5488952

sin φ2 9.9941484n

sin(2φ1 − φ2) 7.5430436n

2φ1 − φ2 = −12′.0039

φ1 = 139◦ 35′.5321

k0 log = 9.0739438

sin φ1 9.8117249

sin(2φ− φ1) 8.8856687

2φ− φ1 = 4◦ 24′.467

φ = 71◦ 59′.9999

= 72◦. Ans.

Example. Given u = 2.41569, θ = 80◦. Find φ.
Ans. φ = 82◦.

Example. Given u = 1.62530, k = 1
2 . Find φ.

Ans. φ = 87◦.



CHAPTER XVI.

NUMERICAL CALCULATIONS. E(k, φ).

First Method. By Chap. X, eqs. (15), (16), and (17).
Example. Given k = 0.9327, φ = 80◦. Find E(k, φ).
By eq. (15), Chap. X,

φ = 80◦; γ = 67◦ 44′. ;

φ1
2

= 50◦43′.6, γ1
2

= 46◦ 40′.4;

φ1
4

= 27◦48′.5, γ1
4

= 26◦ 0′.1;

φ1
8

= 14◦16′.7, γ1
8

= 13◦ 24′.0;

φ 1
16

= 7◦11′.3, γ 1
16

= 6◦ 45′.2;

φ 1
32

= 3◦36′.0, log sin γ 1
32

= 8.77094;

φ 1
32

= 0.062831.

∴ φ5
1

32
< 0.0000001.
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Whence, by eq. (17),

E(k, φ 1
32

) = 0.062794

sin φ sin2 γ1
2

= 0.52116

2 sin φ1
2

sin2 γ1
4

= 0.29757

4 sin φ1
4

sin2 γ1
8

= 0.10023

8 sin φ1
8

sin2 γ 1
16

= 0.02728

16 sin φ 1
16

sin2 γ 1
32

= 0.00697

0.95321

Hence, by eq. (16),

E(k, φ) = 32E(k, φ 1
32

)− 0.95321

= 2.0094− 0.9532 = 1.0562.

Second Method. By Chap. X, eq. (26).

Example. Given k = sin 75◦, tan φ =

√
2√
3

. Find E(k, φ).
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From eqs. (141), Chap. IV, we have

k = sin θ = sin 75◦ 0′ 0′′ log = 9.9849438

k′ = cos θ = cos 75◦ 9.4129962

k0 =
{

tan2 1
2 θ = tan2 37◦ 30′

sin θ0 = sin 36◦ 4′ 16′′.47

}
9.7699610

k′1 = cos θ0 9.9075648

k02 =
{

tan2 1
2 θ0 = tan2 18◦ 2′ 8′′.235

sin θ00 = sin 6◦ 5′ 9′′.38

}
9.0253880

k′2 = cos θ00 9.9975452

k03 =
{

tan2 1
2 θ00 = tan2 3◦ 2′ 34′′.69

sin θ03 = sin 9′ 42′′.90

}
7.4511672

k′3 = cos θ03 9.9999982

k04 =
(

1
2 k03

)2
4.3002761

k′4 = 0.0000000

From eqs. (142), Chap. IV, we have

φ = 47◦ 3′ 30′′.94;

φ1 = 62◦ 36′ 3′′.10;

φ2 = 119◦ 55′ 47′′.67;

φ3 = 240◦ 0′ 0′′.19.

Applying eq. (26), Chap. X, we have

k2 log = 9.9698876

a. c. 2 9.6989700

9.6688576 .4665064
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k0 9.7699610

a. c. 2 9.6989700

9.1377886 .1373373

k00 9.0253880

a. c. 2 9.6989700

7.8621466 .0072802

k03 7.4511672

a. c. 2 9.6989700

5.0132838 .0000103

.6111342

1− .6111342 = 0.3888658.

From eq. (23), Chap. IV, we find F(k, φ) = 0.9226874.
Hence

F(k, φ)

[
1− k2

2

(
1 +

k0
2

+ · · ·
)]

= 0.3588016

k
√

k0
2

sin φ1 = 0.3290186

k
√

k0k00
4

sin φ2 = 0.0522872

k
√

k0k02k03
8

sin φ3 = −0.0013888

k
√

k0 · · · k04
16

sin φ4 = 0.0000010

0.3799180
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Whence

E(k, φ) = 0.3588016 + 0.3799180 = 0.7387196. Ans.

Example. Given k = sin 75◦. Find E
(

k,
π

2

)
.

From Example 2, Chap. XIII, we find

log F
(

k,
π

2

)
= 0.4421761

log 0.3888658 = 1.5897998

log E
(

k,
π

2

)
= 0.0319759

E
(
k, π

2
)

= 1.076405. Ans.

Example. Given k = sin 30◦, φ = 81◦. Find E(k, φ).
Ans. E(k, φ) = 1.33124.

Example. Find E(sin 80◦, 55◦).
Ans. 0.82417.

Example. Find E
(

sin 27◦, π

2

)
.

Ans. 1.48642.
Example. Find E(sin 19◦, 27◦).

Ans. 0.46946.



CHAPTER XVII.

APPLICATIONS.

RECTIFICATION OF THE LEMNISCATE.

The polar equation of the Lemniscate is r = a
√

cos 2θ, referred to the
centre as the origin. From this we get

dr
dθ

= − a sin 2θ√
cos 2θ

;

whence the length of the arc measured from the vertex to any point
whose co-ordinates are r and θ

s =
∫ {( dr

dθ

)2
+ r2

} 1
2

dθ = a
∫ {sin2 2θ

cos 2θ
+ cos 2θ

} 1
2

dθ

= a
∫ dθ√

cos 2θ
= a

∫ dθ√
1− 2 sin2 θ

.

Let cos 2θ = cos2 φ, whence

s = a
∫ dθ

dφ
dφ

cos φ
= a

∫ sin φ dφ√
1− cos4 φ

= a
∫ φ

0

dφ√
1 + cos2 φ

=
a√
2

∫ φ

0

dφ√
1− 1

2 sin2 φ

=
a√
2

F
(

1√
2

, φ

)
.

Since r = a
√

cos 2θ = a cos φ, the angle φ can be easily constructed
by describing upon the axis a of the Lemniscate a semicircle, and then
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revolving the radius vector until it cuts this semicircle. In the right-
angled triangle of which this is one side, and the axis the hypotenuse,
φ is evidently the angle between the axis and the revolved position of
the radius vector.

RECTIFICATION OF THE ELLIPSE.

Since the equation of the ellipse is
x2

a2 +
y2

b2 = 1, we can assume
x = a sin φ, y = b cos φ, so that φ is the complement of the eccentric angle.
Hence

s =
∫ √

dx2 + dy2 = a
∫

dφ

√
1− e2 sin2 φ

= aE(e, φ),

in which e, the eccentricity of the ellipse, is the modulus of the Elliptic
Integral.

The length of the Elliptic Quadrant is

s′ = aE
(

e,
π

2

)
.

Example. The equation of an ellipse is

x2

16.81
+

y2

16
= 1;

required the length of an arc whose abscissas are 1.061162 and 4.100000:
of the quadrantal arc.

Ans. 5.18912; 6.36189.

RECTIFICATION OF THE HYPERBOLA.

On the curve of the hyperbola, construct a straight line perpendicu-
lar to the axis x, and at a distance from the centre equal to the projection
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of b, the transverse axis, upon the asymptote, i.e. equal to
b2

√
a2 + b2

. Join

the projection of the given point of the hyperbola on this line with the
centre. The angle which this joining line makes with the axis of x we
will call φ. If y is the ordinate of the point on the hyperbola, then
evidently

y =
b2 tan φ√

a2 + b2
,

and

x =
a

cos φ

√
1− a2 sin2 φ

a2 + b2 =
a

cos φ

√
1− 1

e2 sin2 φ;

whence

s =
∫ √

dx2 + dy2 =
b2

c

∫ φ

0

dφ

cos2 φ

√
1− 1

e2 sin2 φ

=
b2

c

∫ φ

0

dφ

cos2 φ
√

1− k2 sin2 φ
.

But

d(tan φ

√
1− k2 sin2 φ) = dφ

√
1− k2 sin2 φ + dφ

1− k2√
1− e2 sin2 φ

− 1− k2

cos2 φ
√

1− e2 sin2 φ
dφ.
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Consequently

s =
b2

c

∫ φ

0

dφ

cos2 φ
√

1− k2 sin2 φ

=
b2

c
F(k, φ)− cE(k, φ) + c tan φ∆(k, φ)

=
b2

ae
F
(

1
e

, φ

)
− aeE

(
1
e

, φ

)
+ ae tan φ∆

(
1
e

, φ

)
.

Example. Find the length of the arc of the hyperbola

x2

20.25
− y2

400
= 1

from the vertex to the point whose ordinate is
40

2.05
tan 15◦.

Ans. 5.231184.
Example. Find the length of the arc of the hyperbola

x2

144
− y2

81
= 100

from the vertex to the point whose ordinate is 0.6.
Ans. 0.6582.
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