* MCBB.BAS *

* Task : Displays any memory block allocated by DOS. *
* chkBASIC and the QB.LIB must be loaded using *
* QB /L QB

* before loading and running this flle. *

" Author : Michael Tischer *

* Developed on :05/16/91 *

* Last update 01/10/92 *

* * * * * * * * *

DECLARE SUB TraceMCB 0

DECLARE SUB FirstMCB (Adr AS ANY)

DECLARE SUB Dump (Adr AS ANY, Nmb%)

DECLARE FUNCTION HexByte$ (HByte%)

DECLARE FUNCTION GetDosVer% ()

DECLARE FUNCTION GetWord& (SegAdr AS LONG, OfsAdr AS LONG)
DECLARE FUNCTION HexString$ (HexVal&)

'SINCLUDE: 'gb.bi" 'Include QB file
CONST TRUE =-1 ‘Define truth
CONST FALSE = NOT TRUE
TYPE AdrType 'Pointer to an address
OfsAdr AS LONG 'Offset address
SegAdr AS LONG '‘Segment address
END TYPE
CLS ‘Clear screen
PRINT "MCBB - (c) 1988, 91 by Michael Tischer": PRINT : PRINT
CALL TraceMCB 'Display MCB group
END
*DUMP : Display a memory range as hex and ASCIl dumps. *
"*Input : SegAdr = Segment address of memory range to be dumped *
* Nmb = Number of lines to be dumped (|n 16 byte units) *

* Qutput : None

Tkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkhkhkkkkkkkkkkkkkkkkkkkkkk

SUB Dump (SegAdr AS LONG, Nmb AS INTEGER)

DIM HexStr AS STRING * 2 '‘Get 2-digit hex number
DIM Offset AS LONG 'Offset in memory range
HexStr = "zz" '‘Create hex string

PRINT

PRINT "DUMP 2 0123456789ABCDEF 0001 0203"

PRINT "04 05 06 07 08 09 OA 0B 0C 0D OE OF"

PRINT "AA",
PRINT "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"

Offset =0 'Start with the first byte
DEF SEG = SegAdr 'Define the segment address
WHILE Nmb >0 'Execute loop Nmb times
PRINT HexString$(Offset); "3 ";
FORz=0TO 15 'Process every 16 bytes
IF PEEK(Offset + z) >= 32 THEN 'Valid ASCII characters?
PRINT CHR$(PEEK(Offset + z)); 'Yes --> Display
ELSE
PRINT " "; '‘No --> Display spaces
END IF
NEXT
PRINT " " 'Set cursor to hex portion
FORz=0TO 15 'Process every 16 characters

PRINT HexByte$(PEEK(Offset + z)); " "; 'Display byte as hex string
NEXT

PRINT 'New line
Offset = Offset + 16 'Set offset in the next line
Nmb=Nmb -1 'Decrement number of lines
WEND
PRINT
END SUB
"* FirstMCB : Returns a pointer to the first MCB. *

* Input : None *

" Qutput : Pointer to first MCB in the MCBAdr variable *

*k% *% *kkkkkk *kkkkkkkkkhkhkkk *% *kkkkkk * *kkkkkk

SUB FirstMCB (MCBAdr AS AdrType)

DIM Register AS RegTypeX '‘Processor registers for interrupt call

Register.ax = &H52 * 256 'Func. No: Get DOS info block's address
CALL INTERRUPTX(&H21, Register, Register) 'Call DOS interrupt

'-- (ES:BX - &H4) = ES-1:12 returns pointer address to first MCB ------

DEF SEG = Register.es - 1 'Define segment address
MCBAdr.OfsAdr = PEEK(Register.bx + 13) * 256& + PEEK(Register.bx + 12)
MCBAdr.SegAdr = PEEK(Register.bx + 15) * 256& + PEEK(Register.bx + 14)
END SuB

B R e e s s s e e e s e e T T e

'* GetDosVer : Determines version of DOS in use *
* |nput : None
"* Qutput : DOS version number (30 = DOS 3. O 33= DOS 3.3, etc.) *

*Khkkkkkkkk *kkkkkkkkhkk *hkkkkkkk *hkkkkkkkk

FUNCTION GetDosVer%
DIM Register AS RegType 'Processor registers for interrupt call

Register.ax = &H30 * 256 'AH = Funct. No: Get DOS version
CALL INTERRUPT(&H21, Register, Register) 'Call DOS interrupt 21H
GetDosVer = INT(Register.ax \ 256) + (Register.ax MOD 256) * 10

END FUNCTION

* * * * * *kkk * * * * * * *kkk * *

"* Getword : Reads a word from a memory address as a long number *
"* Input SegAdr = Segment address of the word

* OfsAdr = Offset address of the word *

" Qutput : Contents of the word as a long number *

*k% *% *kkkkkk *kkkkkkkkkhkhkkk *% *kkkkkk * *kkkkkk

FUNCTION GetWord& (SegAdr AS LONG, OfsAdr AS LONG)

DEF SEG = SegAdr '‘Set segment address
GetWord& = PEEK(OfsAdr + 1) * 256& + PEEK(OfsAdr) '‘Read memory location
END FUNCTION

*

* Hexbyte Converts a byte into a hexadecimal strlng *
* Input Hbyte = the byte

" Qutput : A string *

*Info : This replaces the HEX$ function, which doesn't

* consistently return two-digit hexadecimal numbers. *

s s s s e s e s e s e e T e e e

FUNCTION HexByte$ (HByte AS INTEGER)

DIM HexSt AS STRING * 2 '‘Get hex string
MID$(HexSt, 1, 1) = HEX$(HByte \ 16) 'First digit
MID$(HexSt, 2, 1) = HEX$(HByte MOD 16) 'Second digit
HexByte$ = HexSt '‘Return resulting string

END FUNCTION

*

* HexStrlng Converts a number into a hexadecimal stnng *
"*Input : Value to be converted

" Qutput : Resulting hex string *

*Info : This replaces the HEX$ function, which doesn't

* consistently return two-digit hexadecimal numbers. *

g s e s o s e S s e s e T e T e

FUNCTION HexString$ (HexValVar AS LONG)

DIM Nibble AS INTEGER ‘Lowest nibble of the word
DIM HexVal AS LONG " Argument must be stored
‘with reference parameters

DIM HStr AS STRING * 4 "The hex string to be converted
HexVal = HexValVar 'Store the argument of the word to be converted
HStr = "xxxx" 'Create string
FOR counter=0TO 3 'Change four digits

Nibble = HexVal AND &HF 'Get upper four bits

MID$(HStr, 4 - counter, 1) = HEX$(Nibble) 'Convert nibble into hex
HexVal = HexVal \ 16 'Shift hex number right by four bit positions

NEXT
HexString$ = HStr 'Pass resulting string
END FUNCTION

* * * * * *kkk * * * * * * *kkk * *

"* TraceMCB : Display list of MCBs. *
*Input : None *
"* Qutput : None *

SUB TraceMCB

CONST kom = "COMSPEC=" '‘Declare "COMSPEC=" as a constant
DIM CurMCB AS AdrType 'Pointer to MCB
DIMID ASSTRING*1 "M" = block follows, "Z" = End
DIMPSP ASLONG 'Segment address of corresponding PSP
DIM Spacing AS LONG 'Number of paragraphs - 1
DIM MemPtr AS LONG 'Pointer in memory
DIM NrMCB AS INTEGER 'Number of MCBs available
DIM z AS INTEGER '‘Loop counter
DIM Endlt AS INTEGER ‘Cancel condition
DIM CurOfs AS LONG
DosVer = GetDosVer 'Get DOS version
NrMCB =1 'Start with first MCB
Endlt = FALSE
CALL FirstMCB(CurMCB) ‘Get pointer to first MCB
DO
CurOfs = CurMCB.OfsAdr ‘Load offset address
DEF SEG = CurMCB.SegAdr '‘Define segment address for Peek()
ID = CHR$(PEEK(CurOfs)) ‘Read first MCB

PSP = GetWord&(CurMCB.SegAdr, CurOfs + &H1)
Spacing = GetWord&(CurMCB.SegAdr, CurOfs + &H3)

IF ID ="Z" THEN '‘Last MCB read?
Endlt = TRUE 'End loop - end retrieving new MCBs
END IF
PRINT "MCB number ="; NrMCB
PRINT "MCB address ="; HexString$(CurMCB.SegAdr); ":";

PRINT HexString$(CurOfs)
PRINT "Memory address = "; HexString$(CurMCB.SegAdr + 1); ™",
PRINT HexString$(CurOfs)

PRINT "ID =", ID
PRINT "PSP address ="; HexString$(PSP); ":0000"
PRINT "Size ="; HexString$(Spacing); " paragraphs (";

PRINT Spacing * 16; " bytes)"
PRINT "Contents ="

'---- Handle MCB as an environment?

z=0 'Start comparison with first byte

MemPtr = CurMCB.SegAdr + 1 'Pointer in RAM

DEF SEG = MemPtr 'Set segment address for Peek()

WHILE (z <= 7) AND MID$(kom, z + 1, 1) = CHR$(PEEK(CurMCB.OfsAdr + z))
z=z+1 'next character

WEND

IFz>7THEN 'COMSPEC = String found

PRINT "Environment "

IF DosVer > 30 THEN 'DOS Version 3.0 or higher?
PRINT "Program name =", 'Yes --> List program name
z=0 'Start with first byte
DO

z=z+1 '‘Search for null string

LOOP UNTIL PEEK(CurOfs + z) = 0 AND PEEK(CurOfs +z + 1) =0
IF PEEK(CurOfs + z + 2) = 1 AND PEEK(CurOfs + z + 3) = 0 THEN
'--- Program name found

z=z+4 'Place z at first character of the program name
DO 'Show program names

PRINT CHR$(PEEK(CurOfs + z)); '‘Display character

z=z+1 ‘Next character
LOOP UNTIL PEEK(CurOfs +z) =0 ‘until end of string
PRINT

ELSE 'No program name found
PRINT "Unknown"

END IF

END IF

'---- Display environment string

PRINT "Environment string:"

z=0 'Start with first byte in allocated range
WHILE PEEK(CurOfs + z) <> 0 'Repeat until null string
PRINT " " ‘Indent line
DO 'Display string
PRINT CHR$(PEEK(CurOfs + z)); 'Display character
z=z+1 'Next character
LOOP UNTIL PEEK(CurOfs +z) =0 ‘Loop until end of string
z=z+1 'Set to start of next string
PRINT '‘End line
WEND
ELSE

'---- Handle it as a PSP (if INT 20H
'---- (code &HCD &H?20) starts the code)

MemPtr = CurMCB.SegAdr + 1 'Set pointer in RAM
IF PEEK(CurOfs) = &HCD AND PEEK(CurOfs + 1) = &H20 THEN
PRINT "PSP (with program following)" ‘Handled as a PSP
ELSE 'INT 20H could not be implemented
PRINT "Unidentifiable as a program"
CALL Dump(MempPtr, 5) '‘Dump the first 5*16 bytes
END IF
END IF

PRINT "00000U00U00VUUVULOVUOULLLU Press any key to continue UUUUULUUU,
PRINT "UUUUUUUUUUUUUUUU"

DO ‘Wait for a key

a$ = INKEY$

LOOP UNTIL a$ <> ""

IF NOT EndIt THEN 'Still MCBs to be read?

CurMCB.SegAdr = CurMCB.SegAdr + Spacing + 1 'Pointer to next MCB
NrMCB = NrMCB + 1
END IF
LOOP UNTIL EndIt ‘Loop until there are no more MCBs
END SUB

