8041A/8641A/8741A UNIVERSAL PERIPHERAL INTERFACE 8-BIT MICROCOMPUTER

8-Bit CPU plus ROM, RAM, I/O, Timer and Clock in a Single Package

Intal

- One 8-Bit Status and Two Data Registers for Asynchronous Slave-to-Master Interface
- DMA, Interrupt, or Polled Operation Supported
- 1024 × 8 ROM/EPROM, 64 × 8 RAM,
 8-Bit Timer/Counter, 18 Programmable
 I/O Pins

- Fully Compatible with MCS-48[™], MCS-80[™], MCS-85[™], and MCS-86[™] Microprocessor Families
- Interchangeable ROM and EPROM Versions
- 3.6 MHz 8741A-8 Available
- Expandable I/O
- RAM Power-Down Capability
- Over 90 Instructions: 70% Single Byte
- Single 5V Supply

The Intel® 8041A/8741A is a general purpose, programmable interface device designed for use with a variety of 8-bit microprocessor systems. It contains a low cost microcomputer with program memory, data memory, 8-bit CPU, I/O ports, timer/counter, and clock in a single 40-pin package. Interface registers are included to enable the UPI device to function as a peripheral controller in MCS-48TM, MCS-80TM, MCS-86TM, MCS-86TM, and other 8-bit systems.

The UPI-41A[™] has 1K words of program memory and 64 words of data memory on-chip. To allow full user flexibility the program memory is available as ROM in the 8041A version or as UV-erasable EPROM in the 8741A version. The 8741A and the 8041A are fully pin compatible for easy transition from prototype to production level designs. The 8641A is a one-time programmable (at the factory) 8741A which can be ordered as the first 25 pieces of a new 8041A order. The substitution of 8641A's for 8041A's allows for very fast turnaround for initial code verification and evaluation results.

The device has two 8-bit, TTL compatible I/O ports and two test inputs. Individual port lines can function as either inputs or outputs under software control. I/O can be expanded with the 8243 device which is directly compatible and has 16 I/O lines. An 8-bit programmable timer/counter is included in the UPI device for generating timing sequences or counting external inputs. Additional UPI features include: single 5V supply, low power standby mode (in the 8041A), single-step mode for debug (in the 8741A), and dual working register banks.

Because it's a complete microcomputer, the UPI provides more flexibility for the designer than conventional LSI interface devices. It is designed to be an efficient controller as well as an arithmetic processor. Applications include keyboard scanning, printer control, display multiplexing and similar functions which involve interfacing peripheral devices to microprocessor systems.

r	Dia		a de la compansión de la c
Symbol	Pin No.	Туре	Name and Function
TEST 0, TEST 1	1 39	I	Test Inputs: Input pins which can be directly tested using conditional branch instructions.
			Frequency Reference: TEST 1 (T_1) also functions as the event timer input (under software control). TEST 0 (T_0) is used during PROM program- ming and verification in the 8741A.
XTAL 1, XTAL 2	2 3	1	Inputs: Inputs for a crystal, LC or an external timing signal to determine the internal oscillator frequency.
RESET	4	I	Reset: Input used to reset status flip- flops and to set the program counter to zero.
			RESET is also used during PROM pro- gramming and verification.
SS	5	I	Single Step: Single step input used in the 8741A in conjunction with the SYNC output to step the program through each instruction.
ĊŚ	6	1	Chip Select: Chip select input used to select one UPI-41A microcomputer out of several connected to a common data bus.
EA	7	I	External Access: External access input which allows emulation, testing and PROM/ROM verification. This pin should be tied low if unused.
RD	8	I	Read: I/O read input which enables the master CPU to read data and status words from the OUTPUT DATA BUS BUFFER or status register.
A ₀	9	I	Command/Data Select: Address input used by the master processor to indicate whether byte transfer is data $(A_0=0)$ or command $(A_0=1)$.
WR	10	I	Write: I/O write input which enables the master CPU to write data and com- mand words to the UPI-41A INPUT DATA BUS BUFFER.

Table 1. Pin Description

	Pin		
Symbol	No.	Туре	Name and Function
SYNC	11	0	Output Clock: Output signal which occurs once per UPI-41A instruction cycle. SYNC can be used as a strobe for external circuitry; it is also used to synchronize single step operation.
D ₀ -D ₇ (BUS)	12-19	I/O	Data Bus: Three-state, bidirectional DATA BUS BUFFER lines used to interface the UPI-41A microcomputer to an 8-bit master system data bus.
P ₁₀ -P ₁₇	27-34	I/O	Port 1: 8-bit, PORT 1 quasi-bidirec- tional I/O lines.
P ₂₀ -P ₂₇	21-24 35-38	I/O	Port 2: 8-bit, PORT 2 quasi-bidirectional I/O lines. The lower 4 bits (P_{20} - P_{23}) interface directly to the 8243 I/O expander device and contain address and data information during PORT 4-7 access. The upper 4 bits (P_{24} - P_{27}) can be programmed to provide interrupt Request and DMA Handshake capability. Software control can configure P_{24} as Output Buffer Full (OBF) interrupt, P_{25} as Input Buffer Full (OBF) interrupt, P_{26} as DMA Request (DRQ), and P_{27} as DMA ACKnowledge (DACK).
PROG	25	I/O	Program: Multifunction pin used as the program pulse input during PROM programming. During I/O expander access the PROG pin acts as an address/data strobe to the 8243. This pin should be tied high
	<u> </u>		if unused.
Vcc	40		Power: +5V main power supply pin.
V _{DD}	26		Power: +5V during normal opera- tion. +25V during programming operation. Low power standby pin in ROM version.
Vss	20		Ground: Circuit ground potential.

UPI-41A™ FEATURES AND ENHANCEMENTS

 Two Data Bus Buffers, one for input and one for output. This allows a much cleaner Master/Slave protocol.

2. 8 Bits of Status

ST7	ST6	st5	ST4	F ₁	Fo	IBF	OBF	
D7	06	D ₅	D ₄	D3	D ₂	P1	Do	

 ST_4 - ST_7 are user definable status bits. These bits are defined by the "MOV STS, A" single byte, single cycle instruction. Bits 4-7 of the accumulator are moved to bits 4-7 of the status register. Bits 0-3 of the status register are not affected.

MOV ST	rs, a c	p Code:	90H					
1	0	0	1	Ö	0	0	0	
D ₇							Do	

 RD and WR are edge triggered. IBF, OBF, F₁ and INT change internally after the trailing edge of RD or WR.

4. P_{24} and P_{25} are port pins or Buffer Flag pins which can be used to interrupt a master processor. These pins default to port pins on Reset.

If the "EN FLAGS" instruction has been executed, P₂₄ becomes the OBF (Output Buffer Full) pin. A "1" written to P₂₄ enables the OBF pin (the pin outputs the OBF Status Bit). A "0" written to P₂₄ disables the OBF pin (the pin remains low). This pin can be used to indicate that valid data is available from the UPI-41A (in Output Data Bus Buffer). If "EN FLAGS" has been executed, P_{25} becomes the IBF (Input Buffer Full) pin. A "1" written to P_{25} enables the IBF pin (the pin outputs the inverse of the IBF Status Bit). A "0" written to P_{25} disables the IBF pin (the pin remains low). This pin can be used to indicate that the UPI-41A is ready for data.

DATA BUS BUFFER INTERRUPT CAPABILITY

 P₂₆ and P₂₇ are port pins or DMA handshake pins for use with a DMA controller. These pins default to port pins on Reset.

If the "EN DMA" instruction has been executed, P_{26} becomes the DRQ (DMA ReQuest) pin. A "1" written to P_{26} causes a DMA request (DRQ is activated). DRQ is deactivated by DACK RD, DACK WR, or execution of the "EN DMA" instruction.

If "EN DMA" has been executed, P_{27} becomes the DACK (DMA ACKnowledge) pin. This pin acts as a chip select input for the Data Bus Buffer registers during DMA transfers.

DMA HANDSHAKE CAPABILITY

EN DMA Op Code: 0E5H

APPLICATIONS

Figure 3. 8085A-8041A Interface

Figure 5. 8041A-8243 Keyboard Scanner

PROGRAMMING, VERIFYING, AND ERASING THE 8741A EPROM

Programming Verification

In brief, the programming process consists of: activating the program mode, applying an address, latching the address, applying data, and applying a programming pulse. Each word is programmed completely before moving on to the next and is followed by a verification step. The following is a list of the pins used for programming and a description of their functions:

Pin	Function
XTAL 1	Clock Input (1 to 6MHz)
Reset	Initialization and Address Latching
Test 0	Selection of Program or Verify Mode
EA	Activation of Program/Verify Modes
BUS	Address and Data Input Data Output During Verify
P20-1	Address Input
V _{DD}	Programming Power Supply
PROG	Program Pulse Input

Figure 4. 8048-8041A Interface

Figure 6. 8041A Matrix Printer Interface

WARNING:

An attempt to program a missocketed 8741A will result in severe damage to the part. An indication of a properly socketed part is the appearance of the SYNC clock output. The lack of this clock may be used to disable the programmer.

The Program/Verify sequence is:

- 1. $A_0 = 0V, \overline{CS} = 5V, EA = 5V, \overline{RESET} = 0V, TEST0 = 5V, V_{DD} = 5V, clock applied or internal oscillator operating, BUS and PROG floating.$
- 2. Insert 8741A in programming socket
- 3. TEST 0 = 0v (select program mode)
- 4. EA = 23V (activate program mode)
- 5. Address applied to BUS and P20-1
- 6. RESET = 5v (latch address)
- 7. Data applied to BUS
- 8. V_{DD} = 25v (programming power)
- 9. PROG = 0v followed by one 50ms pulse to 23V
- 10. V_{DD} = 5v
- 11. TEST 0 ≈ 5v (verify mode)

- 12. Read and verify data on BUS
- 13. TEST 0 = 0v
- 14. RESET = Ov and repeat from step 5
- 15. Programmer should be at conditions of step 1 when 8741A is removed from socket.

8741A Erasure Characteristics

The erasure characteristics of the 8741A are such that erasure begins to occur when exposed to light with wavelengths shorter than approximately 4000 Angstroms (Å). It should be noted that sunlight and certain types of fluorescent lamps have wavelengths in the 3000-4000Å range. Data show that constant exposure to room level fluorescent lighting could erase the typical 8741A in approximately 3 years while it would take approximately one week to cause erasure when exposed to direct sunlight. If the 8741A is to be exposed to these types of lighting conditions for extended periods of time, opaque labels are available from Intel which should be placed over the 8741A window to prevent unintentional erasure.

The recommended erasure procedure for the 8741A is exposure to shortwave ultraviolet light which has a wavelength of 2537Å. The integrated dose (i.e., UV intensity x exposure time) for erasure should be a minimum of 15 w-sec/cm². The erasure time with this dosage is approximately 15 to 20 minutes using an ultraviolet lamp with a 12,000 μ W/cm² power rating. The 8741A should be placed within one inch of the lamp tubes during erasure. Some lamps have a filter on their tubes which should be removed before erasure.

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Blas0°C to 70°C Storage Temperature
Voltage on Any Pin With Respect
to Ground
Power Dissipation1.5 Watt

*NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS (TA = 0°C to 70°C, VSS = 0V: 80	$41A/8741A$, $V_{CC} = +5V \pm 10\%$
--	---------------------------------------

Symbol	Parameter	Min.	Max.	Unit	Test Conditions
VIL	Input Low Voltage (Except XTAL1, XTAL2, RESET)	-0.5	0.8	V	
VIL1	Input Low Voltage (XTAL1, XTAL2, RESET)	-0.5	0.6	V	
ViH	Input High Voltage (Except XTAL1, XTAL2, RESET)	2.2	Vcc		1.0
ViH1	Input High Voltage (XTAL1, XTAL2, RESET)	3.8	Vcc	V	
VOL	Output Low Voltage (D0-D7)		0.45	V	I _{OL} =2.0 mA
V _{OL1}	Output Low Voltage (P10P17, P20P27, Sync)		0.45	V	I _{OL} =1.6 mA
V _{OL2}	Output Low Voltage (Prog)		0.45	V	I _{OL} =1.0 mA
V _{OH}	Output High Voltage (D ₀ -D ₇)	2.4		v	I _{OH} ≈ −400 μA
V _{OH1}	Output High Voltage (All Other Outputs)	2.4		V	l _{OH} ≈ −50 µA
կլ	Input Leakage Current (T ₀ , T ₁ , RD, WR, CS, A ₀ , EA)		±10	μA	$V_{SS} \leq V_{IN} \leq V_{CC}$
oz	Output Leakage Current (D0-D7, High Z State)		±10	μA	$V_{SS} + 0.45 \leq V_{OUT} \leq V_{CC}$
lu l	Low Input Load Current (P10P17, P20P27)		0.5	mA	V _{IL} = 0.8V
ILII	Low Input Load Current (RESET, SS)		0.2	mA	V _{1L} = 0.8V
loo	V _{DD} Supply Current		15	mA	Typical=5 mA
I _{CC} + I _{DD}	Total Supply Current		125	mA	Typical=60 mA
IIH	Input High Leakage Current		100	μA	V _{IN} =V _{CC}
CIN	Input Capacitance		10	pF	
C1/0	I/O Capacitance		20	pF	

D.C. CHARACTERISTICS—**PROGRAMMING** ($T_A = 25 \text{ °C} \pm 5 \text{ °C}$, $V_{CC} = 5V \pm 5\%$, $V_{DD} = 25V \pm 1V$)

Symbol	Parameter	Min.	Max.	Unit	Test Conditions
VDOH	VDD Program Voltage High Level	24.0	26.0	V	
VDDL	VDD Voltage Low Level	4.75	5.25	v	
Vрн	PROG Program Voltage High Level	21.5	24.5	V	
VPL	PROG Voltage Low Level		0.2	V	
VEAH	EA Program or Verify Voltage High Level	21.5	24.5	V	
VEAL	EA Voltage Low Level	1	5.25	v	
IDD	VDD High Voltage Supply Current		30.0	mA	
IPAOG	PROG High Voltage Supply Current		16.0	mA	
IEA	EA High Voltage Supply Current		1.0	mA	

A.C. CHARACTERISTICS (T_A = 0°C to 70°C, V_{SS} = 0V: 8041A/8741A, V_{CC} = V_{DD} = +5V ±10%)

DBB READ

Symbol	Parameter	Min.	Max.	Unit	Test Conditions
t _{AR}	CS, A ₀ Setup to RDI	0		ns	
t _{RA}	CS, A ₀ Hold After RD1	0		ns	
t _{RR}	RD Pulse Width	250		ins	
t _{AD}	CS, A ₀ to Data Out Delay		225	ns	C _L = 150 pF
t _{RD}	RDI to Data Out Delay		225	ns	C _L = 150 pF
t _{DF}	RD1 to Data Float Delay		100	ns	
t _{CY}	Cycle Time (Except 8741A-8)	2.5	15	μS	6.0 MHz XTAL
tcy	Cycle Time (8741A-8)	4.17	15	μS	3.6 MHz XTAL

DBB WRITE

Symbol	Parameter	Min.	Max.	Unit	Test Conditions
t _{AW}	CS, A ₀ Setup to WRI	0		ns	
twa	CS, A ₀ Hold After WR1	0		ns	
tww	WR Pulse Width	250		ns	
t _{DW}	Data Setup to WRI	150		ns	
t _{WD}	Data Hold After WR1	0		ns	

A.C. CHARACTERISTICS---PROGRAMMING (T_A = 25°C $\pm 5°$ C, V_{CC} = 5V $\pm 5\%$, V_{DD} = 25V $\pm 1V$)

Symbol	Parameter	Min.	Max.	Unit	Test Conditions
taw	Address Setup Time to RESET 1	4tCy			
twa	Address Hold Time After RESET 1	41Cy			
tow	Data in Setup Time to PROG 1	4tCy			
twp	Data in Hold Time After PROG I	4tCy			
tрн	RESET Hold Time to Verify	4tCy			
tvddw	V _{DD} Setup Time to PROG 1	4tCy			
tvddh	VDD Hold Time After PROG 1	0			
tew	Program Pulse Width	50	60	mS	
tтw	Test 0 Setup Time for Program Mode	4tCy			
twr	Test 0 Hold Time After Program Mode	4tCy			
too	Test 0 to Data Out Delay		4icy		
tww	RESET Pulse Width to Latch Address	4tCy		· · · · · · · · · · · · · · · · · · ·	T
tr, tf	VDD and PROG Rise and Fall Times	0.5	2.0	μS	
tcy	CPU Operation Cycle Time	5.0		μs	†
tRE	RESET Setup Time Before EA 1.	4tCy			

Note: If TEST 0 is high, t_{DO} can be triggered by RESET 1.

A.C. CHARACTERISTICS-DMA

Symbol	Parameter	Min.	Max.	Unit	Test Conditions
t _{ACC}	DACK to WR or RD	0		ns	
tCAC	RD or WR to DACK	0		ns	
tACD	DACK to Data Valid		225	ns	C _L = 150 pF
tCRQ	RD or WR to DRQ Cleared		200	ns	

Symbol	Parameter	Min.	Max.	Unit	Test Conditions
tCP	Port Control Setup Before Falling Edge of PROG	110		ns	C _L = 80 pF
tPC	Port Control Hold After Falling Edge of PROG	100		ns	C _L = 20 pF
tpr	PROG to Time P2 Input Must Be Valid		810	ns	C _L = 80 pF
tPF	Input Data Hold Time	0	150	ns	C _L = 20 pF
top	Output Data Setup Time	250		ns	C _L = 80 pF
tPD	Output Data Hold Time	65		ns	C _L = 20 pF
tpp	PROG Pulse Width	1200		ns	

A.C. CHARACTERISTICS—PORT 2 $(T_A = 0^{\circ}C \text{ to } 70^{\circ}C; 8041A/8741A, V_{CC} = +5V \pm 10\%)$

TYPICAL 8041/8741A CURRENT

CRYSTAL OSCILLATOR MODE

DRIVING FROM EXTERNAL SOURCE

LC OSCILLATOR MODE

WAVEFORMS

WAVEFORMS (Continued)

The 8741A EPROM can be programmed by either of two intel products:

- 1. PROMPT-48 Microcomputer Design Aid, or
- 2. Universal PROM Programmer (UPP series) peripheral of the Intellec[®] Development System with a UPP-848 Personality Card.

WAVEFORMS (Continued)

Mnemonic	Description	Bytes	Cycles	
ACCUMULATOR				
ADD A, Rr ADD A, @Rr	Add register to A Add data memory to A	1 1	1 1	
ADD A, #data ADDC A, Rr	Add immediate to A Add register to A	2 1	2 1	
ADDC A, @Rr	with carry Add data memory to A with carry	1	1	
ADDC A, #data	Add immediate to A with carry	2	2	
ANL A, Rr ANL A, @Rr	AND register to A AND data memory to A	1 1	1 1	
ANL A, #data ORL A, Rr	AND immediate to A OR register to A	2 1 1	2 1	
ORL A, @Rr ORL A, #data	OR data memory to A OR immediate to A	2	2	
XRL A, Rr	Exclusive OR regis- ter to A	1	1	
XRL A, @Rr	Exclusive OR data memory to A	1	1	
XRL A, #data	Exclusive OR imme- diate to A Increment A	2	2	
DEC A	Decrement A	1		
CLRA	Clear A	i	l i	
CPL A	Complement A	1	1	
DA A	Decimal Adjust A	1	1	
SWAP A	Swap nibbles of A	1	1	
RL A RLC A	Rotate A left Rotate A left through carry	1 1	1	
RR A RRC A	Rotate A right Rotate A right through carry	1 1	1	
INPUT/OUTPUT				
IN A, Pp	Input port toA	1	2	
OUTL Pp, A	Output A to port	1	2	
ANL Pp, #data	AND immediate to	2	2	
ORL Pp, #data	OR immediate to port Input DBB to A,	2	2	
OUT DBB, A	clear IBF Output A to DBB,	1	1	
MOV STS, A	set OBF A ₄ -A ₇ to Bits 4-7 of	1	1	
MOVD A, Pp	Status Input Expander port to A	1	2	
MOVD Pp, A	Output A to Expander port	1	2	
ANLD Pp, A	AND A to Expander port	1	2	
ORLD Pp, A	OR A to Expander port	1	2	

Table 2.	UPI™	Instruction Set
----------	------	-----------------

Mnemonic	Description	Bytes	Cycles		
DATA MOVES					
MOV A, Br	Move register to A	1	1		
MOV A, @Rr	Move data memory	1	1		
	to A				
MOV A, #data	Move immediate	2	2		
MOV Rr. A	TO A Move A to register	1	1		
MOV @Rr, A	Move A to data	li	1		
	memory				
MOV Rr, #data	Move immediate to	2	2		
	register	_			
MOV @Rr,	Move immediate to	2	2		
#data	data memory Move PSW to A	1	1		
MOV A, PSW MOV PSW, A	Move A to PSW		1		
XCH A, Rr	Exchange A and	i	i		
	register	1			
XCH A, @Rr	Exchange A and	1	1		
	data memory				
XCHD A, @Rr	Exchange digit of A	1	1		
	and register	1	2		
MOVP A, @A	Move to A from current page	'	2		
MOVP3, A, @A	Move to A from	1	2		
Mott 0, A, @A	page 3	'	-		
TIMER/COUNTE		I	1		
		T 4	1		
MOV A, T MOV T, A	Read Timer/Counter Load Timer/Counter				
STRT T	Start Timer	i	li		
STRT CNT	start Counter	1	i		
STOP TCNT	Stop Timer/Counter	1	1		
EN TONTI	Enable Timer/	1	1		
	Counter Interrupt				
DIS TCNTI	Disable Timer/	1	1		
	Counter Interrupt		l		
CONTROL		<u> </u>	T		
EN DMA	Enable DMA Hand-	1	1		
ENI	shake Lines Enable IBF Interrupt	1	1		
EN I DIS I	Disable IBF Inter-				
	rupt	'	'		
EN FLAGS	Enable Master	1	1		
	Interrupts		I .		
SEL RB0	Select register	1	1		
SEL RB1	bank 0 Select register	1	1		
JEL NOT	Select register bank 1	'	'		
NOP	No Operation	1	1		
REGISTERS					
INC Rr	Increment register	1	1		
INC @Rr	Increment data		1		
	memory	.	.		
DEC Rr	Decrement register	1	1		
SUBROUTINE					
CALL addr	Jump to subroutine	2	2		
RET	Return	1	2		
RETR	Return and restore	i	2		
	status	I			

Mnemonic	Description	Bytes	Cycles		
FLAGS					
CLR C	Clear Carry	1	1		
CPL C	Complement Carry	1	1		
CLR F0	Clear Flag 0	1	1		
CPL F0	Complement Flag 0	1	1		
CLR F1	Clear F1 Flag	1	1		
CPL F1	Complement F1 Flag	1 -	1		
BRANCH					
JMP addr	Jump unconditional	2	2		
JMPP @A	Jump indirect	1 -	2 2 2		
DJNZ Rr, addr	Decrement register and jump	2	2		
JC addr	Jump on Carry=1	2	2		
JNC addr	Jump on Carry≕0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
JZ addr	Jump on A Zero	2	2		
JNZ addr	Jump on A not Zero	2	2		
JT0 addr	Jump on T0=1	2	2		
JNT0 addr	Jump on T0=0	2	2		
JT1 addr	Jump on T1=1	2	2		
JNT1 addr	Jump on T1=0	2	2		
JF0 addr	Jump on F0 Flag=1	2	2		
JF1 addr	Jump on F1 Flag=1	2	2		
JTF addr	Jump on Timer Flag =1, Clear Flag	2	2		
JNIBF addr	Jump on IBF Flag =0	2	2		
JOBF addr	Jump on OBF Flag	2	2		
JBb addr	Jump on Accumula- tor Bit	2	2		

Table 2. UPI™ Instruction Set (Continued)